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Abstract

Optimal timing for annuitization is developped along three approaches. Firstly,
the mutual fund in which the individual invests before annuitization is modeled by
a jump diffusion process. Secondly, instead of maximizing an economic utility, the
stopping time is used to maximize the market value of future cash-flows. Thirdly,
a solution is proposed in terms of Expected Present Value operators: this shows
that the non annuitization (or continuation) region is either delimited by a lower
or upper boundary, in the domain time-assets return. The necessary conditions are
given under which these mutually exclusive boundaries exist. Further, a method
is proposed to compute the probability of annuitization. Finally, a case study is
presented where the mutual fund is fitted to the S&P500 and mortality is modeled
by a Gompertz Makeham law with several real scenarios being discussed.

Keywords : Annuity puzzle, Hitting time, Wiener-Hopf factorization, expected
present value.

JEL Classification: J26; G11

1 Introduction.

Buying a fixed-payout life annuity is an efficient solution to preserve standards of living
during retirement and it also protects individuals against poverty in old age. The main
drawbacks of this type of insurance are its irreversibility and the fact that payments are
contingent on the recipient’s survival. On the other hand, insurance companies or banks
distribute financial products based on mutual funds, designed for people willing to take
more risk with their money in exchange for a larger growth potential of their investments.
In this context, the literature provides a great deal of evidence that pre-retirement peo-
ple should invest in such schemes rather than in life insurance products. The question
then arises whether and when to switch from such a financial investment to a life annuity.

Numerous papers have covered the various aspects of the annuitization problem since
the well-known paper of Yaari (1965), which showed that individuals with no bequest
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motive should annuitize all their wealth at retirement. By using a shortfall probability
approach, Milevsky (1998) considers by the setting up of a Brownian motion fund and
using CIR interest rates, the probability of successful deferral, i.e. to defer annuitization
as long as investment returns guarantee an income at least equal to that provided by the
annuity. Milevsky et al. (2006) derive the optimal investment and annuitization strate-
gies for a retiree whose objective is to minimize the probability of lifetime ruin. Hainaut
and Devolder (2006) present a numerical study on the optimal allocation between an-
nuities and financial assets when considering a utility maximization problem. Stabile
(2006) examined the optimal annuitization time for a retired individual who is subject
to the constant force of mortality in an all-or-nothing framework (i.e. the individual in-
vests all his wealth to buy the annuity) with different utility functions for consumption
before and after annuitization. Milevsky and Young (2007) examined optimal annuitiza-
tion strategies for time-dependent mortality functions based on maximizing the returns
from the investment in the case of the all-or-nothing context compared to the case when
the individual can annuitize fractions of his wealth at any time. Emms and Haberman
(2008) discuss both the optimal annuitization timing and the income draw-down scheme
by minimizing a loss function and by using the Gompertz mortality function and a fund
based on Brownian motion. Purcal and Piggott (2008) explain the low annuity demand
by the relative importance of pre-existing annuitization and by considering utility maxi-
mization, a geometric Brownian motion modelling the fund and mortality tables. Horneff
et al. (2008) study, using a discrete time model, the optimal gradual annuitization for a
retired individual applying Epstein-Zin preferences and quantifying the costs of switch-
ing to annuities. Gerrard et al. (2012) take the problem of maximizing the value of the
investment to analyze (using a Brownian model and with constant force of mortality)
the optimal time of annuitization for a retired individual managing his own investment
and consumption strategy. Di Giacinto and Vigna (2012) consider a member of a de-
fined contribution pension fund who has the option of taking programmed withdrawals
at retirement. They then explore the sub-optimal cost of immediate annuitization, when
minimizing a quadratic cost criterion in a Brownian motion setting and with a constant
force of mortality. Huang et al. (2013) are also interested in the problem of optimal
timing of annuitization, and especially in the optimal initiation of a Guaranteed Lifetime
Withdrawal Benefit (GLWB) in a Variable Annuity. They focus on the problem from the
perspective of the policyholder (i.e. when to begin withdrawals from the GLWB) and
they adopt a No Arbitrage perspective, (i.e. they assume that the individual is trying
to maximize the cost of the guarantee to the insurance company offering the GLWB).
Huang et al. (2013) provides a detailed and relevant overview of the literature concerning
Variable Annuities and their guarantees.

This paper looks at the optimal timing to switch from a financial investment to a
life annuity. It differs from previous publications in several ways. Firstly, the financial
asset into which the individual invests (before transferring to annuitization) is modeled
by a jump diffusion process instead of a geometric Brownian motion. Numerical applica-
tions, by which the return from this asset is fitted to the S&P500 index, reveal that the
presence of jumps modifies significantly the point of switching, when compared with the
prediction from a Brownian model. Secondly, instead of maximizing an economic utility,
the stopping time maximizes the market value of future cash-flows.

When the discount rate is equal to the risk free rate, the objective is the market

2



value or price of future expected discounted payouts. Huang and al. (2013) use a simi-
lar criterion for GLWB annuities and interpret it as the cost to the insurance company
that provides this service. The investor acts to maximize this cost. In this case and as
detailed in the body of the paper, this cost is split into an immediate lifetime payout
annuity and an option to defer this annuity. By analogy to a classical American option,
the annuitization should only be exercised once the value from waiting is zero, at a point
in time when the asset value or return cross a boundary. Stanton (2000) use a similar
approach to estimate long-lived put option, embedded in 401(k) pension plans.

Since this problem has similarities with American option pricing, this paper proposes
a semi-closed form solution in terms of Expected Present Value (EPV) operators, such as
defined by Boyarchenko and Levendorskii (2007). However, for American options pric-
ing, we know beforehand if the boundary delimiting the exercise region is an upper (call)
or a lower (put) barrier, in the domain time-accrued return. However, in the current
approach, this aspect would not be known at the beginning. On the one hand, a basic
reasoning suggests that one should consider switching to annuity if the financial asset
performs poorly due to the fear of subsequent erosion of wealth. In this respect the non
annuitization (or continuation) region should be delimited by a lower boundary, in the
space time versus realized returns. On the other hand, another reasoning leads to consider
changing to annuitization when the realized financial return is high enough to receive a
reasonable annuity. In this case, the continuation region should be delimited by an upper
boundary. The originality of the current study is to present necessary conditions under
which these mutually exclusive boundaries exist and a method to compute them.

This reasoning is sustained by empirical observations. Stanton (2000) mentions that
in September and October, 1998, more than three times as many pilots of American Air-
lines retired as during an average month. According to the Wall Street Journal, this surge
in retirements was occurring because pilots retiring at this date can take away retirement
distributions based on July’s high stock-market prices. Similar accelerated retirements
occurred after the stock market crash of 1987. On Monday November 2, 1987, over 600
Lockheed Corp. employees had submitted early retirement papers the previous Friday,
October 30 (approximately three times the usual monthly figure). Stanton (2000) deter-
mines in a Brownian framework, that the investor optimally exercises the option to time
their retirement or rollovers to another plan if the asset value cross a boundary.

A third contribution is the assumption of a time dependent current force of mortal-
ity, which is contrary to many existing papers (e.g. Stabile 2006 , Gerrard et al. 2012).
Finally, this article proposes a method to estimate numerically the probability of annu-
itization. Of special note is that the solution based on expected value operators can be
extended to constant and time dependent consumption/contribution rates, or to planned
lump sum payments before annuitization. However, the proposed method does not allow
one to dynamically manage the consumption.

Section 2 of this paper presents the dynamics of the financial asset into which the
individual invests his savings, before annuitization. Section 3 discusses the current as-
sumptions related to the mortality process. Section 4 introduces the maximisation prob-
lem and in particular the objective function. Section 5 reviews the basic working of the
Wiener-Hopf factorization that is used in Section 6 to locate the optimal annuitization
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time. Section 7 presents the Laplace transform of the hitting time of the asset return
to reach the boundary that triggers the annuitization. Its numerical inversion provides
the probabilities relating to annuitization. This article is concluded by a numerical il-
lustration in which the mutual fund is calibrated to daily returns of S&P500 and with
Gompertz Makeham mortality rates. The calibration is done by loglikelihood maximiza-
tion and the density of the fund return is computed by a Discrete Fourier Transform (see
Appendix C). A comparison with the pure Brownian motion case (see Appendix B) as
well as several scenarios are then discussed.

2 The wealth process.

A life annuity can preserve the standard of living during retirement but it is an irreversible
transaction. Financial advisors propose a wide variety of mutual funds designed for people
looking for larger growth potential, and most papers recommend pre-retirement people to
invest in this category of product. The question that arises is whether and when to switch
from a financial investment to a life annuity. In order to answer this question, this paper
considers the situation of an individual who invests all his wealth into a mutual fund and
expects to make reasonable profit before converting his investment into a life annuity.
The value and return of the fund are respectively modelled by the processes (Wt)t and
(Xt)t. They are stochastic processes defined in a probability space (Ω,F , {F}t, P ) and
are related in the following way:

Wt = W0e
Xt . (2.1)

The return Xt is modelled by a double exponential jump diffusion. This type of process
allows a better fit to the actual returns of investment than for models based on Brown-
ian motion. Furthermore, jump diffusion processes include asymmetric and leptokurtic
features in modelling asset dynamics. In the numerical applications reported here, this is
fitted by loglikelihood maximization to daily figures of the S&P 500 index, observed be-
tween June 2003 and June 2013. Some of the main features of the jump diffusion process
are firstly considered ahead of proceeding to the calibration method. Lipton (2002), Kou
and Wang (2003, 2004) used this process to price options. They define its dynamics by:

dXt = (θ − α)dt+ σdW̃t + Y dNt with X0 = 0, (2.2)

where θ is the average continuous return from the fund, σ is the constant volatility of
the Brownian motion component W̃t and α is the constant dividend rate. If α is high
compared with the average fund return, it can be interpreted as the withdrawal rate of
an immediate variable annuity. Such financial products pay an income equal to a per-
centage of the fund market value and this income varies depending on the performance of
the managed portfolio. A combination of withdrawals and market declines could reduce
a variable annuity’s account value to zero, in which case the contract would terminate.
Huang et al. (2013) give a more complete description of the variable annuity product
and its guarantees. If α is negative, it should be interpreted as a contribution rate, paid
during the accumulation phase. Note that the contribution/withdrawal rate can possibly
be time dependent, α(t). Also some planned lump sums, increasing Wt at discrete times
before annuitization, may be considered. Both of these cases are discussed later in this
paper under the heading Remark 6.1, but such generalizations do not require any modi-
fication of the following developments.
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The jump part is modelled by a Poisson process Nt with a constant intensity λ which
is independent of the Brownian motion W̃t. The step increase is distributed as a double
exponential variable Y with the following density:

fY (y) = pλ+e−λ
+y1{y≥0} − (1− p)λ−e−λ

−y1{y<0} (2.3)

where p and λ+ are positive constants and λ− is a negative constant. They represent
the probability of observing respectively upward and downward exponential jumps. The
expectation of Y is then equal to a weighted sum of expected average jumps:

E(Y ) = p
1

λ+
+ (1− p)

1

λ−
. (2.4)

The dynamics of the individual’s wealth can be rewritten as:

Wt = W0e
Xt = W0e

(θ−α)t+σW̃t+
∑Nt

j=1
Yj . (2.5)

As the jump and diffusion processes are independent, the Laplace transform of Xt is
the product of Laplace transforms of the diffusion and jump components. Shreve (2004)
gives the Laplace transform of a compound Poisson process as equal to the following
expression:

E

(

exp

(

z
Nt
∑

j=1

Yj

))

= exp (λt (φY (z)− 1)) (2.6)

where φY (u) is the Laplace transform of Y . If ξ+ and ξ− are respectively exponential
random variables of intensities λ+ and λ−, the function φY (z) for λ− < z < λ+ is given
by:

φY (z) = E (exp(zY ))

= pE
(

exp(zξ+)
)

+ (1− p)E
(

exp(−zξ−)
)

= p
λ+

λ+ − z
− (1− p)

λ−

z − λ−
. (2.7)

The Laplace transform of Xt is then defined in terms of its related characteristic exponent
ψ(z):

E
(

ezXt
)

= etψ(z)

where ψ(z) is such that:

ψ(z) = (θ − α)z +
1

2
z2σ2 +

ˆ

R

(ezy − 1)λfY (dy)

= (θ − α)z +
1

2
z2σ2 + λ (φY (z)− 1) . (2.8)

It has already been noted that the jump diffusion process will be fitted in by loglikelihood
maximization to daily returns of the S&P 500 for some numerical applications (section
8). However, the probability density function of returns which is required for such an
operation has no closed form expression. This is resolved by computing the discrete
Fourier’s Transform of its characteristic function and approaching it by a discrete sum,
as detailed in Proposition 9.3 in Appendix C.
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3 The mortality risk.

This work considers the case for which the investor is required to annuitize all her wealth
at one point in time. The optimal age is linked to the actuarial force of mortality and
obviously gender specific. But it also depends on the individual’s health status, which
is unknown from the insurer. Since the development of the theoretical model of Roth-
schild and Stiglitz (1976), the role of asymmetric information in insurance markets is
well identified. Annuitants have more information about their life expectancy than in-
surance companies and adjust their demand in accordance. To formalize implications of
this asymmetric information between the insurance company and annuitants, mortality
assumptions used by the insurer differ from these defining the individual’s mortality.

The time of the individual’s death, denoted by τd, is modeled by an inhomogeneous
Poisson process in (Ω,F , {F}t, P ). The death process is assumed to be independent
from Nt and W̃t. Its intensity, also called mortality rate, is a deterministic function of
time, denoted by µ(t). In this framework, the probability that a person of age η years at
time 0 survives the next u years is provided by the following formula:

upη = P (τd > u)

= e−
´ u

0
µ(η+s)ds, (3.1)

and the probability that the same person dies during the next u years is uqη = 1 −upη.
Moreover, the instantaneous probability of death at time u, is defined by the derivative
of uqη with respect to u. This should be understood as the probability that an individual
of age η dies between times u and u+ du:

∂

∂u
uqη = µ(η + u)e−

´ u

0
µ(η+s)dsdu. (3.2)

For a constant discount rate ρ, the expected present value of a lifetime annuity, paying
one monetary unit from the point t on until death of the individual is defined as follows,

aη+t =

ˆ Tm

t

e−ρ(s−t)s−tpη+tds, (3.3)

where Tm denotes the maximum lifespan of a human being.

On another hand, the insurance company works with mortality rates and survival prob-
abilities that are respectively denoted by µtf (t) and up

tf
η = e−

´ u

0
µtf (η+z)dz. They are

inferred from the observation of a reference population and differ from these of the in-
dividual. If the interest rate guaranteed by the insurer is denoted by ρtf , the annuity
coefficient is equal to

atfη+t =

ˆ Tm

t

e−ρ
tf (s−t)

s−tp
tf
η+tds (3.4)

This coefficient determines the annuity payout: if the person purchases the annuity at
time t, the cash flow paid by the insurer, noted Bη+t, is calculated by:

Bη+t =
Wt −K

atfη+t

1

1− ǫ
, (3.5)
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where ǫ is a commercial loading and K is either a fixed acquisition fee (K > 0) or a tax
incentive (K < 0). In later developments, the following ratio

f(s) =
1

1− ǫ

aη+s

atfη+s
(3.6)

is used to compare the expected present value of annuity payments with the price paid
for the annuity. This conventional measure in actuarial sciences, called the money’s
worth (Mitchell et al, 1999), is directly related to the gap between individual’s mortality
rates and these used by the insurer to price the annuity. For individuals who are more
healthy on average than the reference population, this function is greater than 100% and
the annuity is underpriced. Such persons are also more likely to purchase an annuity
as shown further on in numerical illustrations. On the other hand, for the less healthy
individuals, the function f(s) is below 100%. The annuity being in this case overpriced
by the insurer, early annuitization is less attractive as illustrated later.

4 The objective function.

An investment policy comprises two stages. During the first, the investor both capitalizes
on his savings and consumes dividends. In the event of the investor dying, during this
period, beneficiaries inherit the accrued capital. When a sufficient profit has been taken
or when losses are too great, the individual may then switch and purchase a life annuity.
During this second phase, the annuity is consumed. The stopping time is chosen so as
to maximize the market value of individual’s investment portfolio. Most of the existing
publications on annuitization focus on the optimization of expected economic utility of
cash-flows. Utility functions measure both preference and risk aversion. However deter-
mining the risk aversion parameter of an individual is often a tedious exercise and yet
its influence on the annuitization timing is huge, as illustrated by Milevski and Young
(2007). Huang et al. (2013) adopt a “no-arbitrage” perspective. In particular, these au-
thors assume that the individual is trying to maximize the cost of the GLWB guarantee
to the insurance company offering this service.

Based on a purely financial point of view, this paper uses the market value as the opti-
mization criterion. This value is the sum of expected discounted future payments. The
discount rate used in the calculation is assumed constant in this paper and is henceforth
denoted by ρ. Exponential discounting factors have been chosen for the ease of the calcu-
lations, but further study might be necessary to select a model that is more suitable for
addressing aspects of the interest risk associated with the valuation of long-term issues,
(such as pension matters), which have a social dimension. Brody et al. (2013) discusses
this in greater detail.

The moment at which the person purchases the annuity, denoted by τ , depends both
on his age and on his available wealth. A first constraint comes from practical commer-
cial observations. Indeed, in practice, insurers refuse to sell annuities to the elderly in
order to limit the risk of anti-selection. Let us denote this age by T̃m+η, so that a person
aged η years at time 0 will reach the maximal age in T̃m years. Before reaching this
age, the annuitization is triggered when the accrued financial return crosses an unknown
boundary, in the domain time-assets return. This limit is denoted by bt and C denotes the
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region of the domain [0, T̃m]× R on which it is optimal to postpone the purchase of the
annuity (also called continuation region). In the following discussion, its complementary
is denoted by C̄.

A first basic reasoning suggests that the invididual should switch to an annuity if the
financial asset performs poorly, due to the fear of subsequent erosion of wealth. In this
respect, the continuation region should be delimited by a lower boundary,

C =
{

(t, x) | 0 ≤ t ≤ T̃m , W0e
x ≥ bt

}

.

The purchase time τ is then defined as inf{s |Ws ≤ bs, s ≥ t}∧T̃m. However an alternative
reasoning leads to considering annuitization only when the financial return achieved is
high enough to provide a reasonable annuity. In this case, the continuation region should
be delimited by an upper limit,

C =
{

(t, x) | 0 ≤ t ≤ T̃m , W0e
x ≤ bt

}

.

The purchase time τ is then equal to inf{s |Ws ≥ bs, s ≥ t} ∧ T̃m. At this stage, it is
not possible to determine whether C is the upper part or the lower part of the domain
[0, T̃m] × R. One can only guess that they are mutually exclusive. The necessary condi-
tions (such that they are indeed mutually exclusive) is given later (section 6) along with
specifying the type of boundary linked to the actuarial and financial parameters.

The objective pursued by the investor at a time t ≤ T̃m, is to determine the boundary
maximizing the market value of his portfolio. This value of future discounted cash-flows
is denoted by V (t,Xt) and is defined for an elapsed time t ≤ T̃m as

V (t,Xt) = max
τ

E

(

ˆ τ∧τd∧T̃m

t

e−ρ(s−t)αWsds+ e−ρ(τd−t)1τd≤(τ∧T̃m)Wτd (4.1)

+

ˆ τd

τ∧T̃m∧τd

e−ρ(s−t)Bη+(τ∧T̃m)ds | Ft

)

,

whereas V (T̃m, XT̃m
) = E

(

´ τd
T̃m∧τd

e−ρ(s−T̃m)Bη+T̃m
ds | FT̃m

)

if there was no conversion of

funds before reaching T̃m. Given that the time of death is independent from the filtration
of financial returns Xt, the value function for t ≤ T̃m is rewritten as follows

V (t,Xt) = max
τ

E

(

ˆ τ∧T̃m

t

e−ρ(s−t)
(

s−tpη+tα +
∂

∂s
s−tqη+t

)

Wsds

+

ˆ Tm

τ∧T̃m

e−ρ(s−t)s−tpη+tBη+τ∧T̃m
ds | Ft

)

= max
τ

E

(

ˆ τ∧T̃m

t

e−
´ s

t
(ρ+µ(η+u))du (α + µ(η + s))Wsds

+

ˆ Tm

τ∧T̃m

e−
´ s

t
(ρ+µ(η+u))duBη+τ∧T̃m

ds | Ft

)

. (4.2)

In view of equations (3.3) and (3.5), the second term of this last expectation is equal to
ˆ Tm

τ∧T̃m

e−
´ s

t
(ρ+µ(η+u))duBη+τ∧T̃m

ds = e−
´ τ∧T̃m
t

(ρ+µ(η+u))du
(

Wτ∧T̃m
−K

) 1

1− ǫ

aη+τ∧T̃m

atf
η+τ∧T̃m
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where 1
1−ǫ

a
η+τ∧T̃m

atf
η+τ∧T̃m

= f(τ ∧ T̃m) is the money’s worth, as defined by equation (3.6), that

compares the expected present value of annuity payments with the price paid for the
annuity. This function is directly related to the gap between real mortality rates and
those used by the insurer to price the annuity. For persons who are more healthy on
average than those used as a reference population by the insurer, this function will be
greater than 100%. On the other hand, for the less healthy individuals, the function f(τ)
will be below 100%. The value function can then be rewritten as follows for the range
t ≤ T̃m:

V (t,Xt) = max
τ

E

(

ˆ τ∧T̃m

t

e−
´ s

t
(ρ+µ(η+u))du (α + µ(η + s))Wsds+

+ e−
´ τ∧T̃m
t

(ρ+µ(η+u))du
(

Wτ∧T̃m
−K

)

f(τ ∧ T̃m) | Ft

)

(4.3)

and similarly V (T̃m, XT̃m
) =

(

WT̃m
−K

)

f(T̃m) (if there is no conversion before reaching

T̃m).

From the theory of stochastic control (e.g. Fleming and Rishel 1975), for a given boundary,
the value function is the solution of the following system of equations for (t ≤ s ≤ T̃m):











∂V (s,x)
∂s

− (ρ+ µ(η + s))V (s, x) + LV (s, x)

= − (α + µ(η + s))Wte
(x−Xt) for (s, x) ∈ C

V (s, x) =
(

Wte
(x−Xt) −K

)

f(s) for (s, x) ∈ C̄,

(4.4)

where Lu(x) is the infinitesimal generator of the process Xt, as defined by:

Lu(x) = (θ − α)
∂u

∂x
+

1

2
σ2∂

2u

∂x2
+ λE (u(x+ Y )− u(x)) , (4.5)

and with the following terminal condition V (T̃m, x) =
(

WT̃m
−K

)

f(T̃m) (if no conversion

before T̃m). The continuation region is delimited by an optimal boundary hs := ln
(

bs
W0

)

and is set so to guarantee the continuity of the value function on the boundary:

V (s, hs) =
(

Wte
(hs−Xt) −K

)

f(s).

At the time of writing, the authors were unaware of a closed form solution for systems
as represented by equation (4.4). Thus, trying to solve it directly by a finite difference
method is far from straightforward. For this reason, another approach, combining the
Wiener-Hopf factorization and time stepping, was used.

5 Wiener-Hopf factorization.

The fundamental principles of the Wiener-Hopf factorization are now considered along
with the expected present value operators (EPV-operator) such as defined by Boyarchenko
and Levendorskii (2007). Let q > 0 be defined as a riskless rate. The expected present
value operator EPV of a stream g(Xt) is defined as follows:

(Eqg) (x) = qEx
(
ˆ ∞

0

e−qtg(Xt) dt

)

,
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where in general E
x (g(Xt)) = E (g(Xt) | X0 = x). The following result holds for an

exponential function g(x) = ezx by the definition of the Lévy exponent and by direct
integration:

(Eqg) (x) = qEx
(
ˆ ∞

0

e−qtg(Xt) dt

)

=
qezx

q − ψ(z)
, (5.1)

which applies under the condition q > ψ(z) where z is real and under the condition
q > ψ(Rez), where z is complex.
Let the two functions X̄t = sup0≤s≤tXs and X t = inf0≤s≤tXs be respectively the supre-
mum and the infimum of the processXs on the time interval [0, t]. If a random exponential
time Γ is introduced, having an intensity equal to q, the Wiener-Hopf factorization is in
the case that X0 = 0 for z ∈ iR :

E
0
(

ezXΓ
)

= E
0
(

ezX̄Γ

)

E
0
(

ezXΓ

)

. (5.2)

This relation comes from the observation that XΓ = X̄Γ +XΓ − X̄Γ and the fact that X̄Γ

and XΓ − X̄Γ are independent from each other and that XΓ − X̄Γ is distributed like XΓ.
Introducing the notation

κ+q (z) = qE0

(
ˆ ∞

0

e−qsezX̄sds

)

= E
0
(

ezX̄Γ

)

(5.3)

κ−q (z) = qE0

(
ˆ ∞

0

e−qsezXsds

)

= E
0
(

ezXΓ

)

. (5.4)

Since E
0
(

ezXΓ

)

= q
q−ψ(z)

, the Wiener-Hopf factorization formula (5.2) can be represented
as:

q

q − ψ(z)
= κ+q (z)κ

−
q (z). (5.5)

For any function g(.) defined on C, three EPV operators are defined as follows

(Eqg) (x) = qEx
(
ˆ ∞

0

e−qsg(Xs) ds

)

(

E+
q g
)

(x) = qEx
(
ˆ ∞

0

e−qsg(X̄s) ds

)

(5.6)

(

E−
q g
)

(x) = qEx
(
ˆ ∞

0

e−qsg(Xs) ds

)

.

The Wiener-Hopf factors κ+q (z) and κ−q (z) defined in equation (5.3 and 5.4) are closely
related to these EPV operators. Indeed, if g(.) = ez., then

(Eqe
z.) (x) =

q

q − ψ(z)
ezx

(

E+
q e

z.
)

(x) = ezxκ+q (z) (5.7)
(

E−
q e

z.
)

(x) = ezxκ−q (z)

which with equation (5.1) leads to (Eqe
z.) =

(

E+
q E

−
q e

z.
)

. It is well-known that the Wiener-
Hopf factorization of a given function is unique under weak conditions, in particular, it
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is unique in case of a rational function that does not vanish on the imaginary line. Bo-
yarchenko and Levendorskii (2007) give a proof of this result for all functions g ∈ L∞(R).
The operator Eq is the inverse of the operator q−1 (q − L) where L is the infinitesimal gen-

erator of the process Xt. Furthermore, E−1
q =

(

E+
q

)−1 (
E−
q

)−1
and E−1

q =
(

E−
q

)−1 (
E+
q

)−1
.

These results are used in the next section.

Generally, the Wiener-Hopf factors do not have closed form formulae. However, given
that q − ψ(z) is the ratio of two polynomials P (z) and Q(z), namely

q − ψ(z) =
P (z)

Q(z)
, (5.8)

Boyarchenko and Levendorskii (2007) have proven the uniqueness of the Wiener-Hopf
factors and found their expressions. The numerator P (z) is a polynomial of degree 4:

P (z) = −

(

(θ − α)z +
1

2
z2σ2 − λ− q

)

(

λ+ − z
) (

z − λ−
)

−λpλ+
(

z − λ−
)

+ λ(1− p)λ−
(

λ+ − z
)

,

whereas the denominator Q(z) is the product

Q(z) =
(

λ+ − z
) (

z − λ−
)

.

whose positive and negative roots are λ+ and λ−. An analysis of variation, reveals that the
ratio (P/Q)(z) has two asymptotes located at these roots of Q(z), one thus being located
in the left half-plane and the other one in the right half-plane. The polynomial P (z) has
4 real roots. Indeed, it suffices to note that q − ψ(0) > 0, q − ψ(z) → −∞ as z → ±∞,
z → λ+ − 0 and z → λ− + 0, and q − ψ(z) → −∞ as z → λ−−0 and z → λ+ + 0. Then
P (z) crosses four times the zero axis and has two positive and negative roots, denoted
by β+

k and β−
k , k = 1, 2 which can be set in the following order:

β−
2 < λ− < β−

1 < 0 < β+
1 < λ+ < β+

2 .

In this context, the Wiener-Hopf factors are provided by:

κ+q (z) =
λ+ − z

λ+

2
∏

k=1

β+
k

β+
k − z

(5.9)

κ−q (z) =
λ− − z

λ−

2
∏

k=1

β−
k

β−
k − z

. (5.10)

These Wiener-Hopf factors can also be rewritten as follows

κ±q (z) = a±1
β±
1

β±
1 − z

+ a±2
β±
2

β±
2 − z

(5.11)

where

a±1 =
β±
2

λ±
(β±

1 − λ±)

(β±
1 − β±

2 )
; a±2 =

β±
1 (β

±
2 − λ±)

λ±(β±
2 − β±

1 )
. (5.12)
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And as shown by Boyarchenko and Levendorskii (2007, page 201), E+
q and E−

q act on
bounded measurable functions g(.) as the following integral operators:

(E+
q g)(x) =

2
∑

j=1

a+j

ˆ +∞

0

β+
j e

−β+

j yg(x+ y)dy (5.13)

=
2
∑

j=1

a+j

ˆ +∞

x

β+
j e

β+

j (x−y)g(y)dy,

(E−
q g)(x) =

2
∑

j=1

a−j

ˆ 0

−∞

(−β−
j )e

−β−

j yg(x+ y)dy (5.14)

=
2
∑

j=1

a−j

ˆ x

−∞

(−β−
j )e

β−

j (x−y)g(y)dy.

It is also easy to check that these formulae are true for exponential functions g(x) = ezx

or for any linear combination of exponential functions. Expressions (5.13) and (5.14) will
be used later.

6 Time stepping.

The system (4.4) is solved using the method of Levendorskii (2004), which is a generaliza-
tion of Carr’s randomization to price American put options. Therefore, the time interval
[t, T̃m] is split into n subperiods of time t = t0 < t1 < ... < tn = T̃m. ∆j denotes the time
interval between tj and tj+1. On these intervals of time, functions (ρ+ µ(η + s)) and bs
are assumed to be constant:

{

(ρ+ µ(η + s)) = (ρ+ µj) if s ∈ [tj, tj+1[

bs = bj if s ∈ [tj, tj+1[
(6.1)

where µj = µ(η + tj) and bj = btj . The derivative with respect to time present in the
system (4.4) is broken into time steps. If V (tj, x) is denoted by vj(x) and f(tj) by fj,
the following discrete version of the system (4.4) is obtained:
{

vj+1(x)− (1 + ∆j (ρ+ µj)−∆jL) vj(x) = −(α + µj)∆jWte
(x−Xt) for (j, x) ∈ C

vj(x) =
(

Wte
(x−Xt) −K

)

fj for (j, x) ∈ C̄

(6.2)
with vn(x) =

(

Wte
(x−Xt) −K

)

fn. In order to build a solution in terms of EPV operators,
a new function is defined:

ṽj(x) = vj(x)− (Wte
(x−Xt) −K)fj (6.3)

which is the difference between the value of the investment policy and the value of purchas-
ing immediately a life annuity. ṽj(x) is the value of the option to delay the annuitization
and is strictly positive on C. The first equation of (6.2) can be rewritten in terms of ṽj(x)
as follows

(1 + ∆j (ρ+ µj)−∆jL) ṽj(x) = vj+1(x) + (α + µj)∆jWte
(x−Xt) (6.4)

− (1 + ∆j (ρ+ µj)−∆jL) (Wte
(x−Xt) −K)fj for (j, x) ∈ C

12



and the boundary condition becomes

ṽj(x) = 0 for (j, x) ∈ C̄. (6.5)

Given that the infinitesimal generator can be reformulated as a function of the charac-
teristic exponent of Y (equation (2.7))

LWte
(x−Xt) = Wte

(x−Xt)

(

(θ − α) +
1

2
σ2 + λ (φY (1)− 1)

)

, (6.6)

equation (6.4) is rewritten as follows:
(

1

∆j

+ (ρ+ µj)− L

)

ṽj(x) =
1

∆j

vj+1(x)−

(

− (α + µj) + fj

(

1

∆j

+ ρ+ µj − (θ − α)−
1

2
σ2 − λ (φY (1)− 1)

))

Wte
(x−Xt)

+

(

1

∆j

+ (ρ+ µj)

)

fjK for (j, x) ∈ C. (6.7)

In order to simplify the notation in the following calculations, δj is defined as a constant
on the interval of time [tj, tj+1):

δj := − (α + µj)+ fj

(

1

∆j

+ ρ+ µj − (θ − α)−
1

2
σ2 − λ (φY (1)− 1)

)

. (6.8)

It is now possible to present the solution in terms of EPV of successive functions. In the
following propositions, the wealth appearing in the equations is expressed as a function
of the individual’s initial wealth W0. Since the period [t, T̃m] is considered, the replacing
of W0 by Wte

−Xt in the equations, would better underline the fact that Wt and Xt are
known at time t. However, since these formulae would then turn out to be quite long, it
is better to work using W0 for notational use.

Proposition 6.1. Let us define the function gj(.) as follows

gj (x) =
1

∆j

vj+1(x)− δjW0e
x + qjfjK (6.9)

where

qj =
1

∆j

+ (ρ+ µj) . (6.10)

1) If gj(x) is monotone decreasing, the value function at time tj is equal to

vj(x) = (W0e
x −K) fj+ q−1

j

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x) (6.11)

and the continuation region C is the half plane of [0, T̃m]× R below the boundary ln
bj
W0

.
2) If gj(x) is monotone increasing, the value function at time tj is equal to

vj(x) = (W0e
x −K) fj+ q−1

j

(

E−
qj
1
[ln

bj
W0

,+∞)
E+
qj
gj

)

(x) (6.12)

and the continuation region C is the half plane of [0, T̃m]× R above the boundary ln
bj
W0

.
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Proof. According to equation (6.7) and the expression δj, the function ṽj(x) is solution
of the following system

{

(qj − L) ṽj(x) = gj(x) if (j, x) ∈ C

ṽj(x) = 0 if (j, x) ∈ C̄.
(6.13)

Given that E−1
qj

= q−1
j (qj − L), the system (6.13) implies that

E−1
qj

ṽj(x) = q−1
j gj(x) + g+j (x)

where g+j (x) := E−1
qj
ṽj(x)−q

−1
j gj(x) is a function vanishing on C. As E−1

qj
=
(

E−
qj

)−1 (

E+
qj

)−1

and E−1
qj

=
(

E+
qj

)−1 (

E−
qj

)−1

, the last equation leads to:

(

E+
qj

)−1

ṽj(x) = q−1
j E−

qj
gj(x) + E−

qj
g+j (x) (6.14)

(

E−
qj

)−1

ṽj(x) = q−1
j E+

qj
gj(x) + E+

qj
g+j (x) .

In order to proof the statements in 1), it is assumed that the continuation region is defined

by the half plane of [0, T̃m]× R above the given boundary ln
bj
W0

. Then, by construction,

g+j (x) = 0 and E+
qj
g+j (x) = 0 for x ≥ ln

(

bj
W0

)

. From equation (6.14), the price of the

option to delay the annuitization should then be equal to:

ṽj(x) = q−1
j

(

E−
qj
1
[ln

bj
W0

,+∞)
E+
qj
gj

)

(x).

As gj(x) is monotone decreasing, E+
qj
gj and E−

qj
1
[ln

bj
W0

,+∞)
E+
qj
gj are also monotone decreas-

ing (see Proposition 10.2.1 given by Boyarchenko and Levendorskii 2007), but it is also
a direct consequence of the definition of the EPV operators. Then ṽj(x) is monotone

decreasing. As ṽj(ln
bj
W0

) = 0 to guarantee the continuity of the value function on the

boundary, ṽj(ln
bj
W0

) = 0 is the maximum of ṽj(.) on C. From this, ṽj(.) is negative on C
which contradicts the fact that the option to annuitize is strictly positive everywhere on
the continuation region.

The assumption is now made that the continuation region is defined by the half plane of

[0, T̃m] × R below the given boundary ln
bj
W0

. Then g+j (x) = 0 for x ≤ ln
(

bj
W0

)

. By con-

struction, E−
qj
g+j (x) is null below ln

(

bj
W0

)

. From equation (6.14), the price of the option

to delay the annuitization is equal to:

ṽj(x) = q−1
j

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x).

As gj(x) is monotone decreasing E−
qj
gj and E+

qj
1
(−∞,ln

bj
W0

]
E−
qj
gj are also monotone decreas-

ing. In this case ṽj(ln
bj
W0

) = 0 is the minimum of ṽ(x) on C and ensures that ṽj(x) is
strictly positive on C.

The second statement 2) can be proven by a similar reasoning.
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The calculation of the EPV operators is done numerically with the method to identify
optimal boundaries being given later. Firstly, β±

k is denoted as the roots of the numerator
of qj − ψ(z) and a±k the related coefficients such as defined by equations (5.12). Then
analytical expressions of EPV operators are provided in the next result:

Proposition 6.2. The value of
(

E−
qj
gj

)

(x) and
(

E+
qj
gj

)

(x) are given by

(

E−
qj
gj

)

(x) = −
1

∆j

2
∑

k=1

a−k β
−
k w

−
k,j+1(x)− δjW0κ

−
qj
(1) ex + qjfjK (6.15)

(

E+
qj
gj

)

(x) =
1

∆j

2
∑

k=1

a+k β
+
k w

+
k,j+1(x)− δjW0κ

+
qj
(1) ex + qjfjK (6.16)

where the functions w−
k,j+1(.) and w+

k,j+1(.) are defined as follows

w−
k,j+1(.) = eβ

−

k
x

ˆ x

−∞

e−β
−

k
yvj+1(y)dy, (6.17)

w+
k,j+1(.) = eβ

+

k
x

ˆ +∞

x

e−β
+

k
yvj+1(y)dy. (6.18)

Proof. The result is a direct consequence of equations (5.13) and (5.14) which state that

(E+
qj
vj+1)(x) =

2
∑

k=1

a+k β
+
k e

β+

k
x

ˆ +∞

x

e−β
+

k
yvj+1(y)dy,

(E−
qj
vj+1)(x) = −

2
∑

k=1

a−k β
−
k e

β−

k
x

ˆ x

−∞

e−β
−

k
yvj+1(y)dy

and also of equation (5.7).

In applications, the integrals are computed numerically in order to calculate w−
k,j+1(.)

and w+
k,j+1(.).

Remark 6.1. It is already noted that the distribution/contribution rate can be time
dependent, denoted by α(t). In this case, α(t) is approached by a staircase function which
is constant between tj and tj+1. All previous results can be applied by replacing α by αj
in the definition of δj. If some lump sum payments are planned before the annuitization,
the arguments can be easily adapted. Thus if lump sum payments C are scheduled on
the date tj, then the value function in the definition of gj(x), equation (6.9), is equal to

vj+1 (x) = vj+1 (x+)− C, where x+ = ln
(

ex + C
W0

)

.

The optimal boundary is determined such that the continuity of the value function is
guaranteed on the line delimiting the domain into continuation and annuitization regions
(section 4). This means that if gj(x) is monotone decreasing, E−

qj
gj(x) = E−

qj
ṽj(x) = 0

for x = ln (bj/W0). Similarly if gj(x) is monotone increasing, E+
qj
gj(x) = E+

qj
ṽj(x) = 0

for x = ln (bj/W0). The optimal boundaries then easily follow on from the results of
Boyarchenko and Levendorskii (2007), as explained in the following corollary.
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Corollary 6.3. When gj(.) are respectively monotone decreasing or monotone increasing

functions with one root, the optimal boundaries h∗j = ln
(

bj
W0

)

are respectively solutions

of

(

E−
qj
gj

)

(h∗j) = −
1

∆j

2
∑

k=1

a−k β
−
k w

−
k,j+1(h

∗
j)− δjW0κ

−
qj
(1) eh

∗

j + qjfjK = 0. (6.19)

(

E+
qj
gj

)

(h∗j) =
1

∆j

2
∑

k=1

a+k β
+
k w

+
k,j+1(h

∗
j)− δjW0κ

+
qj
(1) eh

∗

j + qjfjK = 0. (6.20)

Proof. The proof is a direct consequence of Proposition 10.2.4 of Boyarchenko and Lev-
endorskii (2007).

The following proposition presents some necessary conditions satisfied when gj(x) are
monotone increasing or decreasing with one root.

Proposition 6.4. If the function gj(x) is monotone increasing with one root then

1

∆j

fj+1 − δj > 0 and

(

qjfj −
1

∆j

fj+1

)

K < 0. (6.21)

If the function gj(x) is monotone decreasing with one root then

1

∆j

fj+1 − δj < 0 and

(

qjfj −
1

∆j

fj+1

)

K > 0. (6.22)

Proof. gj (x) is defined by equation (6.9)

gj (x) =
1

∆j

vj+1(x)− δjW0e
x + qjfjK

where vj+1(x) is an increasing function. Furthermore, vj+1(x) ≥ (W0e
x −K) fj+1 in the

continuation region C (if it is not the case, the investor should move directly to a life
annuity) and vj+1(x) = (W0e

x −K) fj+1 in the annuitization region C̄ . Given these
facts, the following limits are inferred:

gj(x) =

(

1

∆j

fj+1 − δj

)

W0e
x +

(

qjfj −
1

∆j

fj+1

)

K for x ∈ C̄ (6.23)

gj(x) ≥

(

1

∆j

fj+1 − δj

)

W0e
x +

(

qjfj −
1

∆j

fj+1

)

K for x ∈ C.

If gj(x) is monotone increasing then C is bounded from below. Taking equation (6.23),

where x ≤ ln
(

bj
W0

)

then 1
∆j
fj+1 − δj must be positive. As gj(x) has one root, then

limx→−∞ gj(x) < 0 and
(

qjfj −
1
∆j
fj+1

)

K < 0. The same approach can be used to prove

the conditions (6.22).
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Conditions (6.21) or (6.22) are necessary but not sufficient. However, it has been ob-
served in numerical tests that they seem to be sufficient, despite the lack of proof offered
by the authors. In any case, these conditions are useful to detect problems for which there
appears to be no solution such as developed in Proposition 6.1. When conditions (6.21)
or (6.22) are not satisfied, gj(x) cannot be monotone increasing nor decreasing with one
root. In this case, the optimization problem is not well-formulated. To understand what
happens in this case, 1

∆j
fj+1 − δj > 0 is assumed. Then gj (x) is bounded from below

by an increasing exponential function and if gj is monotone increasing, C is delimited by

a lower boundary. However, when
(

qjfj −
1
∆j
fj+1

)

K > 0, the function gj (x) is strictly

positive everywhere on C̄ and cannot be null on its boundary. In this case, the price of

the option to delay the annuitization is positive and increasing with ln
(

bj
W0

)

. Choosing

bj = +∞ optimizes then the value function and the recommandation for annuitization
never occurs before T̃m.

If 1
∆j
fj+1−δj < 0, gj (x) is bounded from below by a decreasing exponential function and

if gj is monotone decreasing, C is delimited by an upper boundary. Nonetheless when
(

qjfj −
1
∆j
fj+1

)

K < 0, the function gj (x) is then strictly negative everywhere on C̄ and

cannot be null on its boundary. The price of the option to delay the annuitization is here

negative and decreasing with ln
(

bj
W0

)

. Choosing bj = −∞ is optimal and annuitization

should be done immediately.

The next proposition presents the value of

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x).

Proposition 6.5. The price at tj of the option to delay annuitization is in the case of a
monotone decreasing function gj(.) equal to

q−1
j

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x) =

[

−
1

∆j

2
∑

k=1

2
∑

l=1

a−k β
−
k a

+
l β

+
l z

+
k,l,j+1(x)

−δjW0κ
−
qj
(1)

2
∑

k=1

a+k
β+
k

1− β+
k

ex
(

e
(1−β+

k
)(ln

bj
W0

−x)
− 1

)

−qjfjK
2
∑

l=1

a+l

(

e
β+

l
(x−ln

bj
W0

)
− 1

)

]

q−1
j (6.24)

and in the case of a monotone increasing function gj(.) equal to

q−1
j

(

E−
qj
1
[ln

bj
W0

,+∞)
E+
qj
gj

)

(x) =

[

−
1

∆j

2
∑

k=1

2
∑

l=1

a−k β
−
k a

+
l β

+
l z

−
k,l,j+1(x)

−δjW0κ
+
qj
(1)

2
∑

l=1

a−l
β−
l

(1− β−
l )
ex
(

e
(1−β−

l
)(ln

bj
W0

−x)
− 1

)

−qjfjK

2
∑

l=1

a−l

(

e
β−

l

(

x−ln
bj
W0

)

− 1

)

]

q−1
j (6.25)
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where the functions z+k,l,j+1(.) and z−k,l,j+1(.) are defined as follows

z+k,l,j+1(.) = eβ
+

l
x

ˆ ln
bj
W0

x

e−β
+

l
yw−

k,j+1(y)dy x ≤ ln
bj
W0

(6.26)

z−k,l,j+1(.) = eβ
−

l
x

ˆ x

ln
bj
W0

e−β
−

l
yw+

k,j+1(y)dy x ≥ ln
bj
W0

(6.27)

and are null everywhere else.

Proof. The operator E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj can be seen as the sum of three terms:

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x) = −
1

∆j

2
∑

k=1

a−k β
−
k

(

E+
qj
1
(−∞,ln

bj
W0

]
w−
k,j+1(x)

)

−δjW0κ
−
qj
(1)

(

E+
qj
1
(−∞,ln

bj
W0

]
ex
)

+ qjfjK

(

E+
qj
1
(−∞,ln

bj
W0

]

)

. (6.28)

In view of equation (5.13), the first term equals

(

E+
qj
1
(−∞,ln

bj
W0

]
w−
k,j+1(x)

)

=
2
∑

l=1

a+l β
+
l

ˆ ln
bj
W0

x

eβ
+

l
(x−y)w−

k,j+1(y)dy

=
2
∑

l=1

a+l β
+
l e

β+

l
x

ˆ ln
bj
W0

x

e−β
+

l
yw−

k,j+1(y)dy.

A direct calculation leads to the following expression for the second term:

(

E+
qj
1
(−∞,ln

bj
W0

]
ex
)

=
2
∑

l=1

a+l β
+
l

ˆ ln
bj
W0

x

eβ
+

l
(x−y)eydy

=
2
∑

l=1

a+l
β+
l

(1− β+
l )
ex
(

e
(1−β+

l
)(ln

bj
W0

−x)
− 1

)

.

Finally the last term of (6.28) can be rewritten as

(

E+
qj
1
(−∞,ln

bj
W0

]

)

=
2
∑

l=1

a+l β
+
l

ˆ ln
bj
W0

x

eβ
+

l
(x−y)dy

= −

2
∑

l=1

a+l

(

e
β+

l
(x−ln

bj
W0

)
− 1

)

.

The operator E−
qj
1
[ln

bj
W0

,∞)
E+
qj
gj is obtained in a similar way.

The functions z+k,l,j+1(.) and z−k,l,j+1(.) are computed numerically. Section 8 presents
some results in order to illustrate the feasibility of the method.

18



The algorithm 1 summarizes the backward procedure and main steps implemented to
retrieve the optimal boundaries in numerical applications.

Algorithm 1 Backward calculation of upper or lower boundaries.

Initialize vn(x) = (W0e
x −K) fn (compulsory annuitization at time T̃m)

For j = n− 1 to 0
1. Calculation of gj (x) =

1
∆j
vj+1(x)− δjW0e

x + qjfjK ,

2. Numerical search of β−
2 , β−

1 , β+
1 ,β+

2 , λ− and λ+
defining the Wiener Hopf factors,κ−qj(z), κ

+
qj
(z)

3. Valuation of E−
qj
gj(x) or of E+

qj
gj(x),

4. Numerical search of h∗j = ln
bj
W0

, root of E−
qj
gj(x) = 0 or E+

qj
gj(x) = 0,

5. Valuation of the option to annuitize E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj(x)

or E−
qj
1
([ln

bj
W0

,∞,)
E+
qj
gj(x) ,

6. Update of the value function: vj(x) = (W0e
x −K) fj + option to annuitize

next j

7 Probability of annuitization.

As the investor has the right to withdraw his money from the mutual fund at any moment
to purchase a life annuity, the fund manager faces in certain circumstances a surrender
risk. For example, in France, due to tax incentives, insurers and bankers are encouraged
to invest their savings in funds with private equity. These funds with non listed stocks
issued by SME’s (small and medium enterprises) provide a higher return in exchange
for their liquidity risk. However if the motivation to withdraw money becomes strong,
large outflows of money can cause liquidity shortages. Understanding the probabilities
of annuitization are thus helpful to manage this risk. They can either be calculated by
Monte Carlo simulations or by inverting the Laplace transform of the hitting time τ . The
second approach is considered here. By definition, for a given constant γ, the Laplace
transform of τ is given by

E
(

e−γτ | Ft

)

= γ

ˆ +∞

t

e−γsP (τ ≤ s | Ft)ds (7.1)

= γLγ(P (τ ≤ s | Ft))

where Lγ is the Laplace operator. The probability that the individual leaves the mutual
fund to purchase to a life annuity, is then obtained by inverting this operator:

P (τ ≤ s | Ft) = L−1
γ

(

1

γ
E
(

e−γτ | Ft

)

)

=
1

2πi
lim
T→∞

ˆ γ0+iT

γ0−iT

eγs
1

γ
E
(

e−γτ | Ft

)

dγ

where γ0 is larger than the real part of all singularities of E (e−γτ | Ft). It is known that
the Laplace transform is a function of the fund return, Xt:

E
(

e−γτ | Ft

)

:= u(t,Xt)
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and it is solution of the following system

{

∂u(s,x)
∂s

+ (L − γ) u(s, x) = 0 if x ∈ C

u(t, x) = 1 if x ∈ C̄.
(7.2)

where L is the infinitesimal generator of Xt. The authors are unaware of any analytical
solutions for this system, but it is possible to compute numerical estimates by time
stepping. Once again, the time interval [t, T̃m] is split into n subperiods of time: t = t0 <
t1 < ... < tn = T̃m. The term ∆j is the length of the time interval between tj and tj+1.
On these intervals, bs is assumed constant and bs = bj if s ∈ [tj, tj+1). Discretizing the
derivative with respect to time in equation (7.2) and denoting u(tj, x) by uj(x), lead to

{

uj+1(x)− (1 + ∆jγ −∆jL) uj(x) = 0 for x ∈ C

uj(x) = 1 for x ∈ C̄
(7.3)

where un(x) = 0. The Laplace transform can be obtained in terms of EPV operators, as
shown previously in Section 6. To achieve this, the following function is introduced

ũj(x) = uj(x)− 1 (7.4)

and equations (7.3) are rewritten as follows:

{

(

1
∆j

+ γ − L
)

ũj(x) =
1
∆j
uj+1(x)−

(

1
∆j

+ γ
)

for x ∈ C

ũj(x) = 0 for x ∈ C̄.
(7.5)

Since this last system is similar to (6.2), the following results are inferred:

Corollary 7.1. Defining the function guj (.) as follows

guj (x) =
1

∆j

uj+1(x)− quj (7.6)

where quj = 1
∆j

+ γ. If C =
{

(t, x) | 0 ≤ t ≤ T̃m , x ≤ ln
(

bj
W0

)}

, the Laplace transform at

time tj for j = n− 1, n− 2, . . . , 0 is equal to

uj(x) = 1 +
(

quj
)−1
(

E+
quj
1
(−∞,ln

bj
W0

]
E−
quj
guj

)

(x). (7.7)

If C =
{

(t, x) | 0 ≤ t ≤ T̃m , x ≥ ln
(

bj
W0

)}

, then

uj(x) = 1 +
(

quj
)−1
(

E−
quj
1
[ln

bj
W0

,∞)
E+
quj
guj

)

(x). (7.8)

Proof. According to equations (7.5), the function ũj(x) is solution of the following system

{

(

quj − L
)

ũj(x) = guj (x) if x ∈ C

ũj(x) = 0 if x ∈ C̄.
(7.9)
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Given that E−1
quj

= qu−1
j

(

quj − L
)

, the system (7.9) implies that

E−1
quj

ũj(x) = qu−1
j guj (x) + gu+j (x)

where gu+j (x) := E−1
quj
ũj(x)−q

u−1
j guj (x) is a function vanishing on C. As E−1

quj
=
(

E−
quj

)−1 (

E+
quj

)−1

and E−1
quj

=
(

E+
quj

)−1 (

E−
quj

)−1

, the last equation leads to the following observations:

(

E+
quj

)−1

ũj(x) = qu−1
j E−

quj
guj (x) + E−

quj
gu+j (x)

(

E−
quj

)−1

ũj(x) = qu−1
j E+

quj
guj (x) + E+

quj
gu+j (x).

If

C =

{

(tj, x) | 0 ≤ tj ≤ T̄m , x ≤ ln

(

bj
W0

)}

,

then gu+j (x) is null for x ≤ ln
(

bj
W0

)

. By construction, E−
qj
gu+j (x) and ũj(x) are respectively

null below and above ln
(

bj
W0

)

. Then,

ũj(x) = qu−1
j

(

E+
quj
1
(−∞,ln

bj
W0

]
E−
quj
guj

)

(x).

In the same way, if

C =

{

(tj, x) | 0 ≤ tj ≤ T̄m , x ≥ ln

(

bj
W0

)}

,

then gu+j (x) is null for x ≥ ln
(

bj
W0

)

. By construction, E+
quj
gu+j (x) and ũj(x) are respectively

null above and below ln
(

bj
W0

)

. This leads to the result which remains to be proven:

ũj(x) = qu−1
j

(

E−
quj
1
[ln

bj
W0

,∞)
E+
quj
guj

)

(x).

If β±
k denotes the roots of the numerator of quj −ψ(z) and a±k are the related coefficients

such as defined by equations (5.12), then the following corollary provides an analytical
expression for EPV operators:

Corollary 7.2. The EPV operators
(

E−
quj
guj

)

and
(

E+
quj
guj

)

are equal to

(

E−
quj
guj

)

(x) = −
1

∆j

2
∑

k=1

a−k β
−
k w

u−
k,j+1(x)− quj (7.10)

(

E+
quj
guj

)

(x) =
1

∆j

2
∑

k=1

a+k β
+
k w

u+
k,j+1(x)− quj (7.11)
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where the functions wu−k,j+1 and wu+k,j+1 are defined by

wu−k,j+1(.) = eβ
−

k
x

ˆ x

−∞

e−β
−

k
yuj+1(y)dy (7.12)

wu+k,j+1(.) = eβ
+

k
x

ˆ ∞

x

e−β
+

k
yuj+1(y)dy. (7.13)

Corollary 7.3. In the second terms of (7.7) and (7.8), the EPV operators are equal to

(

E+
qj
1
(−∞,ln

bj
W0

]
E−
qj
gj

)

(x) = −
1

∆j

2
∑

k=1

2
∑

l=1

a−k β
−
k a

+
l β

+
l z

u+
k,l,j+1(x)

+quj

2
∑

l=1

a+l

(

e
β+

l
(x−ln

bj
W0

)
− 1

)

(7.14)

(

E−
quj
1
[ln

bj
W0

,∞)
E+
quj
guj

)

(x) = −
1

∆j

2
∑

k=1

2
∑

l=1

a−k β
−
k a

+
l β

+
l z

u−
k,l,j+1(x)

+quj

2
∑

l=1

a−l

(

e
β−

l
(x−ln

bj
W0

)
− 1

)

(7.15)

where the functions zu+k,l,j+1(.) and zu−k,l,j+1(.) are given by

zu+k,l,j+1(.) = eβ
+

l
x

ˆ ln
bj
W0

x

e−β
+

l
ywu−k,j+1(y)dy x ≤ ln

bj
W0

(7.16)

zu−k,l,j+1(.) = eβ
−

l
x

ˆ x

ln
bj
W0

e−β
−

l
ywu+k,j+1(y)dy x ≥ ln

bj
W0

(7.17)

and are null everywhere else.

Proofs of these Corollaries 7.2 and 7.3 are identical to those for Propositions 6.2 and
6.5. Because, the Laplace transform of the default time is known, the Gaver-Stehfest
algorithm can be used to numerically invert it. This approach is detailed by Davies
(2002, chapter 19). Denoting F (γ) = 1

γ
E (e−γτ | Ft). Let N be an integer. Then, an

approximation of the inverse is provided by the following sum:

P (τ ≤ s | Ft) ≈
ln 2

(s− t)

N
∑

j=1

γjF

(

ln 2

(s− t)
j

)

(7.18)

where

γj = (−1)N/2+j
min(j,N/2)
∑

k=[ j+1

2 ]

kN/2(2k)!

(N/2− k)!k!(k − 1)!(j − k)!(2k − j)!
.

In numerical applications, it is recommended to work with N set as 12. Note that the
Gaver-Stehfest algorithm is sometimes numerically unstable. In this case, probabilities
of annuitization can be obtained from Monte Carlo simulation of Xt.
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8 Numerical application.

This section presents annuitization regions for a male individual investing his savings in
a mutual fund tracking the S&P 500 index. The related mortality rates µ(η + t) are
represented by a Gompertz Makeham distribution such as detailed in Appendix A. The
annuitization must occur before the age of 80 (η + T̃m = 80). This choice is motivated
by the fact that insurers refuse to sell annuities to the elderly in order to limit the risk of
anti-selection. The time step used in the time stepping procedure is chosen to be equal
to a half year (∆i = 0.5).

The jump diffusion process that models the mutual fund return is fitted (by loglikeli-
hood maximization), to daily figures of the S&P500, from June 2003 to June 2013. The
parameters are presented in Table 8.1. The drift θ of Xt is high (16.15%) but the average
yearly return, without dividend, is equal1 to 2.38%. The difference between this drift
and this average return, 13.77%, corresponds to the yearly expected growth of the jump
component. The volatility of the Brownian motion is 3.92% but the standard deviation
of the yearly return is greater at 8.61%. In order to assess the impact of jumps on the
optimal boundaries, the jump diffusion model will be compared later with a pure Brow-
nian model set up, with the same mean and volatility.

The discount rate and initial wealth are set as ρ = 3% and W0 = 100. In a first
scenario, the function f(t) as defined by equation (3.6) is constant (f(t) = 100%), K is
a positive fee (K = 2, 2% of W0) and the dividend rate is α = 0.5%. The average return
of the mutual fund after dividends, is in this case E(X1) = 1.88%. As f(t) is equal to
100%, the individual has the same anticipation regarding his own survival as that viewed
by the insurer, (or at least he is not suspicious about the purchase of an annuity given
its irreversibility). With these assumptions, the necessary conditions (6.22) are satisfied.
Moreover, numerical tests reveal that all functions gj(x) are all monotone decreasing,
with a single root (this has to be checked because conditions (6.21) and (6.22) are neces-
sary but not sufficient). As demonstrated in Proposition 6.1, the continuation region is
delimited by an upper boundary.

In a second scenario, K is a tax incentive (K = −2, −2% of W0), the dividend rate
is set to α = 1% and the drift θ is slightly increased to 16.65%. Under these assump-
tions, the average mutual fund return remains unchanged when compared with the first
scenario (E(X1) = 1.88%), but higher dividends are expected. These assumptions ensure
that conditions (6.21) are satisfied. Furthermore, numerical tests reveal that all functions
gj(x) are monotone increasing with one single root. The continuation region in this sce-
nario is delimited by a lower boundary. Therefore annuitization should occur only if the
accrued return falls off too sharply.

In both considered scenarios, the money’s worth is constant f(t) = f , and ρ+ µj > 0 ∀j.

1
E(X1) = θ−α+λ(p 1

λ+−(1−p) 1
λ−

) and σ(X1) = V(X1)
1/2

with V(X1) = σ2+2λ(p 1
(λ+)2

+(1−p) 1
(λ−)2

)
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It follows that necessary conditions (6.21) and (6.22) can respectively be restated as:

(1− f)

f
(µj + α) + lnE(eX1+α) > ρ K < 0, (8.1)

(1− f)

f
(µj + α) + lnE(eX1+α) < ρ K > 0. (8.2)

In these equations,

lnE(eX1+α) = lnE(
W0e

X1+α

W0

)

= θ +
1

2
σ2 + λ (φY (1)− 1) (8.3)

is a kind of measure of financial performance, and is called log-average return in the
remainder of this paragraph. This estimates the global performance of the fund prior
dividends, and is independent from the dividends rate. In practice, the spread between
mortality rates of the individual and of the reference population for the insurer, is never
huge and f is close to one. Therefore, the first terms of equations (8.1) or (8.2) are nearly
insignificant. Unless a high withdrawal or contribution rate, α has a marginal effect on the
necessary conditions. When f = 1, the existence of a lower boundary is only conditioned
to the fact that the log-average return dominates the risk free rate lnE(eX1+α) > ρ, and
that a tax incentive exists, K < 0. In absence of a such incentive, the lower boundary does
not exist if the log-average return is greater than the risk free rate. Indeed, as discussed in
the paragraph following Proposition 6.4, it is then never recommended to annuitize before
T̃m because the option to delay the annuitization is positive, whatever the accrued return.

On another hand, when f = 1, an upper boundary exists under the conditions that
the log-average return lnE(eX1+α) is smaller than ρ and that there is a positive acqui-
sition fee, K > 0. In absence of a such fee, or in presence of a tax incentive, the upper
boundary cannot exist when lnE(eX1+α) < ρ. In this case, whatever the accrued return,
the option to delay the annuitization is negative as mentioned in the discussion following
Proposition 6.4. The right decision consists thus in converting the fund immediately in
an annuity.

Jump Diffusion Brownian

θ 16.15%/16.65% θ̃ 2.38%
σ 3.92% σ̃ 8.61%
p 0.3825
λ 148.2928
λ+ 217.1081
λ− -229.5335

Log. Lik. 10200 Log. Lik. 9720

Table 8.1: Parameters fitting the S&P 500 index

α 0.5% /1% η + T̃m 80
W0 100 K +2/−2
ρ 3% f(t) 1.00

Table 8.2: Other parameters.
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Figure 8.1 presents optimal boundaries in the domain time-accrued return and prob-
abilities of annuitization, for different initial ages, η set as 40, 50 and 60 years. Left and
right upper graphs show these boundaries in respectively the first and the second scenario.
The annuitization occurs before 80 years old, if the path followed by the accrued return
starting from X0 = 0, crosses one of these boundaries, either from below (left graph) or
from above (right graph).
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Figure 8.1: Optimal boundaries triggering the annuitization and the probabilities of
annuitization, for different initial ages.

In the first scenario, the purchase of a life annuity is postponed till the financial return
achieved is high enough. The individual waits until the rise in capital can ensure a com-
fortable annuity. If the fund performs poorly (Xt ≤ −0.30, or Wt ≤ 74), the annuitization
should be delayed to the limiting age of 80 years. However, the probability of such a late
annuitization is less than 2%. Furthermore, an analysis of probabilities graphs reveals
that annuitization occurs in 95% of cases before the investor is 75 years old. On aver-
age, (as shown in Table 8.3), the annuity is purchased between the ages of 67 and 71 years.

In the second scenario, the purchase of the annuity is postponed unless the accrued
return falls off too rapidly. The probability to annuitize before the age of 80 years, is
lower than 2%. Moreover, on average, (as shown in Table 8.3), the annuity is purchased
between 79 and 80 years old. Despite a tax incentive, the individual has no interest in
investing too early in a fixed payout annuity, except if the mutual fund slumps. This is
mainly explained by the higher dividend rate paid in this second scenario (1% instead of
0.5%).
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Age E(η + τ | η), 1st scenario Age E(η + τ | η) , 2nd scenario
η = 40 years 67.77 η = 40 years 79.95
η = 50 years 69.41 η = 50 years 79.96
η = 60 years 71.14 η = 60 years 79.97

Table 8.3: Average age for annuitization, as a function of the initial age of the individual.
These expected ages are computed with probabilities of annuitization, presented in Figure
8.1.
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Figure 8.2: Comparison of boundaries and probabilities of annuitization for Brownian
Motion and Jump Diffusion processes. Initial age : 40 years.

Figure 8.2 compares optimal boundaries and probabilities of annuitization, when the
S&P 500 return is modeled by pure Brownian motion (blue dotted line) compared to a
jump diffusion process (green continuous line). The optimal boundaries in the Brownian
model are set as described in Appendix B. The presence of jumps in the fund dynamics
influences the shape of optimal boundaries. In the first scenario (left graph), the Brownian
boundary is higher than the one for the jump diffusion model. On the other hand, for the
second scenario (right graph), the Brownian boundary is dominated by the one of jump
diffusion. This leads to different probabilities for annuitization. For a given maturity,
the probability to annuitize is predicted in a Brownian framework to be lower than in
a jump diffusion model. For the first scenario described above, a comparison of Tables
8.3 and 8.4 reveals that for the Brownian model, the annuity is purchased on average 1
year later than in case of the jump diffusion model. For the second scenario presented,
annuitization is delayed until reaching 80 years old, whatever the chosen model.
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Age E(η + τ | η), 1st scenario Age E(η + τ | η) , 2nd scenario
η = 40 years 68.77 η = 40 years 79.96
η = 50 years 70.30 η = 50 years 79.96
η = 60 years 71.88 η = 60 years 79.97

Table 8.4: The average ages for annuitization when Xt is modeled by a Brownian motion.
Different initial ages of the investor are used.

Intuitively, these results can be explained as follows. Despite that both processes have
the same averages and volatilities, the jump diffusion has heavier tails than the Brownian
motion. The tails of the distribution decays slowly at infinity and very large moves have
a significant probability of occurring. Due to these large moves, the process Xt may
reach the boundary at an earlier point than a pure Brownian motion. This triggers
an anticipate annuitization and raises probabilities of conversion, for a given maturity.
On another hand, a jump diffusion can generate sudden, discontinuous moves in prices,
contrary to a Brownian motion. Therefore, sometimes it may incur an ‘overshoot’ over
the boundary. Optimal boundaries are then adjusted to mitigate the risk to annuitize
when Xt is already deeply in the stopping region.
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Figure 8.3: Influence of the drift factor θ on the location of the optimal boundaries.

E(η + τ | η), 1st scenario E(η + τ | η) , 2nd scenario
θ = 14.15% 56.95 θ = 16.15% 79.96
θ = 15.15% 58.55 θ = 17.15% 80.00
θ = 16.15% 69.41 θ = 18.15% 80.00

Table 8.5: Average age for annuitization, for various drift factors.

Figure 8.3 shows the boundaries in case of a 50 year old man and for different drift
factors θ. In the first scenario (left graph) with a drift of 14.15%, the average fund return
(after dividends) is close to zero (−0.12%). The lack of expected capital gains does not
encourage an investment in the mutual fund. This absence of incentive pushes down the
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upper boundary in comparison with higher drift rates. Moreover, (as illustrated in Table
8.5), the annuitization occurs on average at younger ages.

In the second scenario (right graph), if θ = 18.55%, the yearly fund return (after div-
idends) is 3.88%. These high expected capital gains represent an important incentive
for investing in the mutual fund and the high dividends ensure a comfortable income
before annuitization. Therefore, there is no reason in this case to purchase a fixed payout
annuity, except if the financial markets slump. When the drift increases in the second
scenario, the delimiting boundary is pushed down and annuitization is postponed.

Since the recent financial crisis, people fear to invest in mutual funds because of their
volatility. As illustrated in Figure 8.4, the volatility is also involved in the decision to
annuitize. The right and left graphs analyze for the first and second scenarios, the sen-
sitivity of the boundaries to the Brownian motion volatility (σ) in the jump diffusion
setting. In both cases, when σ rises, the steepness of the boundaries decreases. Table 8.6
shows that on average for the first scenario, a higher volatility delays the annuitization.
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Figure 8.4: Influence of volatility on optimal boundaries.

E(η + τ | η), 1st scenario E(η + τ | η) , 2nd scenario
σ = 3.92% 69.41 σ = 3.92% 79.95
σ = 4.92% 68.84 σ = 4.92% 79.98
σ = 5.92% 71.23 σ = 5.92% 79.99

Table 8.6: Average age for annuitization, for various volatilities.

The money’s worth f(t) measures the spread between individual’s mortality rates
µ(x+t), and these of the insurer’s reference population, µtf (x+t). If f(t) is above or below
100%, the expected present value of annuity payments is respectively greater or lower than
the price paid for the annuity. It plays an important role in the decision to annuitize, as
illustrated by Figure 8.5. In the first scenario (left graph), increasing f(t) pushes down
the upper boundary. Because f(t) is not involved in the dynamics of Xt, this process
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will on average reach the boundary at an earlier point when f(t) is high. Therefore, the
annuity is purchased earlier on average. This conclusion is supported by results of Table
8.7: the annuitization occurs on average at younger age when f(t) is significantly higher
than 100%. In this case, the annuity is indeed underpriced and the annuitant benefits
from the asymmetry of information between the insurance company and himself. This
represents a strong incentive to annuitize. In the second scenario (right graph), increasing
f(t) pushes up the boundary. As shown in Table 8.7, the consequence of such movement
is similar to the one observed in the first scenario: on average the annuitization happens
earlier, but the impact is less important. This leads to the conclusion that whatever the
type of boundary, an individual who has a better longevity than an average person of the
insurer’s reference population, will be interested in purchasing a life annuity at an earlier
point.
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Figure 8.5: Influence of f(t) on optimal boundaries.

E(η + τ | η), 1st scenario E(η + τ | η) , 2nd scenario
f(t) = 1.0 69.41 f(t) = 1.0 79.96
f(t) = 1.1 60.62 f(t) = 0.9 79.98
f(t) = 1.2 57.33 f(t) = 0.8 79.99

Table 8.7: Average age for annuitization, for various values of f(t).

9 Conclusions.

The literature provides a great deal of evidence that an investor who intends to purchase a
life annuity (in an ‘all or nothing’ format) will be induced to delay if alternative financial
investments are available. This paper presents some new aspects of this optimal timing
problem, for an individual looking to optimize the market value of his investment strategy.

The expected financial return from assets purchased before annuitization is driven by
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a jump diffusion process, whereas most of existing studies use a Brownian motion frame-
work. A case study is presented that reveals that the presence of jumps in asset dynamics
substantially modifies the shape of the boundaries delimiting the annuitization region.

The solution is presented in terms of Expected Present Value (EPV) operators. These
were initially developed to price American options by Boyarchenko and Levendorskii
(2007) but such operators are not widely used in the actuarial literature, despite their
efficiency. A procedure to estimate the probability of conversion has been developed.

However, the main contribution from the current study has been to show the existence
of upper or lower mutually exclusive boundaries, which define the continuation region in
the space time versus realized returns. Contrary to working with American options, it
is not known beforehand if the boundary delimiting the exercise region is an upper or
a lower barrier. Propositions are set out that bind the type of limits to assumptions on
(or relations between) the actuarial and financial parameters. When the financial fund
tracks the S&P 500 and under realistic mortality assumptions, two different scenarios are
numerically considered. In the first, the annuitization only occurs if the achieved return
reaches an upper boundary, whereas in the second (with only slightly higher dividends),
the annuitization only occurs in the case of poor financial performances.

There are several relevant topics for future research. One would be to consider a partial
annuitization of the individual’s wealth. Another improvement could be to model the fact
that before the age of retirement, an investor should buy deferred annuities, which (by
definition) only start paying out from the age of retirement (since annuitizing before the
age of retirement has indeed only little practical sense). Finally, the utility optimization
of consumption deserves a deeper investigation since this problem leads to a Bellman
equation that appears unsolvable by EPV operators.

Appendix A, mortality assumptions.

In the examples presented in this paper, the real mortality rates µ(x+ t) are assumed to
follow a Gompertz Makeham distribution. The chosen parameters are those defined by
the Belgian regulator (“Arrêté Vie 2003”) for the pricing of life annuities purchased by
males. For an individual of age x, the mortality rate is given by:

µ(x) = aµ + bµ.c
x
µ aµ = − ln(sµ) bµ = ln(gµ). ln(cµ)

where the parameters sµ, gµ, cµ take the values given in Table 9.1. As an example Table
9.2 presents the progression of mortality rates with age for the male individual.

Table 9.1: Belgian legal parameters for modeling mortality rates, for life insurance prod-
ucts, targetting a male population.

sµ: 0.999441703848
gµ: 0.999733441115
cµ : 1.101077536030
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Table 9.2: Mortality rates, predicted by the Gompertz Makeham model based on param-
eters of table 9.1.

Age x µ(x)

30 0.10%
40 0.18%
50 0.37%
60 0.88%
70 2.23%
80 5.74%

Appendix B, Pure Brownian motion.

This appendix presents results when the financial return on assets is driven by a pure
Brownian motion without any jumps. These are used in the preceding numerical ap-
plications section to estimate the impacts of jumps on the boundaries delimiting the
annuitization area. For the remainder of this section, the dynamics of Xt are reduced to:

dXt = (θ̃ − α)dt+ σ̃dW̃t with X0 = 0, (9.1)

and its characteristic exponent ψ(z) is a second order polynomial:

ψ(z) = (θ̃ − α)z +
1

2
z2σ̃2.

If β+ and β− are respectively positive and negative roots of q − ψ(z) = 0,

β+ =
−(θ̃ − α) +

√

(θ̃ − α)2 + 2σ̃2q

σ2

β− =
−(θ̃ − α)−

√

(θ̃ − α)2 + 2σ̃2q

σ2

the Wiener-Hopf factors are provided by:

κ+q (z) =
β+

β+ − z
(9.2)

κ−q (z) =
β−

β− − z
. (9.3)

In this case, the EPV operators E+
q and E−

q act on bounded measurable functions g(.) as
follows:

(E+
q g)(x) =

ˆ +∞

x

β+eβ
+(x−y)g(y)dy,

(E−
q g)(x) =

ˆ x

−∞

(−β−)eβ
−(x−y)g(y)dy.

The value function, rewritten in terms of EPV operators, is still provided by Proposition
6.1 (given earlier) if we define δj as the following constant on the interval of time [tj, tj+1):

δj := − (α + µj)+ fj

(

1

∆j

+ ρ+ µj − (θ̃ − α)−
1

2
σ̃2

)

. (9.4)

Proposition 6.2 has the following analogue in the Brownian motion model:
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Corollary 9.1. The value of
(

E−
qj
gj

)

(x) and
(

E+
qj
gj

)

(x) in the Brownian model, are

given by
(

E−
qj
gj

)

(x) = −
1

∆j

β−w−
j+1(x)− δjW0κ

−
qj
(1) ex + qjfjK (9.5)

(

E+
qj
gj

)

(x) =
1

∆j

β+w+
j+1(x)− δjW0κ

+
qj
(1) ex + qjfjK (9.6)

where the functions w−
j+1(.) and w+

j+1(.) are defined as follows

w−
j+1(.) = eβ

−x

ˆ x

−∞

e−β
−yvj+1(y)dy, (9.7)

w+
j+1(.) = eβ

+x

ˆ +∞

x

e−β
+yvj+1(y)dy. (9.8)

Furthermore, the optimal boundary is given by a simplified version of Corollary 6.3
(given earlier).

Corollary 9.2. When gj(.) are respectively monotone decreasing or monotone increasing

functions with one root, the optimal boundaries h∗j = ln
(

bj
W0

)

are respectively the solutions

of
(

E−
qj
gj

)

(h∗j) = −
1

∆j

β−w−
j+1(h

∗
j)− δjW0κ

−
qj
(1) eh

∗

j + qjfjK = 0. (9.9)

(

E+
qj
gj

)

(h∗j) =
1

∆j

β+
k w

+
j+1(h

∗
j)− δjW0κ

+
qj
(1) eh

∗

j + qjfjK = 0. (9.10)

Proposition 6.4 (given earlier) remains valid if the return is modeled by a pure Brow-
nian motion and therefore, some necessary conditions satisfied when gj(x) are monotone
increasing or decreasing are given by (6.21) and (6.22) with the appropriate parameters
such as δj in (9.4).

Appendix C, Numerical calculation of the density.

The jump diffusion process is adjusted by a loglikelihood maximization to daily figures of
the S&P 500 from June 2003 to June 2013. Since the density of the returns has no closed
form expression, it is retrieved numerically by a discrete Fourier Transform. Indeed, the
density, denoted by fXt

(.), is approached on the interval [−xmax, xmax] by a sum as stated
in Proposition 9.3 (below).

Proposition 9.3. Let N be the number of steps used in the Discrete Fourier Transform
(DFT) and ∆x = 2xmax

N−1
be the step of stepping. Let us denote δj = 1

2
1{j=1} + 1{j 6=1},

∆z =
2π

N ∆x
and zj = (j − 1)∆z. The values of fXt

(.) at points xk = −N
2
∆x + (k − 1)∆x

are approached by

fXt
(xk) =

2

N ∆x

N
∑

j=1

δj
(

etψ( i zj)(−1)j−1
)

e−i
2π
N

(j−1)(k−1) (9.11)

where ψ(z) is defined by equation (2.8).
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Proof. By definition, the characteristic function of Xt, denoted MXt
(z), is the inverse

Fourier transform of the density multiplied by 2π:

MXt
(z) =

ˆ +∞

−∞

fXt
(x)eizxdx

:= 2πF−1[fXt
(x)](z).

The density is retrieved by calculating the Fourier transform of MXt
(z) = etψ(iz) as follows

fXt
(x) =

1

2π
F [etψ(iz)](x)

=
1

2π

ˆ +∞

−∞

etψ(iz)e−ixzdz

=
1

π

ˆ +∞

0

etψ(iz)e−ixzdz.

The last equality arises from the fact that ψ(iz) and ψ(−iz) are complex conjugate. Ap-

proaching this last integral with the trapezoid rule
´ b

a
h(x)dx =

[

h(a)+h(b)
2

+
∑N−1

k=1 h(a+ k∆x)
]

∆x,

leads to the result.
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