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Abstract

The classical result of [10] shows that, for single-member households, the Weak
Axiom of Revealed Preferences (warp) and the Strong Axiom of Revealed Preferences
(sarp) are equivalent when there are only 2 goods. Because sarp extends warp by
requiring transitive preferences in addition, this means that transitivity of preferences
need not be tested in the case of two goods. We consider the extension of this result to-
wards L-member households, for which we introduce the concepts L-warp and L-sarp.
For a general setting, we demonstrate that L-warp and L-sarp are not equivalent if
there are at least L + 1 goods, which means that transitivity of individual preferences
is testable. However, we can also show that L-warp and L-sarp do become equivalent
for the restricted “labor supply” setting where we exclusively assign a single good to
each different household member, i.e. L (out of L + 1) goods are exclusive.
Keywords: Weak Axiom of Revealed Preferences; Strong Axiom of Revealed prefer-
ences; multi-member households; transitivity.
JEL Classification: D11, D12, D13, C14.

1. Introduction

We study consumption decisions (including labor supply decisions) of multi-member house-
holds. By now, it is well established that the collective model of [7] is both conceptually
and empirically attractive for analyzing consumption behavior (see, for example, [17] for an
overview of the relevant literature). This collective model assumes that the different house-
hold members are endowed with individual preferences defined over privately and publicly
consumed goods (inside the household). These members enter into a decision process of
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which the outcome is assumed to obtain a Pareto optimal allocation (of the aggregate house-
hold budget). In what follows, we say that multi-person household behavior is collectively
rational if it is consistent with the collective model, see Section 2 for a formal statement.

In the tradition of [1] and [15], we are interested in the revealed preference characteriza-
tion of collective models. Such a revealed preference characterization does not rely on any
functional specification regarding the household consumption process, and starts directly
from the observed finite set of prices and quantities. [15] introduced the revealed prefer-
ence axioms that summarize the empirical implications of theoretical consumption models
for single-member households, while [5] provided a revealed preference characterization of
collective models for multi-member households.1

Our following analysis focuses on two popular revealed preference axioms: the Weak Ax-
iom of Revealed Preferences (warp) introduced by [11], and the Strong Axiom of Revealed
Preferences (sarp) introduced by [8]. For single-person households, these axioms summa-
rize the testable implications of rational (i.e. utility maximizing) consumption behavior.
Essentially, sarp extends warp by requiring preferences to be transitive (see, again, Sec-
tion 2 for formal definitions). In this respect, [10]’s classical result shows that warp and
sarp are empirically equivalent in a setting with 2 goods. In other words, transitivity has
no empirical bite if the analysis includes only 2 goods. Because warp is generally easier
to test than sarp, this result can considerably facilitate the computational burden of the
empirical analysis.2 Moreover, following [14], the validity of transitive preferences has been
put in question in the literature on behavioral economics.3 Importantly, the result of [10]
implies that such considerations cannot be meaningfully investigated in a setting with not
more than two goods.

In what follows, we investigate the possibility to extend [10]’s result towards multi-
member households. Therefore, we define the concepts of L-warp and L-sarp, which
capture the testable implications of collectively rational (i.e. Pareto efficient) consump-
tion behavior in the case of L household members. In a first instance, we assume a general
setting in which we only observe the aggregate household consumption, i.e. no information is
available on the intrahousehold allocation of the private goods. Here, we obtain two main re-
sults. First, we show that L-warp and L-sarp are empirically vacuous (i.e. non-rejectable)
if there are not more than L goods. Next, and more importantly, we show that warp and
sarp are not equivalent if there are at least L + 1 goods. Thus, [10]’s conclusion does not
generalize for L-member households (even with as few as four observations). Therefore,
transitivity of individual preferences is a testable requirement even if there are only L + 1
goods for L household members.

Finally, we also study a more restricted setting where we exclusively assign a single good
to each different household member, i.e. L (out of L+ 1) goods are exclusive. Thus, in con-
trast to the general setting, this restricted setting assumes that we observe the intrahousehold
allocation of L goods. We call this a “labor supply” setting as it formally coincides with [7]’s
original labor supply model, in which each household member exclusively consumes his/her
(observed) leisure while the remaining consumption is captured by a Hicksian aggregate (that
is to be shared among the household members). Interestingly, we can show that L-warp and

1See also [9], [16], [3], [4] and [6] for more discussion.
2See [13] for a recent study on the computational complexity of testing warp and sarp.
3See, for example, [2] for a recent review.
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L-sarp do become equivalent under these empirical conditions (with L + 1 goods). Thus,
the empirical analysis need not explicitly account for transitivity, which can substantially
alleviate the computational burden in practical applications.

The rest of the paper unfolds as follows. In Section 2 we introduce the collective model
and the corresponding revealed preference axioms. In Section 3 we investigate the equivalence
between L-warp and L-sarp for both the general setting and the restricted labor supply
setting. Section 4 concludes. The Appendix contains the proofs of our main results.

2. Revealed preference characterization of collective

household behavior

Notation and definitions. We consider an L-member household that consumes N private
goods and K public goods (with L,N , K ∈ N0). The vector q ∈ RN

+ represents the quantities
that are privately consumed by the household, and p ∈ RN

+ stands for the corresponding
price vector. Similarly, the vector Q ∈ RK

+ represents the publicly consumed quantities, and
P ∈ RK

+ gives the price vector for the public goods. Next, the vector q` ∈ RN
+ contains

the privately consumed quantities for each individual member `, with
L∑̀
=1

q` = q. The

collective model of household consumption explicitly recognizes the individual preferences
of the household members. These preferences may depend on the private quantities, the
public quantities, or both. Throughout, we assume that preferences of member ` can be
represented by a well-behaved (i.e. continuous, positive monotonic and concave) utility
function U `(q`,Q), ` = 1, . . . , L.

Our analysis starts from the data set S = {(pt,Pt; qt,Qt) , t = 1, ..., T}, which contains T
household choices that are characterized by prices pt,Pt and quantities qt,Qt. In our general
setting, we do not know which quantities are privately consumed by which member, i.e. q`

t

is unobserved. Therefore, we need to introduce (unobserved) feasible personalized quantities
that comply with the (observed) aggregate quantities qt. That is, we consider all possible

decompositions q`
t ∈ RN

+ that satisfy
L∑̀
=1

q`
t = qt. In what follows, our main focus will be

on this general setting. However, as indicated in the Introduction, we will also consider a
restricted (labor supply) setting that is characterized by exclusive goods. An exclusive good
is a private good that is exclusively consumed by a given member. Evidently, this setting
implies extra information on q`

t.
A collective rationalization of a set of observations S requires the existence of member-

specific utility functions for which each observed quantity bundle can be characterized as
Pareto efficient. The following definition provides a formal statement.

Definition 1. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., T} be a set of observations. Then, the
utility functions U1, . . . , UL provide a collective rationalization of S if, for each observation
t, there exist feasible personalized quantities q`

t such that:

1.
L∑̀
=1

q`
t = qt, and
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2. for all possible quantities z` ∈ RN
+ ,Z ∈ RK

+ with
L∑̀
=1

ptq
`
t + PtQt ≥

∑L
`=1 ptz

` + PtZ,

we have that if U `(z`,Z) > U `(q`
t,Qt) then there is some member m for which Um(zm,Z) <

Um(qm
t ,Qt).

Revealed preference characterization. Our revealed preference characterizations of
collectively rational behavior make use of the concepts L-warp and L-sarp, which pro-
vide multi-member extensions of the warp and sarp concepts that apply to single-member
households. To formally define L-warp and L-sarp, we need the concept of feasible person-

alized prices. These are prices P` ∈ RK
+ such that

L∑̀
=1

P` = P. Intuitively, these personalized

prices capture the fractions of the household prices for the public goods that are borne by the
individual members `. Given the Pareto efficiency assumption that underlies the collective
consumption model, these prices can also be interpreted as Lindahl prices. We refer to [5]
for a detailed discussion.

Assume that we observe a data set S = {(pt,Pt; qt,Qt) , t = 1, ..., T}, and consider a
given specification of feasible personalized quantities q`

t and prices P`
t. Then, for household

member `, we say that the consumption allocation s is directly revealed preferred over another
allocation t (denoted sR`

0t) if psq
`
s + P`

sQs ≥ psq
`
t + P`

sQt. The transitive closure of this
relation is denoted by R`. Essentially, the relation R` extends R`

0 by exploiting transitivity
of individual preferences. We can now define our concepts L-warp and L-sarp.

Definition 2. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., T} be a set of observations.

1. S satisfies L-warp if and only if there exist for all ` = 1, . . . , L feasible personalized
quantities q`

t and feasible personalized prices P`
t, such that for all pairs of observations

s, t = 1, ..., T , tR`
0s implies either psq

`
s + P`

sQs < psq
`
t + P`

sQt or (q`
t = q`

s and
Qt = Qs).

2. S satisfies L-sarp if and only if there exist for all ` = 1, . . . , L feasible personalized
quantities q`

t and feasible personalized prices P`
t, such that for all pairs of observations

s, t = 1, ..., T , tR`s implies either psq
`
s + P`

sQs < psq
`
t + P`

sQt or (q`
t = q`

s and
Qt = Qs).

If L = 1, Definition 2 reduces to the standard definition of warp and sarp in [15]. When
L ≥ 2, then this definition states that, for the given specification of feasible personalized
quantities and prices, S satisfies L-warp if and only if, for each member `, the feasible
personalized prices and quantities satisfy warp. A directly similar interpretation applies to
L-sarp, except that this concept also accounts for (indirect) revealed preference relations
that are induced by transitivity.

As discussed extensively in [15] and [16], warp defines a necessary condition for the ex-
istence of a well-behaved utility function for single-member households. In general, however,
warp is not sufficient because it does not impose transitivity. By contrast, sarp defines a
necessary as well as a sufficient condition. These insights extend to the multi-member setting
that we consider here. In particular, the results of [5] are easily adapted to show that there
exist utility functions that provide a collective rationalization of S if and only if at least
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one specification of feasible personalized quantities and feasible personalized prices satisfies
L-sarp. Again, L-warp provides a corresponding necessary condition by not requiring tran-
sitivity of the individual preferences. For results on the computational complexity of testing
warp in various settings we refer to [12].

3. Is L-warp equivalent to L-sarp?

In this section, we compare the testable implications of L-warp and L-sarp. We start by
showing that L-warp and L-sarp are empirically vacuous conditions if there are no more
than L goods. Subsequently, we demonstrate that, for L+1 goods (or more), the equivalence
between L-warp and L-sarp breaks down for the general setting (without exclusive goods).
Finally, we also show that L-warp and L-sarp do become equivalent for the restricted labor
supply setting (where L out of the L+ 1 goods are exclusive).

At most L goods. Before presenting our results, let us first recall that for single-member
households warp and sarp are idle conditions if there is only a single good. Indeed, in that
case tRl

0s is equivalent to qt ≥ qs (with qt, qs ∈ R+ and s, t = 1, ..., T ), which implies that
we can never reject either warp or sarp. This non-testability result can be extended to
L-warp and L-sarp, as follows.

Proposition 1. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., T} be a set of observations. Then L-
warp and L-sarp are vacuous conditions as soon as L ≥ N +K.

Proposition 1 implies that we can only meaningfully check consistency with L-warp and
L-sarp if the number of goods N + K is strictly larger than L. Next, it is possible to
generalize Example 1 of [3] to show that both L-warp and L-sarp can be rejected as soon
as there are L+1 goods. Given this, a natural next question is whether L-warp and L-sarp
are equivalent for L+ 1 goods. This would generalize [10]’s result (which shows equivalence
for L = 1) towards L ≥ 2.

L-warp and L-sarp are not equivalent. For the general setting, the answer to this
equivalence question is negative. We can show this for L = 2 by means of the data set in
Example 1.

Example 1. Let us consider a data set consisting of the four observations presented in Table
1.

q1 = (5, 0, 0) p1 = (7.5, 0.5, 0.5)
q2 = (0, 5, 0) p2 = (1, 2, 0.9)
q3 = (0, 0, 5) p3 = (0.2, 2.02, 2)
q4 = (4, 3, 1) p4 = (1, 1, 5)

Table 1: Example data set.

We use this data set to consider two cases. In the “private case” there is only private
consumption, i.e. qt = qt and Qt = 0 for t = 1, 2, 3, 4. By contrast, in the “public case”
there is only public consumption, i.e. Qt = qt and qt = 0 for t = 1, 2, 3, 4.
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For this specific data set we obtain the following result.

Lemma 1. The following holds for the data of Example 1.

1. For both the private and the public case, the data does not satisfy 2-sarp.

2. For both the private and the public case, the data does satisfy 2-warp.

The next non-equivalence conclusion follows directly from Lemma 1.

Proposition 2. There exists a data set S, with only 3 goods, that satisfies 2-warp but not
2-sarp. In general, this implies that 2-warp is not equivalent to 2-sarp for N + K = 3.
This non-equivalence conclusion is independent of the public or private nature of the goods.

As shown in the Appendix, it is possible to construct data sets (similar to the one in
Example 1) to obtain exactly the same conclusion in a setting with L household members
and L+ 1 goods. The following proposition states the general result.

Proposition 3. Let L ≥ 2. There exists a data set S, with only L + 1 goods, that satisfies
L-warp but not L-sarp. In general, this implies that L-warp is not equivalent to L-sarp
for N +K = L+ 1. This non-equivalence conclusion is independent of the public or private
nature of the goods.

Labor supply setting. Let us now turn to the restricted labor supply setting. More
precisely, we consider a household with Lmembers in which there is only private consumption
of the L + 1 goods. The first L goods represent leisure and are exclusively consumed by
individual members. The (L+1)-th good is a Hicksian aggregate. We will treat this Hicksian
good as a private good for which we do not observe the intrahousehold allocation. As
indicated in the Introduction, this restricted setting corresponds to [7]’s labor supply model,
which is widely used in empirical analyses of collective consumption behavior. Importantly,
while we treat the Hicksian aggregate as a private good to facilitate our discussion (and for
the analogy with [7]’s original model), our following results actually also hold if the Hicksian
aggregate were a public good.4

To formally explain the relation between this restricted setting and the general setting
that we discussed before, assume a data set S = {(pt, 0; qt, 0) , t = 1, ..., T} that contains
L+ 1 goods. Then the first L entries of the feasible personalized quantities q`

t pertain to the
exclusive goods, and are defined as follows for all t = 1, . . . , T and `, j = 1, . . . , L:

[q`
t]` = [qt]`, and [q`

t]j = 0 if ` 6= j,

where we use [x]i to denote the i-the entry of the vector x. Thus, each member ` consumes
only two goods: the exclusive `-th good (of which the individual consumption is observed
by construction) and a share of the (L + 1)-th non-exclusive good (of which the individual
consumption is not observed). Our proof of Proposition 4 exploits this two-goods feature.
In particular, we can build on the original result of [10] to obtain the following conclusion.

4The proof of Proposition 4 is easily adapted.
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Proposition 4. Let S = {(pt, 0; qt, 0) , t = 1, ..., T} be a set of observations with L + 1
goods. Assume households with L members of which each member consumes exclusively one
of the goods. Then L-warp is equivalent to L-sarp.

Thus, if L (out of L + 1) goods are exclusive, then transitivity of individual preferences
does not have empirical bite. As a result, the empirical analysis of multi-member consump-
tion behavior need not explicitly account for transitivity, which can substantially alleviate
the computational burden in practical applications. For instance, [5] introduced an integer
programming method to check consistency of a data set S with revealed preference axioms of
collective consumption models.5 When using this method for the L-sarp condition that we
consider here, the equivalence result in Proposition 4 implies that we can drop T 3 transitivity
constraints without affecting the conclusions of the analysis. Given that integer program-
ming is often time consuming, this may considerably facilitate the empirical analysis when
T gets large.

4. Conclusion

We showed that, in general, the equivalence between warp and sarp for 2 goods does not
generalize to L-warp and L-sarp for L+1 goods. As such, our results describe the settings
in which transitivity of the preferences can be meaningfully tested for household/groups
with L members that take Pareto optimal decisions. By contrast, the equivalence between
L-warp and L-sarp does hold for L + 1 goods if each of the L household members is the
exclusive consumer of one good (as in the collective labor supply setting of [7]). In that case,
transitivity does not generate empirical bite. This can substantially facilitate the empirical
revealed preference analysis in practical applications.
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Appendix

Proof of Proposition 1

To show this result, we consider the following specification of feasible personalized quantities
and prices.6 For all t = 1, . . . , T, i = 1, . . . , N, j = 1, . . . , L:

[Pi
t]j = 0, [qi

t]i = [qt]i and [qi
t]j = 0 if i 6= j;

6[x]i denotes the i-the entry of the vector x.
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for all t = 1, . . . , T, i = N + 1, . . . , N +K, j = 1, . . . , L:

[qi
t]j = 0, [Pi

t]i = [Pt]i and [Pi
t]j = 0 if i 6= j;

and, if L > N +K, for all t = 1, . . . , T, i = N +K + 1, . . . , L, j = 1, . . . , L:

[Pi
t]j = 0 and [qi

t]j = 0.

For this specification, one can easily verify that for each ` = 1, . . . L, there is at most one
good in the warp (respectively sarp) test. Given our reasoning in the main text, this shows
that L-warp (respectively L-sarp) is a vacuous condition in this setting.

Proof of Lemma 1

To prove part 1 of the lemma, we make us of the scalar products in Table 2.

p1q1 = 37.5 p2q2 = 10 p3q3 = 10 p4q4 = 11
p2q4 = 10.9 p3q2 = 10.1 p4q3 = 25

p1 (q2 + q3 + q4) = 37 p2 (q1 + q3) = 9.5 p3 (q1 + q4) = 9.86 p4 (q1 + q2) = 10

Table 2: Some relevant scalar products.

The numbers of Table 2 show that the following inequalities hold: p1q1 ≥ p1(q2 + q3 +
q4), p2q2 ≥ p2(q1+q3), p3q3 ≥ p3(q1+q4), and p4q4 ≥ p4(q1+q2). Assume that all consumption
is private and consider any specification of feasible personalized quantities q1

t and q2
t . Then,

p1q1 ≥ p1(q2 + q3 + q4) implies that there always exists at least one ` for which p1q
`
1 ≥

p1(q
`
1 + q`

2 + q`
3). Indeed, assume this is not the case, i.e. p1q

`
1 < p1(q

`
1 + q`

2 + q`
3) for

both ` = 1 and ` = 2. Adding up these last two inequalities then gives a contradiction:
p1q1 = p1q

1
1 + p1q

2
1 < p1(q

1
1 + q1

2 + q1
3) + p1(q

2
1 + q2

2 + q2
3) = p1(q2 + q3 + q4). Without losing

generality, let us assume that p1q
1
1 ≥ p1(q

1
1 + q1

2 + q1
3).

A similar reasoning applies to p2q2 ≥ p2 (q1 + q3) and p3q3 ≥ p3 (q1 + q4). However, since
p1q

1
1 ≥ p1(q

1
1 + q1

2 + q1
3), we can now conclude that it must be that p2q

2
2 ≥ p2(q

2
1 + q2

3) and
p3q

2
3 ≥ p3(q

2
1 + q2

4). Indeed, otherwise we would have feasible personalized quantities that
lead to a sarp rejection for ` = 1. Note that these inequalities imply that 2R2

03 and 3R2
04,

meaning that 2R24.
Finally, using the same argument once more for p4q4 ≥ p4 (q1 + q2), we can conclude

that any specification of feasible personalized quantities leads to a rejection of 2-sarp. We
always obtain a rejection of sarp for either ` = 1 or ` = 2. To finish the proof of part 1,
we have to note that exactly the same reasoning holds if all goods are public (or even any
intermediate case with both private and public goods).

To prove part 2 of the lemma, we need to give one specification of feasible personalized
quantities that satisfies 2-warp, and another specification of feasible personalized prices that
satisfies 2-warp.

For the private case, let us consider the specification of feasible personalized quantities
in Table 3.
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q1
1 = (5, 0, 0) q2

1 = (0, 0, 0)
q1
2 = (0, 0, 0) q2

2 = (0, 5, 0)
q1
3 = (0, 0, 0) q2

3 = (0, 0, 5)
q1
4 = (0, 0, 0) q2

4 = (4, 3, 1)

Table 3: Values of q1
t and q2

t for t = 1, 2, 3, 4.

For this specification we obtain the scalar products in Table 4, which allow us to conclude
that 2-warp is satisfied.

p1q
1
1 = 37.5 p2q

1
1 = 5 p3q

1
1 = 1 p4q

1
1 = 5

p1q
1
2 = 0 p2q

1
2 = 0 p3q

1
2 = 0 p4q

1
2 = 0

p1q
1
3 = 0 p2q

1
3 = 0 p3q

1
3 = 0 p4q

1
3 = 0

p1q
1
4 = 0 p2q

1
4 = 0 p3q

1
4 = 0 p4q

1
4 = 0

p1q
2
1 = 0 p2q

2
1 = 0 p3q

2
1 = 0 p4q

2
1 = 0

p1q
2
2 = 2.5 p2q

2
2 = 10 p3q

2
2 = 10.1 p4q

2
2 = 5

p1q
2
3 = 2.5 p2q

2
3 = 4.5 p3q

2
3 = 10 p4q

2
3 = 20

p1q
2
4 = 32 p2q

2
4 = 10.9 p3q

2
4 = 8.86 p4q

2
4 = 11

Table 4: Scalar products for the private case.

Similarly, for the public case, we consider the specification of feasible personalized prices
in Table 5.

P1
1 = (7.5, 0, 0) P2

1 = (0, 0.5, 0.5)
P1

2 = (0.2, 0.1, 0.2) P2
2 = (0.8, 1.9, 0.7)

P1
3 = (0.2, 0.1, 0.1) P2

3 = (0, 1.92, 1.9)
P1

4 = (1, 0, 0) P2
4 = (0, 1, 5)

Table 5: Values of P1
t and P2

t for t = 1, 2, 3, 4.

For this specification we obtain the scalar products in Table 6, which allow us to conclude
that 2-warp is satisfied.

P1
1Q1 = 37.5 P1

2Q1 = 1 P1
3Q1 = 1 P1

4Q1 = 5
P1

1Q2 = 0 P1
2Q2 = 0.5 P1

3Q2 = 0.5 P1
4Q2 = 0

P1
1Q3 = 0 P1

2Q3 = 1 P1
3Q3 = 0.5 P1

4Q3 = 0
P1

1Q4 = 30 P1
2Q4 = 1.3 P1

3Q4 = 1.2 P1
4Q4 = 4

P2
1Q1 = 0 P2

2Q1 = 4 P2
3Q1 = 0 P2

4Q1 = 0
P2

1Q2 = 2.5 P2
2Q2 = 9.5 P2

3Q2 = 9.6 P2
4Q2 = 5

P2
1Q3 = 2.5 P2

2Q3 = 3.5 P2
3Q3 = 9.5 P2

4Q3 = 25
P2

1Q4 = 2 P2
2Q4 = 9.6 P2

3Q4 = 7.66 P2
4Q4 = 8

Table 6: Scalar products for the public case.
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Proof of Proposition 3

Take L ≥ 3. We start with the dataset S from example 1 and we add goods 4, 5, . . . , L+1 and
observations 5, 6, . . . , L+2 to it. The quantities for goods 4, 5, . . . , L+1 are 0 in observations
1, 2, 3 and 4 and the corresponding prices in these observations are ε < 0.14

L
. It can be checked

that in this case the following inequalities hold: p1q1 > p1(q2 + . . . + qL+2), p2q2 > p2(q1 +
q3+q5+. . .+qL+2), p3q3 > p3(q1+q4+q5+. . .+qL+2) and p4q4 > p4(q1+q2+q5+. . .+qL+2).

For each observation t = 5, 6, . . . , L + 2, it is the case that qt = (0, . . . , 0, 1, 0, . . . , 0),
with the non-zero quantity for the (t − 1)th good. The corresponding prices are pt =
(ε, . . . , ε, 1, ε, . . . , ε). Again, it can be checked that ptqt > pt(q1 + . . .+ qt−1 + qt+1 + qL+2).

A similar reasoning as in Lemma 1 then shows that this dataset does not satisfy L-
sarp. Personalized quantities or prices can be found as follows. Assign all goods (prices)
of observations 1, 2, 3 and 4 to members 1 and 2 as in the original examples. Furthermore,
assign all goods and prices) of observation k ≥ 5 to member k − 2 (with k = 5, . . . , L+ 2).

Proof of Proposition 4

Clearly, if S is a data set that satisfies L-sarp, then it also needs to satisfy L-warp. So we
only need to prove the reverse statement. Let S be a data set that satisfies L-warp. This
means that there exist feasible personalized quantities q`

t such that for each ` = 1, . . . , L
the data {(pt,q

`
t), t =, 1, . . . , T} satisfies warp. By construction, all entries of q`

t are zero
except for the `-th and L+1-th entries. Clearly, all the zero entries are irrelevant for checking
consistency with warp. Therefore, we can use [10]’s result to conclude that, for each member
`, the corresponding sarp condition is met, and thus that S satisfies L-sarp.
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