Seminar SRBE-KBVE

"Un Black out électrique: pourquoi, comment, et après ?" - "Een elektrische blackout: waarom, hoe, en nadien ?"

10th of May 2012

Le système électrique et le blackout Considérations générales

Jean-Claude MAUN

Outline

- Introduction
- Kirchhoff's laws and consequences
- Model of the power system
- Balancing considerations
- Stability of the power systems
- Time scale effects
- New challenges

Introduction

- Electricity is a commodity, but:
 - A Volt of electricity?
 - An Ampere of electricity?
 - A MW of electricity?
 - A MWh of electricity?
- Consumer requirements
 - Security of supply P, Q, V
 - Power quality : V : variations, dip, unsymmetry, frequency, harmonics, flicker

Introduction

Single consumer

Fig. 1. Example of an electricity demand profile from an individual household recorded on a 1-min time base [7].

Introduction Global consumption (Elia)

Consumption and day ahead forecast MΜ 21 22 23 Hours - 2012-04-22 - 2012-04-21 - Forecast 2012-04-22 - Forecast 2012-04-23

Introduction

Generation

- Thermal plant : response time, CO2, fuel cost
- Nuclear plant : better constant power, waste
- Hydro plants : distance, empty reservoir
- Gaz turbine plant : fast, CO2, gaz cost
- Photovoltaïc unit : when sun is present
- Eolic unit : when wind is blowing
- Cogen unit : if heath is required

Introduction

Power system : physical

$$\sum P_g - \sum P_l - \sum P_{loss} + P_{import} - P_{export} = 0$$

Model of the power system

Some symplifying assumptions

- All electrical quantities are in steady-state at the nominal frequency → phasors
- Three-phase symmetrical (positive sequence model)
- No mutual inductances
- All elements in the network are linear

Model of the power system

Model of a line

Short line $X = \omega L > R$ for HV overhead lines

Model of the power system

Model of a network seen from one node :

Example of trivial consequence of the second law
 Δ
 Δ
 Δ

• If we have in parallel a line and a cable, the cable could be overloaded

• Other example of consequence of the second law

 $\Delta V = (R P_R + X Q_R) / (3 V_R)$ $\delta V = (X P_R - R Q_R) / (3 V_R)$

Reactive power flow affects the voltage amplitude Real power flow leads to phase difference on the voltage phasors.

• Other example of consequence of the second law

Balancing considerations

 $\sum P_g - \sum P_l - \sum P_{loss} + P_{import} - P_{export} = 0$

- In case of outage, load variation,...,
 Pg mec ≠ Pg elec
- Speed and frequency will change according to the mechanical equations, depending on the inertia J of the plants
- It is driven by dynamic equations

Balancing considerations

 $\sum P_g - \sum P_l - \sum P_{loss} + P_{import} - P_{export} = 0$

- If we assume that synchronization is maintained, f can be measured anywhere and used as a feed-back signal to change the mechanical power.
- A new stady-state point will be reached.
- If the control is proportional to the frequency, the new equilibrium point implies a Δf
- This allows a participation of all units which are controlled and have reserves (primary control)

Balancing considerations

- If we add an integral feedback based on an error signal which mixes Δf + K ΔP_{zone}, we can go back to fnom and to the planned balance on P import/export (secondary control)
- It is a short term process (seconds to minutes)
- It assumes that we reach a new equilibrium point.

- Stability of a dynamic system:
- Non linear

$$\dot{x} = F(x, u)$$
 and $y = G(x, u)$

• Linear

$$\dot{x} = Ax + Bu$$
 and $y = Cx + Du$

• Linearized

 $\dot{\Delta x} = A\Delta x + B\Delta u$ and $\Delta y = C\Delta x + D\Delta u$

- Power system stability :
- Remains in a state of operating equilibrium under normal operating conditions
- Regain an acceptable state of equilibrium after a disturbance

- What is acceptable:
- No loss of synchronism
- No collapse of load voltage
- Not a too high frequency deviation
- No overload
- Disturbance can be small or large

Static Stability of the power system $V_{G} = \frac{V_{R}}{P_{R}} = \frac{3V_{R}V_{G}}{Z}\cos(\zeta - \theta) - \frac{3V_{R}^{2}}{Z}\cos\zeta$

If the resistance of the line is neglected :

 $P_{R} = \frac{\Im V_{R} V_{G}}{X} \sin \theta$

Static Stability of the power system

- To increase the powerflow, the generator rotor must shift (leading) but the power can not exceed $3 V_R V_G / X$
- If the impedance increases (due to e.g. a line opening, the angle increaseand the maximal power decreases

Security analysis of the power system

States of a Power system (Di Liacco – CIGRE)

New challenges

- Distributed non dispatched generation
- Demand side response
- DC connections, FACTS and Phase Shifters
- Dynamic modeling
- Cascade studies an Risk analysis
- Security analysis : more or less than N-1?
- Intra-day market
- Ancillery services market
- Long term planning of generation resources

Measurement

Accuracy Phase and Amplitude of <u>V</u> and <u>I</u> Continuous recording (>< triggered) Wide-Area

Monitoring

Statics & Dynamics

Availability of complementary information Extraction of relevant information Clear and intuitive visualizations

> Blackout Prevention

Security

On-line/Off-line analysis

High rate of refreshment of the information Simulation and statistical tools Knowledge of the system dynamic behavior

Protection

E BRUXELLES

Element protection System Protection Schemes

Dependability & Security Selectivity Robustness Data exchange between IED Control

Open-loop/Closed-loop control Continuous/Discontinuous control

Fast telecommunication channels Delays compensation for closed-loop control Real-time modeling Robustness

Measurement

<u>V</u> and <u>I</u> at generator terminals Accuracy of 10⁻³ (amplitude) and 0.1° (phase) Rate of measurement 10 to 50Hz Centralization

Monitoring

Dynamic behavior understanding

Mode Shape of critical modes Damping of oscillations Oscillating areas/generators

> Interarea Oscillations

Security

Alert issue

Damping margin reduced Major contingency threat Possible countermeasures

Protection

E BRUXELLES

System Protection Scheme

Sustained/growing oscillations Interarea transfer reduction

Control

Local/Wide-Area Control

Power System Stabilizers FACTS

Measurement

<u>V</u> at each bus of a weak area Accuracy not critical Status of each generator Rate of measurement 1 to 5Hz Centralization

Monitoring

Pinpointing of critical area

Index more relevant than voltage Evolving of the instability Geographical visualization

Voltage Stability

Security

Prediction of evolving

Fast contingencies analysis in critical area Dynamic recovery of load

Protection

E BRUXELLES

System Protection Scheme

Based on intelligent index Load shedding Blocking of tap changers

Control

Local/Wide-Area Control

Modification of voltage set-point Rescheduling of generation

References

- Kundur Power System Stability
- Gomes-Exposito, Conejo, Canizares Eletric Energy Systems – Analysis and Operation
- Machowski, Bialek, Bumby Power System Dynamics

 Stability and Control
- Kirschen Fundamentals of Power System Economics
- Elia Website

Acknowledgments

• Prof. Poncelet, Warichet, Genêt, Klopfert

