
An algebraic multifrontal preconditioner
that exploits the low-rank property

Artem Napov 1∗ and Xiaoye S. Li 2∗

1 Service de Métrologie Nucléaire, Université Libre de Bruxelles

(C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium,

e-mail: anapov@ulb.ac.be

2 Computational Research Division, Lawrence Berkeley National Laboratory,

1 Cyclotron Rd., Berkeley, CA 94720

e-mail: xsli@lbl.gov

Technical Report; March 21, 2014.
(Second Revision; May 4, 2015).

Abstract

We present an algebraic structured preconditioner for the iterative solution of
large sparse linear systems. The preconditioner is based on a multifrontal variant
of sparse LU factorization used with nested dissection ordering. Multifrontal fac-
torization amounts to a partial factorization of a sequence of logically dense frontal
matrices, and the preconditioner is obtained if structured factorization is used in-
stead. This latter exploits the presence of low numerical rank in some off-diagonal
blocks of the frontal matrices. An algebraic procedure is presented that allows to
identify the hierarchy of the off-diagonal blocks with low numerical rank based on
the sparsity of the system matrix. This procedure is motivated by a model prob-
lem analysis, yet numerical experiments show that it is successful beyond the model
problem scope. Further aspects relevant for the algebraic structured preconditioner
are discussed and illustrated with numerical experiments. The preconditioner is also
compared with other solvers, including the corresponding direct solver.

Key words. preconditioning, iterative methods, sparse matrix, structured fac-
torization, incomplete factorization

AMS subject classification. 65F08, 65F50, 65N22, 65Y20

∗The work of the second and (partially) the first author was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231 .
This research used resources of the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

1

1 Introduction

We consider a structured factorization preconditioner for the iterative solution of large
sparse linear systems

Au = b , (1.1)

where A is a nonsingular n×n matrix. The preconditioner is based on a sparse multifrontal
LU factorization and exploits numerical rank deficiency of the given off-diagonal blocks in
the factor – the so-called low-rank property.

Solution methods that rely on a low-rank property are becoming increasingly popular.
They mainly target at applications arising from discretization of PDEs, since the low-rank
property is then known to hold with numerical rank being independent of, or slowly varying
with, the block size [1, 2, 3] (see also [4, 5] for the related results). The property is further
exploited through a suitable data-sparse representation to reduce the operation count and
the memory requirements. Well-known representations includeH- andH2-matrix structure
[6, 7, 8, 5], sequential and hierarchical semiseparable (HSS) representations [9, 10, 11, 12];
a more recent block low-rank format is described in [13].

Yet, the existing structured factorizations have two limitations. First, most of them
require some knowledge of the underlying problem in addition to the system (1.1), and
therefore are not fully algebraic. This may range from the geometric location of degrees
of freedom to the implicit assumption on the rank properties. Second, low-rank approxi-
mations are often performed with high accuracy, so that the resulting factorization is used
as a direct solver. Instead, relaxing this requirement while using the factorization as a
preconditioner usually improves both computational time and storage.

In this work we consider a structured preconditioner that does not suffer from these
limitations. It is derived from a multifrontal variant of sparse LU factorization [14, 15]
combined with a nested dissection ordering of unknowns [16, 17]. Nested dissection recur-
sively partitions the nodes of the connectivity graph of A into subsets called separators,
whereas multifrontal factorization simultaneously eliminates the unknowns corresponding
to one separator at a time by partially factorizing a logically dense frontal matrix.

Multifrontal factorization combined with nested dissection ordering represents on its
own an effective direct solver. This is because sparse factorizations based on nested dissec-
tion are known to have attractive storage requirements and operation count [18], whereas
multifrontal factorization is rich in matrix-matrix operations and therefore allows to min-
imize the time per operation.

Now, the structured preconditioner is obtained from this direct solver if the dense frontal
matrices arising during the multifrontal factorization are approximated by an HSS matrix
prior to their partial factorization. The HSS approximation amounts to representing some
block rows and columns devoid of diagonal block by a rank-deficient, or low-rank, matrix.
The hierarchical nature of the approximation comes with the property that some blocks
are recursively defined as a combination of others; it is expressed via the corresponding
compression tree, also called HSS tree.

The algebraic nature of the preconditioner mainly comes with an algebraic procedure

2

for the construction of the compression tree; that is, with a procedure – based solely on
a system matrix A – that determines what rows and columns of the dense frontal matrix
should be grouped together to effectively exploit the low-rank property.

In present work the algebraic procedure requiers only the connectivity graph of A . It
recursively partitions the nodes of the separator based on the corresponding connectivity
subgraph of A that is further completed with some length-two connections. The com-
pression tree is then defined from this partition. The use of the subgraph corresponding
to the separator is motivated by the model problem analysis based on model separators.
On the other hand, enrichment with additional connections allows to extend the algebraic
procedure beyond the analysis scope.

Note that the so far described design choices make the preconditioner almost indepen-
dent of the initial ordering of unknowns. This is because both the nested dissection ordering
and the just-described algebraic procedure only rely on the connectivity information from
the system matrix A . This insensitivity to the initial ordering is a key difference from simi-
lar structured factorizations available in the literature, as, e.g., [19]. Now, considering more
specifically the approach in [19] we further note that it uses a different structured partial
factorization of HSS matrices. However, despite these differences the algebraic procedure
for the compression tree may be used with this approach as well.

Some other features motivated by the algebraic structure of the preconditioner are as
follows.

• The HSS approximation is combined with the structured partial factorization step
(corresponding to a so-called ULV factorization) into a single structured partial fac-
torization stage.

• Arbitrary compression trees are allowed. This is a generalization of the traditional
HSS format [9, 11] which requires complete binary compression trees. Besides, nu-
merical experiments show that ternary trees yield a slightly faster factorization.

• Symbolic compression is used to ensure that the resulting preconditioner requires
less memory than the corresponding direct solver. This is needed since no a priori
assumption can be made over the presence of the low-rank property.

Eventually, we present some numerical experiments with the resulting structured pre-
conditioner. First, the experiments show that the algebraic procedure for the construction
of the compression tree can be effective in reducing both the computational time and the
memory needed for the factors. Second, the experiments allow to properly discuss the
main features and the choice of main parameters of the preconditioner. Eventually, they
allow to assess the performance of the preconditioner and to compare it with other solvers,
including the corresponding direct solver.

The reminder of the paper is organized as follows. In Section 2 we briefly introduce
the multifrontal factorization based on nested dissection ordering. Section 3 is devoted
to the structured preconditioner wheres Section 4 introduces and motivates the algebraic
construction of the compression tree. Further practical considerations are discussed in

3

Section 5, hand in hand with numerical experiments. They are followed by the concluding
remarks in Section 6.

Notation

For a finite set A , |A| is the number of its elements. For i ≤ j, [i, j] = {i, i + 1, . . . , j}
stands for the ordered set of integers ranging from i to j . For an m× n matrix B = (bij)
and ordered sets B = {i1, . . . , ib} ⊂ [1,m] , C = {j1, . . . , jc} ⊂ [1, n] , B|B×C is defined as

B|B×C =

 bi1j1 · · · bi1jc
...

. . .
...

bibj1 · · · bibjc

 .

For any matrix C = (cij) , sp(C) is its sparsity pattern; that is, the set of couples (i, j)
corresponding to entries cij that are considered non zero. For any matrix D , DT is its
transpose. I stands for an identity matrix and O stands for a zero matrix (e.i., a matrix
whose entries are zeros).

2 Multifrontal factorization

We first describe an exact multifrontal LU factorization which relies on a nested dissection
ordering; the structured preconditioner based on this factorization is introduced in the
next section. The material of this section is not new and is only outlined (more details can
be found in [15, 18]).

In what follows we also restrict ourselves to a system matrix A with a symmetric
sparsity pattern; that is, (i, j) ∈ sp(A) implies (j, i) ∈ sp(A) . In practice, the matrix A
may always be padded with zeros until it reaches the sparsity pattern of A+AT , which is
symmetric.

Nested dissection ordering is best described by means of the connectivity graph of A.
This latter is an undirected graph having n nodes and such that any two nodes i, j (i 6= j)
are connected if and only if (i, j) ∈ sp(A) . The ordering is obtained by recursively parti-
tioning the nodes of the connectivity graph of A into three disjoint subsets, two of which
are not connected to each other but potentially connected to the third, called separator.
The nodes of the disconnected subsets are enumerated first, those of the separator are
enumerated last, and the procedure is applied recursively to each disconnected subset until
it becomes small enough. The no-longer-partitioned subsets are also called separators, so
that the union of all separators corresponds to the set of all nodes of the connectivity
graph of A . Examples of separators resulting from two recursive partitioning are given on
Figures 1(a,b); Figure 1(a) also shows the resulting ordering.

With nested dissection ordering the unknowns corresponding to different disconnected
subsets may be eliminated during the factorization independently of each other and before
the unknowns corresponding to the separator. This elimination dependency is commonly

4

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

1

2

3

4

5

6

7

8

9 10t t
11

12

13

14

15

16

17

18

19 20t t
u
u
u
u
u

21

22

23

24

25

�
�
�
�
��

A
A
A
A
AA

u7

�
�
�

A
A
A

�
�
�

A
A
A

t3 t6
r1 r2 r4 r5

(c)(a) (b)

Figure 1: Two recursive steps of nested dissection partitioning for a graph corresponding
(a) to a cartesian 5 × 5 grid (together with the induced ordering) and (b) to an irregular
grid, as well as (c) the corresponding nested dissection tree; big • , midsize • and small •

markers represent first, second and third level separators, respectively.

described by a tree labeled in a postorder; that is, the separator produced after a parti-
tioning step is the parent of, and has a higher label than, the separators produced when
partitioning the resulting disconnected subsets; an example of nested dissection tree is pre-
sented on Figure 1(c). The labels then define the order in which separators are eliminated.
We also assume that the unknowns are ordered accordingly; that is, if k, k′ are separator
labels and k > k′ , then unknowns corresponding to the separator k have higher indices
than those of separator k′ .

Multifrontal factorization for a nested dissection ordering amounts to eliminating the
unknowns corresponding to a given separator k by partially factorizing a square logically
dense 2× 2 frontal matrix

F (k) = (F
(k)
ij)i,j=1,2 (2.1)

with F
(k)
11 , F

(k)
22 being square. We first outline the partial factorization of this matrix and

then explain how this matrix is computed.
The partial factorization exploits a 2× 2 block form of (2.1) in which the indices of the

first block correspond to the unknowns Sk in the separator k , whereas those of the second
represent the indices Ck of rows that need to be updated in the factor after the elimination
of this separator. It amounts to the following decomposition(

F
(k)
11 F

(k)
12

F
(k)
21 F

(k)
22

)
=

(
L
(k)
11

L
(k)
21 I

)(
I

C(k)

)(
U

(k)
11 U

(k)
12

I

)
, (2.2)

where L
(k)
11 , U

(k)
11 are square easy-to-invert matrices and C(k) is the Schur complement of

F (k) .
In the case of the exact factorization the matrices L

(k)
11 , U

(k)
11 are obtained by computing

an LU factorization with partial pivoting1 of F
(k)
11 ; the other submatrices, namely L

(k)
21 ,

1The pivoting is incorporated into L
(k)
11 which therefore corresponds to a lower triangular matrix whose

rows are permuted; U
(k)
11 is upper triangular.

5

U
(k)
12 and C(k) , stem from the equalities L

(k)
21 U

(k)
11 = F

(k)
21 , L

(k)
11 U

(k)
12 = F

(k)
12 and C(k) =

F
(k)
22 − L

(k)
21 U

(k)
12 which follow directly from (2.2). The use of partial factorization implies

that the overall pivoting is restricted to the indices Sk of the separator k ; this is similar
to the restricted pivoting strategy (see [20] for details).

The matrices L
(k)
11 , L

(k)
21 , U

(k)
11 , U

(k)
12 arising from the partial factorization (2.2) represent

given blocks of the sparse factors and, moreover, the sparse factors are progressively formed
from these matrices. Regarding the matrix C(k) , it is used in the computation of the frontal
matrices (2.1) corresponding to the parent of the separator k in the nested dissection tree,
as explained below.

Now, the computation of a frontal matrix F (k) is as follows (see [15] for details). If
k corresponds to a leaf in the nested dissection tree (e.i., it corresponds to a no-longer-
partitioned subset), the frontal matrix is given by

F (k) :=

(
A|Sk×Sk A|Sk×Ck
A|Ck×Sk

)
,

with the updated indices Ck being

Ck := { i | i > max(Sk) and (i, j) ∈ sp(A) for some j ∈ Sk } . (2.3)

If k is a not a leaf and has children c1 , c2 , we set

Ck := C̃k ∪ Cc1\Sk ∪ Cc2\Sk ,

where C̃k is defined as in (2.3), and

F (k) :=

(
A|Sk,Sk A|Sk,Ck
A|Ck,Sk

)
⊕ C(c1) ⊕ C(c2) ,

where ⊕ is an extended add operation. Note that the matrices C(c1) and C(c2) are already
available during the step k since the elimination is performed in a postorder.

It should be noted for the sake of completeness that the multifrontal factorization,
whose description is tailored here for the nested dissection case, can be used as well with
other fill reducing orderings. The unknowns are then still usually partitioned into subsets
(or supernodes), and the elimination dependency is still described by a tree, although
this latter is not necessary a binary tree. Likewise, although the approach developed in
this work is presented in the case of nested dissection ordering, the resulting ideas can of
course be applied to other partitionings of unknowns related by a proper elimination tree,
including partitionings obtained with a fill reducing ordering.

3 Structured preconditioner

The structured preconditioner is obtained from the exact factorization by replacing the
partial factorization (2.2) with a structured equivalent, which we now describe. We con-
sider structured factorizations based on the HSS representation [12]. Traditionally such

6

factorizations are applied in two stages: first the HSS representation of the frontal matrix
F is obtained (since one frontal matrix is considered at a time, we omit the separator index
k), then a so called ULV decomposition is computed. Here we combine both steps into
a single structured partial factorization stage; this allows to rewrite the factorization in a
more algebraic fashion while enhancing its data locality.

An important building block of structured partial factorization is a low-rank approxi-
mation, called compression. It amounts to approximating a given m × d matrix, say M ,
by a product

M ≈ V W

of m × r and r × d matrices so as to keep the approximation rank r (r ≤ min(m, d))
reasonably low. This operation usually depends on a threshold parameter ε that controls
the accuracy of the approximation.

Compression may be performed using a rank revealing QR decomposition [21, 22, 23,
24], with V then having orthogonal columns. In the present work we use the Householder
QR factorization with Businger-Golub column pivoting, as implemented in dgeqp3 rou-
tine from LAPACK [25] . The routine computes one Householder reflector at a time; the
factorization process is stopped when, after computing r reflectors, all the partial column
norms are lower than ε times the larges initial column norm. The reflectors produced by
the routine implicitly define an orthogonal matrix Q = (Ṽ V) , from which the matrix
V itself can be extracted; however, as is made clear below, only the matrix Q is required
for the partial factorization step.

Structured partial factorization exploits the low-rank property of a given set P of
(not necessarily consecutive) rows and columns of the frontal matrix F devoid of the
corresponding diagonal block F |P×P ; that is, if s is the number of rows of F and Pc =
[1, s]\P is the set of indices of F that are not in P , then the matrix that undergoes
compression is (

F |P×Pc F |TPc×P
)
. (3.1)

It is made clear in Section 4.1 that if P is chosen appropriately, this matrix can be accu-
rately approximated, at least in the model problem context, by a low-rank matrix with a
reasonable approximation rank.

One step of structured partial factorization is then as follows. For a given set P , the
compression of (3.1) is first performed, and amounts to(

F |P×Pc F |TPc×P
)
≈ V

(
F̃12 F̃ T

21

)
, (3.2)

where V is a |P|×r matrix, F̃12 and F̃ T
21 are each a r×|Pc|matrix and r is the approximation

rank. Since V has orthogonal columns, it can further be extended to form an orthogonal
matrix

Q =
(
Ṽ V

)
; (3.3)

in our case Q is defined by the reflectors computed during the rank-revealing QR factor-
ization. Eventually, the |P| − r first rows of the |P| × |P| matrix QTF |P×PQ are partially

7

F11 F12

F21 F22

} P
P
{

(a)

QT×
×
Q

(b)

(
DL

D21 I

)−1×
×

(
DR D12

I

)−1

(c) (d)

Figure 2: One step of structured partial factorization: frontal matrix (a) before and (b) af-
ter the compression step, (c) after the product of rows and columns in P with QT and Q ,
and (d) after a partial factorization of the diagonal block QTF |P×PQ . For simplicity, P is
depicted as the set of the first |P| indices.

eliminated by determining easy-to-invert DL and DR matrices as well as D12, D21 and F̃11

such that the following factorization holds

QTF |P×PQ =

(
DL

D21 I

)(
I

F̃11

)(
DR D12

I

)
;

as in the case of exact factorization (2.2) this may be done using LU factorization with
partial pivoting.

Now, putting together the above mentioned operations, and ordering the indices in P
before those in Pc , one has

F =

(
F |P×P F |P×Pc

F |Pc×P F |Pc×Pc

)
≈

(
F |P×P V F̃12

F̃21V
T F |Pc×Pc

)

=

(
Q

I

) QTF |P×PQ
(

O

F̃12

)
(

O F̃21

)
F |Pc×Pc

(QT

I

)

=

Q

(
DL

D21 I

)
I




I

F̃11 F̃12

F̃21 F |Pc×Pc


(DR D12

I

)
QT

I

 ; (3.4)

this is further illustrated with Figure 2. The original frontal matrix is therefore approx-
imated by a product of two easy-to-invert matrices and a block diagonal matrix whose
bottom right block still needs to be partially factorized. Hence, we can repeat the above
steps again while choosing another set P of block rows.

Now, to obtain an approximate partial factorization of the form (2.2) for a block 2× 2
matrix F = (Fij)i,j=1,2 , the indices P of the compressed rows and columns must be chosen
only from the first block F11 ; that is, if S is the separator corresponding to F , then F11 is

8

a |S| × |S| matrix and one requires P ⊂ [1, |S|] to hold. If this is the case, then repeating
the above structured partial step for the different index sets P yields an approximate
factorization of the form

F ≈
(
M1

I

)
(
I

F̃11

) (
F̃12

)
(

F̃21

)
F22

(M2

I

)
. (3.5)

with M1, M2 being easy-to-invert, but not necessarily triangular matrices; these matrices
are available implicitly as a product of easy-to-invert factors from (3.4) determined for
different index sets P . Eventually, if no compression remains to be performed, an exact
partial factorization of the bottom right 2×2 block in the central factor of (3.5) is computed,
yielding (

F̃11 F̃12

F̃21 F22

)
=

(
L̃11

L̃21 I

)(
I

C̃

)(
Ũ11 Ũ12

I

)
. (3.6)

Combining this latter with (3.5) gives an approximate factorization of the same form as

(2.2); the matrix C̃ for a given separator k plays then the same role as C(k) in the case of
exact factorization from Section 2.

Now, the approximation accuracy ε of the compression step is commonly chosen to be
uniformly bounded by a specific user-defined threshold parameter. Although we are not
aware of any analysis that supports such a threshold strategy for the considered precon-
ditioner, numerical experiments in Section 5 show that such a strategy works well for the
problems at hands. Moreover, the analysis for similar structured factorizations in [26] also
suggests that the accuracy control of individual approximations may be a proper tool for
controlling the overall quality of the preconditioner.

Besides, the low-rank property of the block (3.1) only depends on the choice of P , and
not on the initial ordering of unknowns. Indeed, a reordering of unknowns amounts to
some reordering of rows and columns of the block (3.1); the approximation (3.2) is then
still possible by applying the same row reordering to the matrix V and the same column

reordering to the matrix
(
F̃12 F̃ T

21

)
. Hence, if the procedure that determines the sets

P is itself insensitive to the initial ordering of unknowns (as, e.g., the algebraic proce-
dure described in Section 4 below), then the resulting structured preconditioner becomes
insensitive to that ordering.

Eventually, we note that an alternative structured factorization approach is described
in [27]. It is similar in that it operates on a dense matrix, and progressively reduces
the dense part by a repetitive combination of two-sided orthogonal transformation and
partial factorization steps. However, [27] considers different orthogonal transformations,
and different orthogonal matrices are applied on both sides (as opposite to the application
of the same matrix Q here, see (3.4)). The use of different orthogonal transformations aims
at reducing the impact of approximations on the Schur complement, but it also requires
some additional computation.

9

4 Algebraic construction of compression tree

In this section we present an algebraic procedure for the construction of the compression
tree. This is done in three steps corresponding to the following three subsections.

We start with the model problem analysis based on model separators. The analysis
indicates that the numerical rank of the matrix (3.1) corresponding to a given set P is
related to a quantity which depends on P and on the connectivity graph of the separator.
Since this requires only the knowledge of the system matrix, it is especially relevant for an
algebraic solver.

Next, we introduce the compression tree and explain, based on the above analysis, why
it is sensible to choose the sets P so that they form a compression tree.

Eventually, we show that the low-rank property can be ensured with a compression tree
obtained from a recursive subdivision of the connectivity graph of the separator. Regarding
the separators obtained using a graph partitioning tool, and which are typically beyond the
scope of the analysis, the separator graph is further enriched with length-two connections
from the connectivity graph of A before it is used for the construction of the compression
tree. This latter construction is used by default in our structured preconditioner.

4.1 On the low-rank property

We now explain why matrices in (3.1) may exhibit a low-rank property and how the indices
P should be chosen to ensure this property. This is done in a special case where the system
matrix is symmetric positive definite (SPD) and have the following nb × nb block form

A =

 G −I
−I G

. . .
.

 , (4.1)

with G being square. In particular, the two- and tree-dimensional (2D and 3D) Poisson
model problems discretized using respectively 5- and 7-point finite difference scheme on a
cartesian grid and with nodes ordered in a lexicographical ordering fit into this framework;
nb is then the number of nodes in the last coordinate direction. Note that, although the
ordering of unknowns that leads to the block form (4.1) is suitable for the analysis below,
the presence of the low-rank property does not depend on the initial ordering, as already
stated in Section 3 above.

Now, we further restrict ourselves to the case of the frontal matrix corresponding to the
root separator; that is, the separator with the largest label in the nested dissection tree. In
this particular case the frontal matrix F is also the Schur complement of A corresponding
to the separator. Moreover, F also coincides with its top left block F11 .

Regarding the separator S itself, a natural choice corresponds to the set of indices
formed by any of the nb blocks in (4.1) except the first and the last. Indeed, indices
belonging to a block j (1 < j < nb) separate the connectivity graph into two disconnected
parts, one being the first j − 1 blocks and the other corresponding to the last nb− j ones .

10

In the case of Poisson model problems such choice leads to a geometric separator given by
the j-th line (2D) or the j-th plane (3D) of the grid.

In this setting the frontal matrix is given by

F = G−K−1j−1 −K−1nb−j , (4.2)

where

Kj = G−K−1j−1 , K1 = G . (4.3)

The next theorem from [3] relates the rank property ofK∞ to that ofG. The assumption
of G− 2I being SPD simply ensures that A is SPD for any number nb of blocks.

Theorem 4.1 ([3]) Let A be given by (4.1) with G being square and G − 2I being SPD.
Then, for any index subset P (with complementary subset Pc = [1, |S|]\P) and threshold

parameter ε there exits an approximation K̃∞|P×Pc of K∞|P×Pc of rank r(K̃∞,P) such that

‖K̃∞|P×Pc −K∞|P×Pc‖ ≤ ε (4.4)

and

r(K̃∞,P) ≤ r(G,P)

(
1 + 8 ln4

(
3‖A‖
ε

))
, (4.5)

where r(G,P) is the rank of G|P×Pc.

Whereas in practice neither j nor nb− j − 1 reaches infinity, it is reasonable to assume
that Kj ≈ Knb−j+1 ≈ K∞ if both indices are big enough. We implicitly make this assump-
tion in what follows, referring the interested reader to [3] for a more rigorous explanation
on why ‖Kj −K∞‖ becomes small for big j. Note however that the low-rank property is
also present for small j . For instance, although K1 = G may differ significantly from K∞ ,
the rank of any block of K1 is equal to that of the corresponding block of G , and a rank
bound similar to (4.5) trivially holds.

The following corollary provides an upper bound on the approximation rank of the
submatrix F |P×Pc in the case where j, nb − j both go to infinity; since the matrix F is
symmetric, this is also the rank of the submatrix (3.1). This rank essentially depends on
the number cnx(G,P) of nodes in P which are connected to the rest of the connectivity
graph of G (see (4.8) for a formal definition). Note that connectivity graph of G is also
the connectivity graph of A restricted to the nodes of the separator, and hence cnx(G,P)
can be computed algebraically.

Corollary 4.1 Let the assumptions of Theorem 4.1 hold and set F∞ = G−2K−1∞ . Then,

for any index subset P and threshold parameter ε there exits an approximation F̃∞|P×Pc of

F∞|P×Pc of rank r(F̃∞,P) such that

‖F̃∞|P×Pc − F∞|P×Pc‖ ≤ 2ε (4.6)

11

and

r(F̃∞,P) ≤ cnx(G,P)

(
2 + 8 ln4

(
3‖A‖
ε

))
, (4.7)

where
cnx(G,P) = | { i ∈ P | ∃j /∈ P such that Gij ∈ sp(G)} | . (4.8)

Proof. First, note that for the rank r(G,P) of G|P×Pc there holds r(G,P) ≤ cnx(G,P) .
Then observe that (4.2) and (4.3) imply F∞ = G− 2K−1∞ = 2K∞ −G . The result then
follows from the previous theorem by setting

F̃∞|P×Pc = 2K̃∞|P×Pc −G|P×Pc , (4.9)

with K̃∞ being the low-rank approximation of K∞ satisfying (4.4) and (4.5) . Indeed, this
matrix satisfies (4.6) while its rank is at most the sum of the ranks of each of the terms in
(4.9).

Note that the above corollary also holds if cnx(G,P) is replaced by cnx(G,Pc) , where
Pc the complement of P with respect to the separator set. On the other hand, both
cnx(G,P) and cnx(G,Pc) are bounded above by the number of connection between P and
Pc .

4.2 Compression tree

Let us first illustrate the results of the previous corollary with the examples from Fig-
ures 3(a,b). We begin by considering the system matrix of the form (4.1) with the connec-
tivity graph being as on Figure 3(a); we assume that each block in (4.1) corresponds to a
vertical line of nodes and the separator is chosen to be the central line.

Below we also assume that the rank of (3.1) is bounded similarly to its asymptotical
value in (4.7), and hence that cnx(G,P) is a correct indicator of the rank value. This may
sound debatable for the small 7×7 grid in the considered example; however, the small grid
is considered here only for simplicity, and the observations below remain valid in the case
of bigger rectangular grid as encountered in practice.

In this example, the subsets P1, P2 and P4 of the separator are chosen to be connected
sets and, hence, the number of nodes cnx(G,Pi) in Pi connected to the separator nodes
outside Pi is bounded by 2 ; it is even bounded by 1 in the case of P1 and P4 . Now, setting
P3 = P1 ∪ P2 in the same example we note that again cnx(G,P3) ≤ 1 , this bound being
the same as for P1 and similar to the one for P2 . As a result, it make sense to compress the
union of some subsets if the union is also a connected set. This compression is especially
useful if the rows and columns in P1 and P2 have already been compressed, since then the
number of rows in the approximated block decreases.

The tree structure naturally accounts for the nested character of subsets Pi arising in
the above example. The corresponding tree is referred to as compression tree. Each node
of the tree corresponds to a given set Pi . The set Pp is considered to be a parent of the
sets Pi , i ∈ child(p) , if Pp = ∪i∈child(p)Pi . Moreover, if the sets Pi in the tree are labelled

12

P5

P3

P1 P2

P4

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

tt
t
P4

ttP2

ttP1

(a)

P7

P3

P1 P2

P6

P4 P5 �
b�b�
b�b�
b�b�
b

�
b�b�
b�b�
b�b�
b

�
b
�
b
�
b
�
b
�
b
�
b
�
b�

b
�
b
�
b
�
b
�
b
�
b
�
b

tt
tt
tt
tt
tt
tt
tt
tt

P1

tt
t
tt
t
tt
t
tt
t

P2

tt
tt
tt
tt
tt
tt

P4

tt
t
tt
t
tt
t

P5

(b)

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

bb
bb
bb
b

��t@@t
tt

@@tt
t

(c)

����P1����P2�
�
�

P4

Figure 3: Geometric separator and the corresponding compression tree (a) on a cartesian
7×7 grid, (b) on a cartesian 7×7×3 grid, and (c) an irregular separator typically obtained
with a graph partitioning tool; in this latter case, thick (dark blue) lines represent the
separator graph wheres thin (red) lines are the length-two connections added to obtain the
enriched graph.

P5
P4

P3 P2

P1
F11 F12

F21 F22

F

{{{
P1 compressed

P2

{

submatrix P2 compressed

P3

{

submatrix P3 compr.

P4

{
submatrix P4 compr.

P5

{
submatrix P5 compr. submatr.

Figure 4: Structured partial factorization algorithm (without the last partial compression
step (3.6)) for the compression tree in the top left corner. For simplicity, Pi are depicted
as sets of subsequent indices.

in a postorder, the parent set is only compressed once its children have been compressed.
Now, the set at the root of the compression tree commonly corresponds to whole separator;
the last compression step is then performed on the F12 submatrix of the frontal matrix ,
at least if this block is not empty. An example of a possible compression tree is given on
Figure 3(a). The structured partial factorization corresponding to this tree is represented
on Figure 4.

4.3 Algebraic construction

We now consider an algebraic construction of the compression tree. To motivate this con-
struction let us first take a look at the example depicted on Figure 3(b); it represents
a 3D cartesian grid with the separator corresponding to its front face. The compression
tree Pi , i = 1, . . . , 7 , from the same figure ensures a reasonable low-rank property if the

13

quantities cnx(G,Pi) are reasonably small. Considering first cnx(G,P3) and cnx(G,P6) ,
we note that they are indirectly minimized if the sets P3 = P1 ∪ P2 and P6 = P4 ∪ P5 –
disjoint sets whose union corresponds to the whole separator – are chosen in a way that
minimizes the number of connections between them. The latter problem of subdividing a
given graph into two subgraphs so as to minimize the number of connections between them
is a well known problem of graph partitioning. Next, considering for example cnx(G,P1)
and cnx(G,P2) , we note that these quantities are again indirectly minimized if the above
minimization problem is solved reasonably well and, in addition, if the number of connec-
tion between P1 and P2 is made small. This latter problem is also the graph partitioning
problem but for the connectivity subgraph corresponding to P3 .

The above example highlights a general approach for the construction of the com-
pression tree. It is based on a graph G whose nodes correspond to the unknowns in the
separator. The compression tree is defined similarly to the nested dissection tree: start-
ing from the set of all nodes of the separator, the tree is obtained by partitioning the
graph of the parent set Pp into |child(p)| subgraphs that corresponding to the children
Pi , i ∈ child(p) . The procedure is stopped when |Pp| goes below |child(p)| times a given
minimal block size |P|min. In this work the graph partitioning problem is solved using
Metis graph partitioning routines [28] .

In the case of geometric separators S from Figures 3(a,b) the graph G may be chosen
as a connectivity graph of G = A|S×S , in agreement with the analysis from Section 4.1.
However, in more general cases such a graph may be composed of several disjoint subgraphs,
as depicted on Figure 3(c). Although some of these subgraphs are geometrically close while
others are not, this proximity can not be deduced from the connectivity graph of A|S×S .
To reduce the occurrence of the fragmented graphs the construction of the compression
tree is therefore based on the enriched graph Gβ(S), where β > 0 is an integer parameter.
This graph has |S| nodes and (i, j) ∈ Gβ(S) if there is a path in the connectivity graph of
A which does contain at most β + 1 nodes and, except for the first and last, these nodes
do not belongs to S. β = 2 is used as a default choice in our structured preconditioner; an
example of the enriched graph G2(S) corresponding to this choice is given on Figure 3(c) .
We note that Gβ(S) is related to the connectivity graph of Aβ|S×S but is usually sparser
than this latter; for instance, the graph on Figure 3(c) would need an additional connection
between nodes 3 and 5 (ordering from bottom to top) to match that of A2|S×S .

Eventually, we summarize the whole procedure for the construction of the compression
tree for the case of the separator from Figure 3(c); the resulting compression tree is the
same as on Figure 3(a). The input parameter is the set S of nodes corresponding to the
separator; it is represented with filled circles on the figure. First, an enriched graph G2(S)
is constructed. Two nodes i and j are connected in the graph if there is a node k 6∈ S
such that (i, k), (j, k) ∈ sp(A); the graph connections are depicted on the figure with line
segments of different thickness connecting the nodes of the separator. Next, the graph
G2(S) is used with a partitioning tool such as Metis to subdivide the separator S into (say)
two subsets; possible subsets correspond to P3 = P1 ∪ P2 and P4 on the figure. Moreover,
the children of the root node of the compression tree are set to P3 and P4 . Now, if the
index sets P are expected to contain at least |P|min = 2 elements, we no longer subdivide

14

P4 (it becomes the leaf of the compression tree) but apply the partitioning tool to the
subgraph of G2(S) corresponding to P3 ; possible resulting subsets are P1 and P2 that
become the children of P3 in the compression tree. Since these subsets can no longer be
subdivided into subsets of acceptable size (that is, into subset of size at least |P|min = 2),
they become leafs and the tree construction procedure stops.

5 Practical considerations and numerical experiments

5.1 General setting

In this section we discuss several practical aspects that are relevant for the implementation
of the structured multifrontal preconditioner. The discussion is accompanied with the
numerical experiments, and most of them use the system matrix A corresponding to one of
the following two model problems (experiments with other problems are provided starting
from Section 5.7). Regarding the vector of right hand sides, its entries are randomly
generated based on normal distribution N (0, 1) .

Problem MOD2D : 2D Poisson problem −∆u = f with homogeneous Dirichlet boundary
conditions defined on a square domain and discretized using 5-point finite difference scheme
on a cartesian (nx+2)×(nx+2) grid. The condition number of the resulting system matrix
is κ(A) = sin2(πnx

2nx+2
)/ sin2(π

2nx+2
) , which is approximately given by 6.5 105 for nx = 4000.

Problem MOD3D : 3D Poisson problem −∆u+ 10−1u = f with homogeneous Neumann
boundary conditions defined on a cubic domain and discretized using 7-point finite difference
scheme on a Cartesian nx × nx × nx grid. The condition number of the resulting system
matrix is approximately2 given by 1.2 106 for nx = 100 ; for other values of nx it can be
roughly estimated by 1.2n3

x .

All the numerical experiments are performed in double precision with a code written
in C and executed on a single AMD MagnyCours 2.1-GHz processor (peak performance:
8.4 109 flop per second) with 32 GB RAM memory. The preconditioner solves the linear
system (1.1) by performing several distinct stages.

• Nested dissection (ND) ordering is first computed by recursively partitioning the
connectivity graph of A (see Section 2). This is done using Scotch graph partitioner
[29], as this latter provides the nested dissection tree in addition to the ordering itself.

• Symbolic factorization (Sb.F.) amounts to setting up the symbolic structure of the
factors and defining the compression trees. In particular, the compression tree for a
given separator is obtained by recursively partitioning the separator graph enriched
with some connections of length β = 2 (see Section 4.3).

2Eigenvalue estimates are obtained with Matlab eigs function.

15

MOD2D (nx = 4000) MOD3D (nx = 100)
mfstr(10−5) mf mfstr(10−1) mf

ND time (sec.) 180 180 41 41
Sb.F. time (sec.) 10 6 2 1

Nm.F. time (sec.) 193 425 526 1494
Sol. time (sec.) 27 12 86 4
Tot. time (sec.) 410 623 655 1540

Nm.F. flops [×1012] 0.42 2.7 1.2 11
It. 3 1 58 1

nnz factors [×109] 1.2 1.9 0.41 1.7
nnz overhead [×109] 0.12 0.052 0.51 0.29

Table 1: Time, operation counts for the numerical factorization stage, iteration counts,
and memory requirements for the structured preconditioner (mfstr(ε)) and for the direct
solver (mf) applied to 2D et 3D model problems; the ND stage is the same for both
solvers.

• Numerical factorization (Nm.F.) computes the factors of the structured precondi-
tioner by applying the structured partial factorization to a sequence of dense ma-
trices. The compression is performed using Businger-Golub rank revealing QR
decomposition, which is stopped when all the partial column norms are less than ε
times the larges initial column norm. (see Section 3)

• Solution uses GMRES(30) iteration [30] with the structured preconditioner and zero
initial guess to solve the system (1.1); the iteration is stopped if the relative residual
norm decreases below 10−6 . The reported iteration count corresponds to the number
of preconditioner applications.

The code requires only the information available in the system (1.1) and is therefore purely
algebraic. In what follows, it is always used with the same values of parameters, unless
stated otherwise. An exception is made for the compression threshold parameter ε : this
latter is always chosen to be the best value in the set {1, 10−1, 10−2, · · · , 10−10} ; that is, the
value that yields the preconditioner with the smallest total time. In particular, ε = 10−5

is used for MOD2D whereas ε = 10−1 is specified for MOD3D.
Table 1 gives the time needed for the four stages of the preconditioner when applied

to the MOD2D and MOD3D problems. Here and below, time values correspond to a
specific run, and up to 5% variation may be observed from one run to another. Now,
whereas the time required by the symbolic factorization stage is negligible in 2D and
3D cases, the other time contributions are significant. In the 2D case, the ND, numerical
factorization and solution times are comparable. In the 3D case, the numerical factorization
time is dominant; whereas a further reduction in ε may help to reduce this contribution, a
significant decrease in ε may also lead to a stagnation in convergence. It should be noted
that other 2D and 3D test problems considered in Section 5.7 exhibit similar relative times

16

of the four stages as those given in Table 1 of MOD2D and MOD3D, respectively.

5.2 Comparison with other solvers, part I

The above structure in four stages may also be used to describe the stages of the direct
multifrontal solver based on a nested dissection ordering; the corresponding times are also
available in Table 1. The table further provides, both for the direct solver and the struc-
tured preconditioner, the number of floating point operations (flops) required to compute
the factors as well as the memory needed to store them.

The results in Table 1 show that the improvement in the numerical factorization time
from using the preconditioner as compared to the direct solver is much smaller than what
can be concluded from the numerical factorization flop count. This is due to the fact that
multifrontal solver is rich in matrix-matrix operations, and for big enough model problems
the number of flops per second comes close to the peak performance. On the other hand,
the structured preconditioner spends a significant portion of time in the compression op-
erations; these are essentially matrix-vector or vector-vector operations whose flop rate is
far from the peak. Moreover, the matrix-matrix operations that are carried out by the pre-
conditioner have lower granularity, and hence lower flop intensity. This difference between
the direct solver and corresponding preconditioner is further illustrated with Figure 5 for
the MOD2D and MOD3D problems of different grid size nx.

Memory requirements in Table 1 deserve a particular comment. Regarding the memory
needed for the factors, it decreases when going from the direct solver to the preconditioner,
thanks to the use of low-rank approximations. This decrease is however less significant
than the corresponding decrease in the number of flops; moreover, it is more important for
MOD3D than for MOD2D problem.

Note than during the factorization stage more memory may be required that what is
needed for the factors. The memory overhead is mainly due to the temporary storage of the
Schur complements C(k) , and may therefore occur in both the structured preconditioner
and the direct solver. Some representative values of the overhead (compared to the memory
of the corresponding factors) are reported in Table 1. In particular, the memory overhead
is larger for the structured factorization preconditioner than for the direct solver; this
is mainly because the storage for the dense and for the structured representation of the
frontal matrix are simultaneously required by the preconditioner, whereas only the dense
storage is needed for the direct solver. Now, this storage overhead is especially an issue
for the 3D problems. It may, however, be avoided either partially, by using a compressed
representation of the Schur complements3, or totally, by using a left-looking variant of the
factorization.

Now, as mentioned in the introduction, the structured factorization is best if used as a
preconditioner. Yet, it can, in principle, also be used as a direct solver if the relative residual
norm accuracy required for the solution is not hight. Table 2 provides time and relative

3Although the compression of the Schur complements may improve the memory usage, its straightfor-
ward implementation will likely slow down the factorization stage.

17

MOD2D (nx = 4000) MOD3D (nx = 100)
solver Nm.F. time Sol. time rel.res. solver Nm.F. time Sol. time rel.res.

mfstr(10−1) 112 9.8 7 10−2 mfstr(1) 90 0.9 1 10−1

mfstr(10−3) 145 9.9 3 10−2 mfstr(10−1) 526 1.5 4 10−2

mfstr(10−5) 193 10.3 3 10−3 mfstr(10−2) 888 2.2 2 10−2

mfstr(10−7) 273 10.5 3 10−5 mfstr(10−3) 1390 2.9 1 10−2

mfstr(10−9) 329 10.7 3 10−7

mfstr(10−11) 395 10.9 2 10−9

mf 425 12 2 10−13 mf 1494 3.5 2 10−14

Table 2: Numerical factorization and solution times (in sec.), as well as relative residual
norm corresponding to one application of the structured factorization, reported here as a
function of the dropping tolerance ε for the 2D and 3D model problems; mf corresponds
to the direct multifrontal solver.

residual norm reported for one application of the structured factorization, as a function
of the dropping tolerance ε . Note that only the values of ε are considered for which the
factorization requires less time than the direct solver. As of the reported relative residual
norm, it corresponds to a given (randomly generated) right hand side, and therefore its
value is rather indicative.

Eventually, we compare in Table 3 the preconditioned GMRES(30) iteration with the
one used without preconditioner. We note that for both model problems the standalone
iteration converges slowly due to the fact that the considered problems are ill conditioned.

5.3 Symbolic compression

One of the advantages of the structured preconditioner is its smaller memory requirement
for the factors compared to the multifrontal factorization. Such a memory decrease is
however not guaranteed in principle. Indeed, going back to the structured partial factor-
ization as described in Section 3, an additional memory may be required both during the
compression step (3.2), when a |P| × 2|Pc| matrix is approximated (but also replaced) by
a product of a |P| × r matrix V and a r × 2|Pc| matrix , and during the step (3.3) , when
the matrix V is further extended to a |P|×|P| matrix. The overall memory then decreases
only if

2|P||Pc| > 2r|Pc|+ |P|2 .

To avoid the memory increase we only perform compression if the above condition is
satisfied. More precisely, we compute a low-rank approximation and, if the above condition
is not met, the low-rank approximation is discarded. Now, this latter case can be viewed
as a symbolic compression step during which the given block is replaced by a product of
identity matrix with this block; the former matrix is orthogonal and therefore plays the
same role as V except that it does not have to be stored explicitly.

18

109

1010

0 500 1000 1500 2000 2500 3000 3500 4000
109

1010

10 20 30 40 50 60 70 80 90 100

Figure 5: Number of floating point operations (flops) per second during the factorization
stage as a function of the grid size nx in one direction for the MOD2D (left) and MOD3D
(right) problems; curves connecting • markers correspond to the structured preconditioner,
those connecting � markers are for multifrontal solver and the top solid − curve is the
maximal flop rate.

MOD2D (nx = 4000) MOD3D (nx = 100)
mfstr(10−5) GMRES(30) mfstr(10−1) GMRES(30)

Tot. time (sec.) 410 −a 655 2695
It. 7 −a 58 20049

Table 3: Total time and number of GMRES(30) iterations with and without the use of the
structured preconditioner. −a means that the method has not converged in 4 hours.

5.4 Minimal block size

The compression tree is obtained by recursively subdividing the nodes of the separator
so that the size |P| of the resulting subsets does not go well below |P|min ; that is, more
precisely, P is subdivided into K subsets (here K = 2) if |P| ≥ |P|minK .

The choice of |P|min has an impact on the performance of the preconditioner. Small
values of |P|min lead to smaller memory use. Yet, |P|min should not be chosen too small
if the factorization and solution times are of importance. Indeed, small values of |P| may
trigger the symbolic compression step; this means that the cost of the compression will not
be compensated by the reduction in the number of rows and columns as expected during
the compression step. Now, even if the symbolic compression does not occur, the gain in
the number of operations for an individual compression step essentially behaves like r/|P| ,
with r being bounded or grow slowly with |P| . This gain should be big enough to overcome
the loss in performance implied by the use of compression.

Table 4 gives the time and memory requirements of the structured preconditioner for a
few possible values of |P|min ; it also provides the storage needed for the root separator since
this latter is among the biggest in the case of model problems. The reported results shows

19

MOD2D (nx = 4000) MOD3D (nx = 100)
|P|min 16 64 256 16 64 256

Nm.F. time (sec.) 300 193 221 700 526 493
Sol. time (sec.) 31 27 31 393 86 99

It. 3 3 3 209 58 54
nnz factors (% mf) 53% 62% 79% 19% 23% 39%

nnz(F
(root)
str) (% mf) 3% 6% 23% 2% 3% 7%

Table 4: Numerical factorization and solution times, as well as memory needed to store
the factor and the frontal matrix corresponding to the root separator, given as a function
of minimal block size |P|min . The memory requirements are expressed as a percentage of
the corresponding requirements of the direct solver.

MOD2D (nx = 4000) MOD3D (nx = 100)
|P|min 2|P|min 8|P|min |P|min 2|P|min 8|P|min

Nm.F. time (sec.) 198 193 227 525 526 567
Sol. time (sec.) 29 27 31 104 86 98

It. 3 3 3 68 58 55

Table 5: Times and iteration count as described in Table 4 for the separator-size treshold
set to |P|min , 2|P|min and 8|P|min , with |P|min = 64 .

that |P|min = 64 – the default choice for our structured preconditioner – gives reasonable
results for numerical factorization and solution times. Although it is the best choice for
the 2D model problem among those in the table, the choice |P|min = 256 leads to a faster
code in 3D, meaning that the optimal value of |P|min is problem dependent.

Clearly, the structured partial factorization needs only to be applied if the separator size
is above |P|min ; however, higher threshold values are also possible. In Table 5 we report
results for the preconditioner used with the default |P|min = 64 value and the separator-
size threshold set to |P|min , 2|P|min and 8|P|min . Although the best overall timing (that
is, Nm.F. time + Sol. time) corresponds to the choice 2|P|min – the default separator-size
threshold value – the other choices are equally competitive. Now, even larger threshold
values are less attractive since the preconditioner properties are then even closer to those
of the direct solver.

Note that a similar threshold for structured partial factorization is also used in a model
problem setting [11] by employing partial factorization only above the so-called switching
level in the nested dissection tree. The use of the switching level is related to the fact that
in the case of model problems bigger separators occur higher in the nested dissection tree.

20

MOD2D (nx = 4000) MOD3D (nx = 100)
K 2 3 4 2 3 4

Num. time (sec.) 193 184 184 526 448 428
Sol. time (sec.) 27 29 29 86 86 84

It. 3 3 3 58 59 58
nnz factors (% mf) 62% 63% 64% 23% 24% 24%

nnz(F
(root)
str) (% mf) 6% 7% 12% 3% 4% 4%

Table 6: Time, iteration count and memory usage parameters as described in Table 4 for
the compression trees having K = 2, 3 and 4 children.

5.5 Ternary compression trees

So far we have not specified the number K of children of a given parent node in the
compression tree; in other words, we have not specified how many subsets result from
one step of recursive subdivision of a given set during the construction of the compression
tree. The traditional HSS format allows for K = 2 children, yielding binary compression
trees; this is also our default choice, since the numerical results then also correspond to
the HSS format. However, the use of the ternary trees usually allows for a reduction in
the computation time.

This is illustrated in Table 6 for the case of MOD2D and MOD3D problems. The
results show that when using the ternary trees the improvement in 2D case is not as
significant as in 3D case. The results also indicate a slight increase in memory requirements.

5.6 Algebraic construction of compression tree

We now study the effectiveness of the algebraic procedure for the construction of the
compression tree described in Section 4.3. For simplicity, we only consider the binary
trees, with hence K = 2 , which is the default value. For this study, we consider two
alternative procedures that recursively subdivide a given separator based exclusively on the
initial ordering of unknowns; hence, these alternative procedures are ordering-dependent.
More precisely, starting from the set of all unknowns of the separator, the tree is obtained
by recursively partitioning the parent set into two subsets, one containing the half of
the unknowns with lower indices in the ordering, the other formed by the remaining half
with higher indices. The tests are performed with a MOD3D problem and two separator
orderings are considered: the ordering induced by the global lexicographical ordering of
unknowns in A and the random ordering. Moreover, two variants of nested dissection
ordering are considered: one produced by Scotch graph partitioner (default choice), the
other corresponding the geometric plane separators (a 3D equivalent of the separators from
Figure 1(a)).

Factorization and solution times as well as iteration counts are given in Table 7. The
algebraic construction of the compression tree outperforms the other two options both in

21

Scotch geometric
alg lex rnd alg lex rnd

Nm.F. time (sec.) 526 1043 4997 589 1076 5925
Sol. time (sec.) 86 118 206 242 296 594

It. 58 57 56 148 145 148
nnz factors (% mf) 23% 26% 44% 21% 22% 42%

nnz(F
(root)
str) (% mf) 3% 12% 14% 3% 12% 14%

Table 7: Time, iteration count and memory usage parameters as described in Table 4 for
the solution of MOD3D (nx = 100) problem ; compression tree is constructed using the
algebraic procedure described in Section 4.3 (alg) as well as separator set bipartirtion based
on initial ordering of unknowns (lex) and on the random reordering (rnd); separators from
nested dissection are those generated by Scotch [29] (left) and geometric plane separators
(right).

time and in memory usage. Comparing the results for separators generated by Scotch and
for geometric separators we note that they are similar in the case of algebraic construction,
except for the iteration counts and, hence, also for the solution times; this means that
the low-rank property is correctly exploited even if the separators are not geometric, and
hence are outside the scope of the analysis from Section 4.1. Eventually, the higher iteration
counts in the geometric case are likely due to the compression performed on the smallest
separators; that is, on the separators just above the separator-size threshold. This can
therefore be cured by increasing the value of the threshold.

5.7 Additional test problems

We now study the performance of the structured preconditioner for a broader set of test
problems.

Problem CD2D [31] : A 2D convection-diffusion equation −ν∆u+ v · ∇u = f ,v ∈ R2 ,
with Dirichlet boundary conditions defined on a unit square domain and discretized using
upwind 5-point finite difference scheme on a cartesian (nx + 2) × (nx + 2) grid. CD2D1

corresponds to

v =
(
x(1− x)(2y − 1) y(1− y)(2x− 1)

)T
,

whereas for CD2D2 we set

v =
(

cos(π(x− 1/3)) sin(π(y − 1/3)) sin(π(x− 1/3)) cos(π(y − 1/3))
)T

inside the circle of center (1/3, 1/3) and radius 1/4 , and v = 0 outside; unless stated
otherwise, nx = 4000 the viscosity parameter is ν = 10−4.

Problem L(r, p) [32] : A 2D Poisson equation −∆u = f on a L-shaped domain [−1, 1]2\[0, 1]×
[−1, 0] with homogeneous Dirichlet boundary conditions; the discretization is done using La-

22

grangian finite elements of order p on an unstructured mesh with simplex size progressively
decreased near the reentering corner, in such a way that the mesh size in its neighborhood
is about 10r time smaller. In particular, the mesh of L(0, 4) problem have been obtained by
uniformly refining 5 times the mesh from Figure 1(b).

Problem EDG2D : A 2D curl-curl equation ∇ × ∇ × u + 10−2 u = f , f ∈ R2, with
homogeneous Dirichlet boundary conditions defined on a unit square domain and discretized
using bilinear Whitney elements on a (nx+2)×(nx+2) grid with nx = 2500 ; in this setting
the degrees of freedom correspond to the grid edges.

Problem CD3D [31] : A 3D variant of the CD2D problem on a unit cube domain with
102× 102× 102 mesh and with

v =
(

2x(1− x)(2y − 1)z −y(1− y)(2x− 1) −(2x− 1)(2y − 1)z(1− z)
)T

.

Problem SPH3D [32] : A discontinuous 3D Poisson equation −∇D∇u = f with homo-
geneous Dirichlet boundary conditions defined on a cubic [−2.5, 2.5]3 domain with D = 103

inside a sphere of radius 1 and D = 1 outside; it is discretized on an unstructured quasi-
uniform tetrahedral mesh.

Problem TDR [33] : A 3D curl-curl equation ∇×∇× u− σ2 u = f arising in the mod-
eling of accelerator cavities and discretized using Nedelec finite elements on unstructured
tetrahedral meshes.

The number of unknowns and the avarage number of nonzero elements per row of A
for the considered problems are given in Table 8.

The results of the application of the structured preconditioner are reported in Table 9,
where they are also compared to those of the direct solver. As before, the right hand sides
are randomly generated based on normal N (0, 1) distribution, whereas the preconditioner
is used with the same default set of parameters, except for the compression threshold
parameter ε , which are chosen as the best value in the set {1, 10−1, 10−2, · · · , 10−10} .

CD2D L(0, 4) L(5, 2) EDG2D CD3D SPH3D TDR
n [×106] 16.0 4.7 12.6 12.5 1.0 0.5 1.1

nnz(A)/n 5.0 23.5 11.5 7.0 6.9 14.3 39.4

Table 8: Number of unknowns and number of nonzero elements per row of A .

First, note that the structured preconditioner always requires less memory for the
factors than the corresponding direct solver; this is a consequence of symbolic compression.
Next, in all the considered examples it also needs less floating point operations. Favorable
flop count usually leads to a faster numerical factorization stage, but because of the lower
operation intensity of the compression step, this is not always the case, as illustrated by
the results of TDR problem in Table 9. On the other hand, going back to Table 1, one

23

Problem ε nnz factors Nm.F. flops Nm.F. time Solution Tot. time
×108 % mf ×1010 % mf sec. % mf sec. It. sec. % mf

CD2D1 10−4 12 64% 44 19% 190 50% 27 3 407 70%
CD2D2 10−4 12 63% 38 16% 171 44% 56 6 416 71%
L(0, 4) 10−5 5.0 74% 12 27% 55 66% 25 3 240 92%
L(5, 2) 10−5 13 68% 38 20% 173 53% 10 3 451 77%
EDG2D 10−8 9.7 66% 22 14% 111 42% 36 5 322 72%
CD3D 1 2.7 15% 16 1% 93 6% 384 444 511 31%
SPH3D 10−1 2.3 26% 38 10% 162 31% 137 183 314 58%
TDR 10−4 5.1 71% 65 81% 209 156% 34 17 307 156%

Table 9: Memory requirements, operation and iteration counts, and time for the considered
problems, expressed both in absolute values and as a percentage of the corresponding
requirements of the direct solver. The relative residual norm of the solutions obtained
with the direct (mf) solver is around 10−7 for EDG2D, around 10−11 for TDR, around
10−13 for L and CD2D, and around 10−14 for CD3D and SPH3D.

may check that the ratio of numerical factorization and solution times per iteration is
more important for 3D than for 2D problems. This is why in Table 9 lower values of ε are
preferred for 3D problems, as this allows to decrease the important factorization cost, even
at the expense of increasing the iteration count.

5.8 Mixed precision

In this section, we explore the use of the single precision version of the structured factor-
ization as a preconditioner for the double precision GMRES(30) iteration. In particular,
we compare in Table 10 the single precision structured preconditioner (mfstr(ε)) with the
corresponding single precision multifrontal solver (mf). Except for the MOD3D and
CD3D problems, the latter is also used as a preconditioner, since one solution step does
not decreases the relative residual norm below the required 10−6 threshold. The results for
EDG2D are not reported since the corresponding system matrix is numerically singular
in single precision.

Comparing the results from Table 10 with those in Table 9, it is clear that single
precision solvers require less time than the double precision ones. Moreover, the single
precision arithmetics does not deteriorates the quality of the structured preconditioner,
yielding the same iteration counts as in double precision. In particular, it can be checked
that virtually the same rank structure is obtained in single and double precisions; therefore,
the results for the number of nonzeros and operation counts needed for the factors in single
precision are also the same as those in double precision (which are already reported in
Table 9); note, however, that single precision format requires two times less memory, and
single precision operations are faster than than those in double precision. On the other
hand, although the structured preconditioner is still faster than the direct solver in single

24

Problem ε Nm.F. time (sec.) Sol. time (sec.) It Tot. time (sec.)
smfstr(ε) smf smfstr(ε) smf smfstr(ε) smf smfstr(ε) smf

MOD2D 10−5 144 246 24 27 3 3 357 458
CD2D1 10−4 139 224 24 19 3 2 352 429
CD2D2 10−4 127 226 46 19 6 2 362 431
L(0, 4) 10−5 41 52 9 7 3 2 211 217
L(5, 2) 10−5 129 193 22 18 3 2 402 456
MOD3D 10−1 316 807 58 2 73 1 432 851
CD3D 1 70 851 310 2 444 1 414 886
SPH3D 10−1 100 288 114 3 183 3 229 304
TDR 10−4 163 80 29 6 17 5 255 147

Table 10: Time and iteration counts for both the single precision structured preconditioner
(smfstr(ε)) and the single precision direct solver (smf) used as a preconditioner for the
double precision GMRES(30) iteration.

precision for almost all the considered problems, its relative speed-up is less significant.

5.9 Comparison with other solvers, part II

Here, we report the comparison of the structured factorization preconditioner with the
incomplete LU factorization (ILU) preconditioner from the SuperLU package [34]. The
SuperLU ILU algorithm is a threshold-based ILUTP proposed by Saad, which combines
a dual dropping strategy with numerical pivoting (“T” stands for threshold, and “P”
stands for pivoting). It improved upon the original ILUTP method mainly in two ways:
1) a new dropping strategy that accommodates the use of supernodal structures in the
factored matrix, and 2) an “area-based” fill control heuristic for the secondary dropping
strategy [35]. The two parameters that affect performance the most are: drop tolerance
(τ) and the maximum amount of fill (relative to nnz(A)) allowed in the factored matrices
(γ). During factorization, the entries in the factors that are smaller than τ are dropped
(separate metrics are used for L and U matrices). Secondly, at each panel factorization step,
the amount of fill is dynamically monitored. If the present fill ratio exceeds the parameter
γ , more smallest entries are further droped in the current supernode to maintain the fill
ratio below γ .

Table 11 shows the performance of the ILU preconditioned GMRES(30) solver for the
set of test problems. In order to have a fair comparison with the structured preconditioner,
in the ILU experiments, partial pivoting was replaced by diagonal threshold pivoting of
threshold 10−1, and the same nested dissection ordering (generated by Scotch) was used4.
Moreover, fill ratio parameter γ was fixed to 20 , whereas the value of τ was set to 10−4 .
This setting gives best results for most problems. However, for EDG2D, SPH3D and

4Note that both features have positive impact on the factorization time of the ILU preconditioner.

25

Problem (τ, γ) nnz factors Nm.F. flops Nm.F. time Solution Tot. time
×108 ×1010 sec. sec. It. sec.

CD2D1 (10−4, 20) 7.8 16.7 306 259 22 794
CD2D2 (10−4, 20) 8.3 15.0 356 605 48 1148
L(0, 4) (10−4, 20) 4.0 8.0 132 131 29 436
L(5, 2) (10−4, 20) 9.3 15.3 377 641 53 1274
EDG2D (10−8, 20) 8.0 145.2 1333 883 99 2391
CD3D (10−4, 20) 1.2 29.8 351 130 137 514
SPH3D (10−8, 100) 7.2 362.0 3538 321 78 3898
TDR (10−5, 40) 9.2 212.2 2386 64 12 2489

Table 11: Memory requirements, operation and iteration counts, and time for the ILU
preconditioned GMRES(30) solver used with the additional test problems. The relative
residual norm of the solutions is less than 10−6.

TDR, it did not lead to satisfactory convergence. Then, we found the other setting which
led to satisfactory convergence, with the respective parameters displayed in the table.

Comparing to Table 9, we notice that although the ILU preconditioner has slight ad-
vantage in terms of the nonzeros of the factors and the flop count for some problems, its
factorization time and the solution time are often worse than the corresponding times of
the structured factorization preconditioner.

For problem SPH3D, we need to allow a much larger fill factor (γ = 100) in order for
ILU to converge, which translates into much worse memory requirement and runtime. For
problem TDR, diagonal threshold pivoting results in either zero pivots or small pivots on
the diagonal, leading to an unstable preconditioner. On the other hand, partial pivoting
causes too many off-diagonal pivots and many more fill-ins, exhausting memory. What
worked is to use MC64 [36] to pre-pivot large entries of A to the diagonal before proceeding
to the usual factorization.

5.10 On simultaneous compression

Here we give some motivation behind the simultaneous approximation of the blocks F |P×Pc

and F |TPc×P in the compression step (3.2). To make the arguments clearer, let us first
introduce a possible alternative approach based on separate compression of these blocks.
In the alternative approach the step (3.2) of the structured factorization scheme is replaced
by two compression steps

F |P×Pc ≈ VlF̃12 , F |TPc×P ≈ VrF̃
T
21 , (5.1)

with the rank r being the maximum of the two compression ranks. Both Vl and Vr have or-
thogonal columns and can be completed to form the orthogonal matrices Ql = (Ṽl Vl)

and Qr = (Ṽr Vr) . The remaining of the factorization follow the same lines, ex-

26

CD2D1 (nx = 2000) CD2D2 (nx = 2000)
sml sep sml sep

ν = 10−2 4 5 4 5
ν = 10−3 3 4 4 4
ν = 10−4 3 > 103 4 > 103

Table 12: Iteration count for the structured factorization preconditioner used with either
the simultaneous (sml, the default approach) or separate (sep) compression for CD2D1 and
CD2D2 problems with various values of viscosity parameter ν .

cept that the the left multiplication always involves Ql (instead of Q), whereas the right
multiplication involves Qr (instead of Q).

Now, the (exact) rank of the matrix
(
F |P×Pc F |TPc×P

)
is between the maximum

and the sum of the (exact) ranks of F |P×Pc and F |TPc×P . Hence, although the numerical
rank may behave in a slightly different way, neither of the approaches is likely significantly
cheaper than the other. In particular, the simultaneous approach is more attractive for
(almost) symmetric matrices, since the simultaneous compression rank is then (almost) the
same as those from individual compression steps, whereas the matrices V and Q are com-
puted and stored only once. However, for strongly non-symmetric matrices the alternative
approach may be attractive.

Another reason for using simultaneous compression is that the resulting preconditioner
does not breakdown for strongly non-symmetric convection-diffusion problems. This is
illustrated in Table 12 for two such problems with progressively decreasing viscosity pa-
rameter ν .

6 Conclusions

We have presented and studied an algebraic structured preconditioner which is based on
a multifrontal factorization and nested dissection ordering. Nested dissection subdivides
the unknowns into separators based on the connectivity graph of A, whereas multifrontal
factorization performs a partial factorization of the corresponding frontal matrices. The
structured preconditioner is obtained if structured partial factorization that exploits the
low-rank property of given blocks of rows and columns devoid of diagonal block is used
instead. The blocks to be compressed and their compression order are represented with a
compression tree.

For the structured preconditioner to be algebraic the compression tree has to be deter-
mined from the information available in the system matrix. In present work this has been
achieved by a recursive partitioning of the enriched graph corresponding to the separator
and obtained from the connectivity graph of A . This approach is motivated by the analysis
of model problems with model root separators, yet numerical experiments have confirmed
that it works beyond the model problem context.

27

We have also discussed a number of practical aspects that are important for the effi-
ciency and memory usage of the preconditioner. The effectiveness of the preconditioner
have further been illustrated with numerical experiments for problems arising in various
PDE applications. These experiments show, among others, that the considered precondi-
tioner is competitive when compared to some reference direct and iterative solvers.

Acknowledgement

We thank Ming Gu for the numerous discussions and Yvan Notay for his generator of
convection-diffusion test problems.

References

[1] Bebendorf M. Why finite element discretizations can be factored by triangular hier-
archical matrices. SIAM J. Numer. Anal. 2007; 45:1472–1494.

[2] Grasedyck L, Kriemann R, Borne SL. Domain decomposition based H-LU precondi-
tioning. Numer. Math. 2009; 112:565–600.

[3] Chandrasekaran S, Dewilde P, Gu M, Somasunderam N. On the numerical rank of
the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J.
Matrix Anal. Appl. 2010; 31:2261–2290.

[4] Bebendorf M, Hackbusch W. Existence of H-matrix approximants to the inverse FE-
matrix of elliptic operators with L∞-coefficients. Numer. Math. 2003; 95:1–28.

[5] Börm S. Approximation of solution operators of elliptic partial differential equations
by H- and H2-matrices. Numer. Math. 2010; 115:165–193.

[6] Börm S, Grasedyck L, Hackbusch W. Introduction to hierarchical matrices with ap-
plications. Engineering Analysis with Boundary Elements 2003; 27:405–422.

[7] Bebendorf M. Hierarchical Matrices, Lecture Notes in Computational Science and
Engineering (LNCSE), vol. 63. Springer-Verlag, 2008.

[8] Hackbusch W, Khoromskij B, Sauter S. On H2-matrices. Lectures on Applied Math-
ematics, Springer-Verlag: Berlin, 2000; 9–29.

[9] Chandrasekaran S, Gu M, Lyons W. A fast adaptive solver for hierarchically semisep-
arable representations. Calcolo 2005; 42:171–185.

[10] Chandrasekaran S, Gu M, Plas T. A fast ULV decomposition solver for hierarchically
semiseparable representations. SIAM J. Matrix Anal. Appl. 2006; 28:603–622.

28

[11] Xia J, Chandrasekaran S, Gu M, Li XS. Superfast multifrontal method for large struc-
tured linear systems of equations. SIAM J. Matrix Anal. Appl. 2009; 31:1382–1411.

[12] Xia J, Chandrasekaran S, Gu M, Li XS. Fast algorithms for hierarchically semisepa-
rable matrices. Numer. Lin. Alg. Appl. 2009; 17:953–976.

[13] Amestoy P, Ashcraft C, Boiteau O, Buttari A, L’Excellent JY, Weisbecker C. Im-
proving multifrontal methods by means of block low-rank representations INPT-IRIT
Technical Report RT/APO/12/6, 2012.

[14] Duff IS, Reid JK. The multifrontal solution of indefinite sparse symmetric linear equa-
tions. ACM Trans. on Math. Software 1982; 9:302–325.

[15] Liu JWH. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice.
SIAM Review 1992; 34:82–109.

[16] George A. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal.
1973; 10:345–363.

[17] Lipton RJ, Rose DJ, Tarjan RE. Generalized nested dissection. SIAM J. Numer. Anal.
1979; 16:346–358.

[18] George A, Liu JWH. Computer solution of large sparse positive definite systems.
Prentice-Hall: Englewood Cliffs, 1981.

[19] Xia J. Efficient structured multifrontal factorization for general large sparse matrices.
SIAM J. Sci. Comput. 2013; 35:A832–A860.

[20] Hogg JD, Scott JA. Pivoing strategies for tough sparse indefinite systems. ACM Trans.
Math. Software 2013; 40(1):4:1–4:19, doi:10.1145/2513109.2513113.

[21] Businger P, Golub GH. Linear least squares solutions by Householder transformations.
Numer. Math. 1965; 7:269–276.

[22] Chan TF. Rank revealing QR factorizations. Linear Algebra Appl. 1987; 88/89:67–82.

[23] Chandrasekaran S, Ipsen ICF. On rank-revealing factorizations. SIAM J. Matrix Anal.
Appl. 1994; 15:592–622.

[24] Gu M, Eisenstat SC. Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM J. Sci. Comput. 1996; 17:848–869.

[25] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. SIAM, Philadelphia, PA, third edition, 1999.

[26] Napov A. Conditioning analysis of incomplete Cholesky factorizations with orthogonal
dropping. SIAM J. Matrix Anal. Appl. 2013; 34:1148–1173.

29

[27] Li S, Gu M, Cheng L. Fast structured LU factorization for nonsymmetric matrices.
Numer. Math. 2014; 127:35–55.

[28] Karypis G, Kumar V. A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 1999; 20:359–392.

[29] Pellegrini F. SCOTCH: Static mapping, graph partitioning, and sparse matrix block
ordering package.
Available online at http://www.labri.fr/~pelegrin/scotch/ .

[30] Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 1986; 7:856–869.

[31] Notay Y. An aggregation-based algebraic multigrid method. Electronic Trans. Numer.
Anal. 2010; 37:123–146.

[32] Napov A, Notay Y. An algebraic multigrid method with guaranteed convergence rate.
SIAM J. Sci. Comput. 2012; 43:A1079–A1109.

[33] Lee L, Li Z, Ng C, Ko K. Omega3P : A parallel finite-element eigenmode analysis
code for accelerator cavities. Technical Report SLAC–PUB–13529, SLAC National
Accelerator Laboratory, Menlo Park, CA 2009.

[34] Li XS. An overview of SuperLU: Algorithms, implementation, and user interface. ACM
Trans. Mathematical Software September 2005; 31(3):302–325.

[35] Li XS, Shao M. A supernodal approach to imcomplete LU factorization with partial
pivoting. ACM Trans. Mathematical Software 2010; 37(4).

[36] Duff I. S., Koster, J. The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices. S IAM J. Matrix Analysis and Applications 20, 4,
889-901.

30

http://www.labri.fr/~pelegrin/scotch/

	Introduction
	Multifrontal factorization
	Structured preconditioner
	Algebraic construction of compression tree
	On the low-rank property
	Compression tree
	Algebraic construction

	Practical considerations and numerical experiments
	General setting
	Comparison with other solvers, part I
	Symbolic compression
	Minimal block size
	Ternary compression trees
	Algebraic construction of compression tree
	Additional test problems
	Mixed precision
	Comparison with other solvers, part II
	On simultaneous compression

	Conclusions

