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Introduction 
 
The National Malaria Strategy was developed in 2002 covering the period up to 2008 (MoHSS, 2005). At 
the time the strategy was developed, malaria accounted for over 600,000 clinical cases each year and 
was thought to contribute to 15% of all childhood deaths. Case burdens have varied between years with 
important epidemics in 1996/97 and 2000/01. The strategy largely followed recommendations made by 
the Roll Back Malaria movement, focussing on effective, prompt treatment of clinical episodes, the 
prevention of risks through the use of combined vector control methods including insecticide treated 
nets (ITN) and indoor residual house-spraying (IRS) and the promotion of intermittent presumptive 
treatment of infections among pregnant women; and the detection and prevention of epidemics.  
 
There has historically been a large within country variation in malaria risk. Since 1996 malaria case 
reporting from health facilities located in Kara, Hardap, Khomas, Omaheke and Erongo were less than 10 
cases per 1000 population per year (WHO, MoHSS, 1996). In the development of the national malaria 
strategies for Namibia in 2002 the MARA climate suitability model was used to highlight the unsuitability 
for transmission in these five most southerly provinces (Figure 1). This fuzzy logic suitability model 
however does not rule out transmission, it only provides an estimate of the likelihood that transmission 
will occur in a given location using various biological priors based on rainfall and temperature (Craig et 
al., 1999) and for the southern provinces it was “least” likely.  
 
Figure 1: MARA malaria risk map used to delineate risk areas in the Namibian National Malaria Strategy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The main rainy season in Namibia runs from November to April and peaks in February-March.  However, 
the total precipitation is extremely variable from year-to-year. Consequently the incidence of malaria in 
Namibia is acutely seasonal and rainfall patterns affect within and between year variations in malaria 
disease burden. All three dominant African vectors exist within Namibia: Anopheles arabiensis, An. 
gambiae s.s and An. funestus; however Anopheles arabiensis is the most ubiquitous and both An. 
gambiae ss and An. funestus are thought to have declined in their contribution to transmission following 
the wide-scale use of IRS.  
 



5 
 

In recent years there has been a decline in malaria case incidence and Namibia has joined neighboring 
southern African countries in considering a sub-regional effort to aim for elimination. In planning for a 
revised national ambition from a stated goal in 2002 “… to prevent deaths and reduce illness, social and 
economic losses due to malaria through progressive improvement and strengthening of local and 
national response capabilities” (MoHSS, 2005) to one encompassing elimination demands a very careful 
understanding of the spatial extents and intensity of transmission today. The purpose of the present 
report is to use all available evidence to provide an informed delineation of possible malaria risks 
nationwide and use these data to guide immediate and medium term priorities for malaria risk mapping 
to support revised national control ambitions.  
 
There are 34 health districts across 13 regions of Namibia (Figure 2). These health reporting units are 
used in this report as part of health information system assemblies and definitions of risk. Because 
Omaheke has only one health district and is large we have split this across the middle for purposes of 
data assembly – see Section x. 
 
Figure 2: Health regions and districts in Namibia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Defining human settlement and population density 
 
Imperative to any malaria risk modeling exercise is an appreciation of where the human population lives 
in relation to transmission risk. The MAP team have worked with others in recent years to develop 
higher resolution human settlement maps as part of the Global Rural Urban Mapping Project (GRUMP) 
(http://sedac.ciesin.org/gpw/). Since 2008 MAP has continued this work by using multiple sources of 
national land surface use, census and point settlement data to improve the resolution of population 
mapping in Africa (http:// www.afripop.org). Through the provision of more spatially configured data on 
where people live it has been possible to combine interpolated modeling techniques to improve the 
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spatial population mapping of Namibia as part of the current malaria mapping exercise. The approaches, 
input data and results of this work are described below. 
 
The GlobCover Land Cover product (GlobCover) was downloaded from the European Space Agency 
website (http://ionia1.esrin.esa.int/). This 300 meters resolution land cover dataset was derived from a 
time-series of Medium Resolution Imaging Spectrometer (MERIS) images acquired from December 2004 
to June 2006 (Arino et al., 2007; 2008). GlobCover is compatible with the UN Land Cover Classification 
System (LCCS). This allows easy aggregation of LC classes based on a hierarchy of LC class detail, and 
allows comparison of LC classes across countries and regions. The 47 individual classes were aggregated 
to a more generic 10 classes. In addition, various other spatial datasets such as administrative 
boundaries, towns and settlements point locations, health facilities and schools locations, transport 
networks, etc. were obtained to aid testing and accuracy assessment. A classification of the finest 
administrative units (enumeration areas) into urban or rural categories was used in combination with a 
dataset depicting urban and settlement polygon outlines from detailed imagery provided by 
GeoTerraImage Consultancy. This dataset was principally derived from 2005 Landsat imagery, developed 
using conventional on-screen interpretation and hierarchical clustering techniques, often involving the 
use of area-specific geographic masks. The GeoTerraImage Consultancy also provides industrial area 
delimitations for the main cities. 
 
2001 census data were available for 4072 enumeration areas (EA) level across with an average spatial 
resolution of 14.3 km2. The census population count data were adjusted forward to estimated 2010 
levels using separate UN urban and rural growth rates taken from the UN World Urbanization Prospects 
Database, 2007 version: http://esa.un.org/unup/. 
 
The GlobCover dataset was ‘refined’ to accommodate the more accurate information on settlements 
extent derived from Landsat. GlobCover was first re-sampled to 100 m spatial resolution. The urban 
class, which typically overestimates settlement extent size, was then removed and the surrounding 
classes expanded equally to fill the remaining space. The Landsat-derived settlement polygons were 
then overlaid onto the ‘urban class deprived’ land cover map and land covers beneath were replaced. 
Newly defined settlement pixels belonging to the EAs classified as ‘urban’ were added as ‘urban’ class, 
whereas other settlement pixels were classified as ‘rural settlement’. The Landsat-derived industrial 
area delimitations were also overlaid onto land cover data to define an industrial land cover class. This 
produced a refined 100 x 100 m land cover dataset. 
 
The refined land cover data and 2001 enumeration area census data were then used to define per land 
cover class population densities. The average population density of one specific land cover class was 
calculated based on EAs that record this land cover class for the majority of their pixels. These per land 
cover class densities were then used as weightings to re-allocate populations within Namibian EAs. Per-
pixel population densities were adjusted to match the 2001 census data. In one EA, the sum of per-pixel 
population counts is therefore equivalent to census population data. An estimate of population in 2010 
was produced based on UN rural and urban growth rates for the 2001-2010 period: 0.63% for rural areas 
for 2001-2005 and 0.40% for 2005-2010, and 3.04% for urban areas for 2001-2005 and 2.91 for 2005-
2010. The 100x100m gridded population data produced are not projected, but are referenced by 
geographic WGS84 coordinates. The resulting modelled 100x100m interpolated maps of the human 
population settlement and density are shown in Figures 3a and angle planed in Figure 3b. 
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Figure 3a: Population distribution map for Namibia showing numbers of people residing in each 100 x 100 metre 
grid square. Close-ups show detail around (a) Rundu and (b) Windhoek.; Figure 3b = planed version 
 

   

 
 
 

Defining unstable transmission in Namibia 
 
As part of global mapping work we have presumed that outside of Africa unstable malaria is represented 
by an incidence of confirmed P. falciparum or P. vivax malaria cases of < 1 per 10,000 population p.a. 
(Hay et al., 2009; Guerra et al., 2008; 2010). This is 10-fold more conservative than the metric used by 
WHO in their schema for countries transitioning from stable endemic control to elimination (<1 per 1000 
people p.a.; RBM, 2008). MAP has elected to use a stricter criterion recognizing the difficulties ensuring 
precision of reliable case-incidence recording between countries and following the revisions adopted in 
later years of the Global Malaria Eradication Program that also recognized the health system 
inaccuracies and errors in defining 1 per 1000 cases (Swaroop et al., 1966; Ray & Beljaev, 1984; Yekutiel, 
1960). At a global level MAP additionally uses aridity to down-regulate areas where reported case 
incidence is ≥ 1 case per 10,000 population p.a. to unstable conditions and those where case incidence is 
< 1 case per 10,000 population p.a. to malaria free. This approach has proven valuable in areas where 
deserts bisect administrative areas and where populations are located on the margins of an 
administrative area in less arid areas, thus improving the resolutions of risk across the Sahelian regions 
of Africa, the Middle East, Northern Asia and the Atacama region in the Americas (Guerra et al., 2008; 
2010). We have therefore attempted to apply these approaches to the Namibian context using 
combinations of Health Information System (HIS) data and remotely sensed measures of aridity derived 
from earth orbiting satellites.    
 
Malaria HIS data 2005-2009 
 
It is important first to define come of the caveats of using routine malaria health statistics. Malaria case-
reporting data often suffer a number of problems for defining risk. With few exceptions across malaria 
endemic countries, fevers or other malaria-like syndromes are often self-medicated and may resolve 
regardless of cause before reaching formal health systems. Inaccurate diagnoses might be used to 
report disease rates, often inflating risks (Chandramohan et al., 2002; Amexo et al., 2004; Koram & 
Molyneux, 2007). These diagnosis errors may be compounded through inadequate and incomplete 
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national reporting systems (Chilundo et al., 2004; Gething et al., 2006). However, health service use in 
Namibia is thought to be high relative to other sub-Saharan African countries (Unger et al., 2006). 
Nevertheless, until recently most cases of malaria are diagnosed on clinical grounds alone (MoHSS, 
2005). Both poor diagnosis (over-reporting) and poor use of services (under-reporting) may compound 
to provide errors and bias in the use of routine statistics. Despite these caveats MAP and WHO default 
to using these data in the cartography of malaria risk worldwide and often without any appreciated on 
the scale or sources of bias and error. Here we have an opportunity to be more precise in the estimation 
of case-incidence despite incompleteness in the data sources from all reporting facilities, something not 
possible for other countries.  
 
Assembling routine Health Information System (HIS) data 
 
We have assembled monthly out-patient reports from health facilities across Namibia provided as part 
of routine reporting between January 2005 and December 2009. Of the 458 health facilities available on 
the national health facility database that provide out-patient services (i.e. excluding VCT clinics), 126 
(27.5%) did not submit any returns to the HIS database between 2005 and 2009 (Table 1). Of those 
submitting any return during this period five (1.5%) could not be spatially positioned. Of the remaining 
327, a total of 5,200 (27%) months of information was not available from a possible 19,620 facility-
months and 36 (11%) facilities did not provide information for more than 30 months for the observation 
period. For those facilities reporting ≥ 12 months of data (371) we have computed the total numbers of 
“positive” months, i.e. where malaria cases were reported, as a proportion of all reporting months for 
each facility. The range of percentage months between 2005 and 2009 where presumed clinical cases of 
malaria were reported are shown in Table 1 and Figure 4. There was a strong secular trend in the data 
with evidence of declining suspected clinical malaria since 2005 and most marked in 2008 and 2009 
(data not shown).  
 
Table 1: Summary of HIS presumed malaria case reporting 2005-2009 
 
Province HF; never reporting; 

reporting but not 
positioned; reporting and 

positioned 

Number of facilities 
reporting ≥30/60 
months (%of all 

facilities) 

Proportion of months 
with malaria cases 

among facilities reporting 
 ≥12/60 months 

Karas 31; 13; 0; 18 (58%) 18 (58%) 42.2% (n=18) 
Hardap 21; 5; 0; 16 (76%) 16 (76%) 37.8% (n=16) 
Khomas 43; 31; 1; 11 (26%) 4 (9%) 100.0% (n=9)* 
Erongo 48; 29; 0; 19 (40%) 4 (8%) 89.1% (n=11) 
Omaheke 18; 5; 0; 13 (72%) 12 (67%) 45.6% (n=13) 
Otjozondjupa 30; 9; 0; 21 (70%) 21 (70%) 66.1% (n=21) 
Kunene 31; 2; 0; 29 (94%) 27 (87%) 81.2% (n=29) 
Omusati 54; 5; 1; 48 (89%) 39 (72%) 79.2% (n=48) 
Oshana 26; 8; 1; 17 (65%) 17 (65%) 59.1% (n=17) 
Ohangwena 36; 4; 2; 30 (83%) 30 (83%) 100.0% (n=30)* 
Oshikoto 23; 2; 0; 21 (91%) 20 (86%) 94.8% (n=21) 
Kavango 63; 9; 0; 54 (86%) 53 (84%) 98.2% (n=54) 
Caprivi 34; 4; 0; 30 (88%) 30 (88%) 97.1% (n=30) 
Total 458; 126; 5; 327 (71%) 291 (64%) 85.8% (n=317) 
*Not an indication of high risk, simply every reporting month was a month with a case 
 
The HIS data on suspected malaria case reporting 2005-2009 demonstrate some of the limitations of 
using routine health system data; over ¼ of facilities had not submitted any malaria statistics between 
2005 and 2009 and reporting facilities did not report all possible months in this interval. The highest 
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under-reporting rates were in the southern provinces where we are least certain about transmission of 
malaria. Nevertheless there are some observations that can be made that might help delineate areas of 
low/unstable transmission. The most southerly provinces reported the largest number of months 
without a single suspected malaria case (Table 1; Figure 4). Those facilities with cases of suspected 
malaria every reported every month are those located in the most northern districts along the Angolan 
border. This broad pattern conforms to national impressions of risk however it should be highlighted 
that risks of clinical case presentation to facilities across the entire country has been documented.  
 
Figure 4: Distribution of facilities reporting months of cases of suspected malaria as a percentage of reporting 
months between 2005 and 2009 [Dark red are facilities with every reporting month a malaria case was reported; 
Green are facilities where no case was reported among all reporting months] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Defining case “incidence” 
 
We computed an “incidence” measure for suspected malaria cases reported between January 2008 and 
December 2009, to represent a more contemporary measure of risk. This period corresponds to when 
diagnostic strategies were strengthened and supported as part of improved case-management (NVDCP, 
2009) and covers the most recent period that covers the national malaria indicator survey (described in 
section x). We selected only facilities that reported more than 12 of the 24 month observation period. 
This resulted in 312 facilities providing records for analysis. We expressed the total number of cases per 
fraction of a complete year of observation by using the months of reported cases per 24 month time-
series. The data series represented a total of 262,595 suspected/and confirmed malaria cases over 24 
months (note it was not possible to distinguish confirmed from presumed cases). The longitude and 
latitude of each facility was then used to identify a 5x5km grid around each facility and extract 
population totals using the interpolated population density model described in Section x. Evidence from 
other studies in Africa suggests this is a maximal catchment for out-patient service use (Akin & 
Hutchinson, 1999; Esnor & Cooper, 2004; Noor et al., 2006). The extracted population denominator was 
used to compute an annualized incidence of OPD presentations of suspected malaria y multiplying by 
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the decimal number of years where data were reported to provide a person-years of observation (total 
across 312 sites = 1,901,483 person years at risk in catchment areas). The summed values for each 
district within each region are shown in Table 2 (with the adjusted division for Omaheke region) and the 
categorical ranges of population-adjusted incidence per 10,000 people per annum are shown in Figure 5.     
 
Using a criteria of ≥ 1 case per 10,000 population as indicative of stable transmission, 289 (93%) of the 
312 facilities shown in Figure 5 were within this margin of risk and only 23 facilities were less than 1 case 
per 10,000 population located in Karas, Hardap and Southern parts of Kunene. The averaged incidence 
from facilities located in Karas and Hardap were < 1 per 10,000 p.a. Using a WHO definition of 1 case per 
1000 population encompassed 282 (90%) facility-locations and classified parts of Kunene and Oshikoto 
provinces as unstable transmission.  
 
Proportion of presumed malaria cases that are parasitologically confirmed 
 
Between February 10th and March 20th 2010 a form was sent to health facilities located in the Northern 
provinces (Caprivi, Kavango, Kunene, Ohangwena, Omaheke, Oumsati, Oshana, Oshikoto and 
Otjozondjupa). Staff at each facility were requested to enter how many suspected cases of malaria they 
had diagnosed by month for 2009, those patients tested for malaria and those who showed evidence of 
infection. It was not possible to distinguish those who had been tested using microscopy versus the 
widely distributed Rapid Diagnostic Test (RDT), Paracheck Pf®. However it is felt that the majority (>90%) 
of the diagnostic tests performed were with the RDT. Information was returned for 273 facilities located 
in these provinces (an estimated coverage of 87%); six facilities did not suspect or test anyone for 
malaria. Of the remaining 268 facilities a total of 134,366 suspected malaria cases were seen in 2009 
and 90,835 (68%) were tested for malaria. Among those tested 9,893 (10.9%) were reported as having a 
positive test result. Table 3 and Figure 6 show the distribution of tested and positive cases by province 
and district among the 273 sampled facilities in the north of Namibia.  
 
Figure 5: Distribution of 312 facilities where more than 12 months data between 2008 and 2009 where 
interpolated case burdens were used to compute incidence within a 5km catchment; dark red = incidence >= 
1000 per 10,000 population p.a. through to green = zero incidence (see legend)  
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Table 2: Computed incidence of suspected malaria in all age groups per 1000 population p.a. for 312 facilities 
with semi-complete data 2008-2009 
 
 

Province / District                            HF reporting 
more than 12 

months 
between Jan 

2008 and 
December 

2009 

Total cases 
adjusted for 

missing 
months 2008-

2009 

Total estimated 
population over two 

years within 5km of the 
facilities used to 

compute case numbers 

Overall incidence 
per facility per 

10,000 population 
within catchment 

p.a. 

Caprivi Katima 29 33,627 93,598 3,592.7 
Erongo Omaruru 1 47 6,471 72.6 
  Swakopmund NA NA NA NA 
  Usakos NA NA NA NA 
  Walvis Bay NA NA NA NA 
Hardap Aranos 4 0 7,927 0.0 
  Mariental 7 28 9,160 30.6 
  Rehoboth 5 3 1,238 24.2 
Karas Karasburg 6 17 12,957 13.1 
  Keetmanshoop 7 12 43,715 2.7 
  Luderitz 6 71 45,921 15.5 
  Oranjemund NA NA NA NA 
Kavango Andara 9 8,842 28,814 3,068.6 
  Nankudu 14 21,826 29,301 7,449.0 
  Nyangana 10 5,745 21,774 2,638.5 
  Rundu 21 85,083 218,023 3,902.5 
Khomas Windhoek 1 0 248,597 0.0 
Kunene Khorixas 8 90 33,766 26.7 
  Opuwo 16 2,800 29,689 943.1 
  Outjo 4 224 31,896 70.2 
Ohangwena Eenhana 11 5,840 29,400 1,986.4 
  Engela 17 27,985 183,562 1,524.6 
  Kongo 5 3,406 6,142 5,545.0 
Omaheke Gobabis 1 7 56 4,011 139.6 
  Gobabis 2 9 82 41,803 19.6 
Omusati Okahao 11 9,727 35,897 2,709.7 
  Oshikuku 28 23,161 139,056 1,665.6 
  Outapi NA NA NA NA 
  Tsandi 9 6,036 20,779 2,904.9 
Oshana Oshakati 20 9,529 218,281 436.5 
Oshikoto Onandjokwe 16 16,044 65,773 2,439.3 
  Tsumeb 6 794 52,091 152.4 
Otjozondjupa Grootfontein 8 715 87,435 81.8 
  Okahandja 3 133 70,911 18.8 
  Okakarara 5 321 16,388 195.9 
  Otjiwarongo 9 351 67,109 52.3 
Total   312 262,595 1,901,483 1,381.0 

 
NA = Not Available 
 
For health districts in Omaheke we have spilt Gobabis into two; Gobabis 1 to the North with a total of 7 facilities and Gobabis 2 to the South 
with 9 facilities and calculated incidence for each region separately 
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Table 3: Number of suspected, tested and confirmed malaria cases by region in 2009 
 

Province / District                           HF returning 
information in 2009 

on malaria case 
loads and 

diagnostics 

Number tested  Positivity rates 
among those 

tested (%) 

Caprivi Katima 29 5,226  18.3 

Kavango Andara 9 3,733  7.4 

  Nankudu 13 3,648  6.7 

  Nyangana 9 2,428  28.7 

  Rundu 23 8,197  14.3 

Kunene Khorixas 8 86  1.2 

  Opuwo 16 848  63.6 

  Outjo 4 50  2.0 

Ohangwena Eenhana 10 3,748  10.1 

  Engela 17 9,749  9.4 

  Kongo 4 1,411  37.5 

Omaheke Gobabis 16 96  11.5 

Omusati Okahao 10 6,407  6.7 

  Oshikuku 20 6,889  6.4 

  Outapi 10 15,740  12.5 

  Tsandi 8 5,409 10.4 

Oshana Oshakati 20 9,107  3.9 

Oshikoto Onandjokwe 16 5,970  4.5 

  Tsumeb 6 628  4.5 

Otjozondjupa Grootfontein 8 541  10.9 

  Okahandja 5 111  2.7 

  Okakarara 7 233  7.3 

  Otjiwarongo 5 580  6.2 

Total   273 90,835  10.9 
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Figure 6: Distribution of RDT/Slide positivity among the Northern provinces in 2009  
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Positivity corrected incidence by district 
 
Given that not all suspected malaria cases are true malaria unless confirmed through the use of 
microscopy or RDTs, the 2009 data (Table 3) re-assembled through a special survey provides an 
opportunity to correct the averaged data nationwide between 2008 and 2009 (Table 2). At this stage we 
have made several assumptions to impute neighbouring data to where other data are not available. The 
assumptions used and corrections made are provided as footnotes to Table 4. Although less than perfect 
these extrapolations seemed reasonable within the ranges of the data and allow a more complete 
picture of risk across all the 23 health districts across the 9 malarious regions of Namibia. The one 
difficult imputation is the assumption that there is no risk in Windhoek district and its surrounds. This 
may not be true but it seems likely that the urban extent that constitutes Windhoek will have 
exceptionally low risks of vector breeding and transmission. However, imported cases from 
neighbouring areas are likely to be seen at clinics in Windhoek.    
 
Using a definition of unstable transmission as represented by a case incidence of < 1 per 10,000 
population p.a. and under the assumptions described above it seems reasonable to presume that 
malaria case incidence is unstable in the following regions: Southern Kunene, Khomas, Erongo, Karas 
and Hardap (Figure 7). This is no surprise to those working on malaria in Namibia and conforms to 
previous expert opinion, however the approach taken here has a semi-quantitative evidence base using 
data. Using WHO criteria of <1 case per 1000 population both Otjozondjupa and Omaheke would be 
classified as unstable. However given the vagaries of the reporting systems and approaches taken we 
prefer to classify these areas as stable transmission.  
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Table 4: Computed incidence of suspected malaria in all age groups per 1000 population p.a. per health district 
 

Province / District                            Overall incidence per 
facility per 10,000 
population within 

catchment p.a. 

Slide positivity 
correction 

Corrected incidence per 
10,000 population p.a. 

Caprivi Katima 3,592.7 0.183 655.8 

Erongo1 Omaruru 72.6 NA 0.91  
  Swakopmund NA NA 0.91  
  Usakos NA NA 0.91  
  Walvis Bay NA NA 0.91  
Hardap Aranos 0.0 -- 0.00  
  Mariental2 30.6 NA 0.32 

  Rehoboth2 24.2 NA 0.22  

Karas3 Karasburg 13.1 NA 0.13  
  Keetmanshoop 2.7 NA 0.033  
  Luderitz 15.5 NA 0.23  

  Oranjemund4 10.44 NA 0.13  
Kavango Andara 3,068.6 0.074 228.5 
  Nankudu 7,449.0 0.067 498.2 
  Nyangana 2,638.5 0.287 756.3 
  Rundu 3,902.5 0.143 559.9 
Khomas Windhoek Presumed risk free NA 0.00 
Kunene Khorixas 26.7 0.012 0.3 
  Opuwo 943.1 0.636 599.5 
  Outjo 70.2 0.020 1.4 
Ohangwena Eenhana 1,986.4 0.101 200.9 
  Engela 1,524.6 0.094 143.2 
  Kongo 5,545.0 0.375 2078.9 
Omaheke Gobabis 1 139.6 0.250 34.9 
  Gobabis 2 19.6 0.047 0.9 
Omusati Okahao 2,709.7 0.067 182.7 
  Oshikuku 1,665.6 0.064 106.4 

  Outapi5 2426.75 0.125 303.35  
  Tsandi 2,904.9 0.104 303.4 
Oshana Oshakati 436.5 0.039 16.9 

Oshikoto Onandjokwe 2,439.3 0.045 108.7 
  Tsumeb 152.4 0.045 6.8 

Otjozondjupa Grootfontein 81.8 0.109 8.9 
  Okahandja 18.8 0.027 0.5 

  Okakarara 195.9 0.073 14.3 
  Otjiwarongo 52.3 0.062 3.2 

1. For health districts in Erango we’ve assumed an average incidence of the Omaruru district (72.6 per 10,000 p.a.) and a suspected positivity rate 
similar to the southern, neighboring health district in Kunene, Khorixas of 1.2%. 

2. The nearest possible corroborating health district for positivity rates among suspected cases is Omaheke, as seen in Figure x those in the 
southernmost reaches of this district bordering Hardap all had zero infection rates. We have therefore conservatively elected to apply a positivity 
rate of 1% to those suspected malaria cases in Mariental and Rehoboth districts of Hardap. 

3. In the absence of any facility positivity data from Karas region we have applied a positivity rate as done in Hardap of 1% to each of the annualized 
case incidence estimates for the three health districts in Karas 

4. No data on case incidence from Oranjemund so used average of other three health districts in Karas 
5. No routine HIS data were available to compute incidence for Outapi health district in Omusati, average of the other 3 districts used  
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Figure 7: Classifications of stable and unstable transmission based on adjusted case incidence data and 
assumptions described in the text. 
 

 
 
Aridity 
 
Following approaches used at a global level by MAP we now consider the effects of aridity on the 
administrative region classifications of stable and unstable case-incidence. Arid conditions restrict 
Anopheles development and survival (Shililu et al., 2004). Limited surface water reduces the availability 
of water-bodies for oviposition. Moreover, low ambient humidity in arid environments further affects 
egg and adult survival through the process of desiccation (Gray & Bradley, 2005). The ability of adult 
vectors to survive long enough to contribute to parasite transmission and their pre-adult stages to 
ensure minimum population abundance is, therefore, dependent on the levels of aridity and species-
specific resilience to arid conditions. To capture the influence of aridity on transmission we used the 
Enhanced Vegetation Index (EVI) derived from the bidirectional reflectance corrected MODerate-
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resolution Imaging Spectroradiometer (MODIS) imagery, available at ~1 km spatial high resolution (Hay 
et al., 2006). Temporal Fourier processed, monthly EVI images were used to develop an annualized 
annual surface between 2000-2005 (UNEP, 2006; Figure 8a). Suitability for transmission was defined for 
each 1x1 km pixel in an average year where EVI was higher than 0.1, used previously by Guerra et al. 
(2008) to represent biological requirements to complete vector development from egg to adult (Figure 
8b). This aridity mask does not completely rule out transmission in areas which have been classified as 
stable transmission because there may be pockets of very over-dispersed transmission due to man-
made water collection points and occasional human population movement transporting vectors and 
parasites (Bouma et al., 1996; Omer et al., 1968; 1970), but are likely to attenuate completely unstable 
transmission conditions where case incidence is already very low. Application of the aridity mask to 
down-regulate stable conditions defined by case incidence to unstable and unstable to risk free 
therefore provides a more refined criteria of the stable and unstable divide in transmission (Figure 9).  
 
Figure 8: a) EVI 2005-2009; b) selection of binned class of an average annual EVI of < 0.1 
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Figure 9: Aridity mask applied to case-incidence definitions of stable and unstable malaria 
 

 
 
 
Modelling transmission intensity within the margins of stable malaria 
 
Within the margins of presumed stable transmission shown in Figure 9, we anticipate a wide range of 
possible transmission intensities. Defining these ranges of transmission is important in the selection of 
suites of appropriate interventions (Hay & Snow, 2006). For example one would not promote 
intermittent presumptive treatment of infection in pregnant women where transmission intensity and 
subsequent infection prevalence is low. Diagnostics become less cost-efficient the higher the intensity of 
transmission and the higher the infection risks among fevers attending clinics. Furthermore, in stable 
endemic settings, where people are constantly exposed to repeated infections from birth, the important 
characteristic of P. falciparum is that only very few new infections result in death and the probability of 
dying is largely a function of age at first infection (transmission intensity) and age (acquired immunity). 
These features of immune regulated mortality result in a curvilinear relationship between mortality 
directly due to P. falciparum and parasite transmission intensity (Snow & Marsh, 2002). This form is 
complex and poorly defined but suggests that the risks of malaria mortality rise sharply with increasing 
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transmission intensity before reaching a plateau in areas where individuals may receive approximately 
10 new infections per year equivalent to parasite prevalence among children of between 40-50%. The 
implications of this relationship are important for the time-lines and public health ambitions of 
intervention policies such as treated nets and house-spraying that aim to reduce parasite transmission 
(Smith et al., 2009) and modeling disease burdens (Snow & Marsh, 2002).   
 
There are several measures of malaria transmission used in malaria epidemiology but by far the most 
ubiquitous and best understood in the parasite rate (proportion of surveyed individuals at one point in 
time that harbor malaria infection). This measure has been historically used as a marker of malaria 
endemicity (Metsellar & van Thiel, 1959), has been mathematically linked to other measures of 
transmission such as the Entomological Inoculation Rate (EIR) (Smith et al., 2005; 2007a) and the Basic 
Reproduction Rate of infection (R0) (Smith et al., 2007a) and has been used to define relationships 
between disease outcome and transmission intensity (Snow et al., 1997; Snow & Marsh, 2002). Perhaps 
most importantly models have been developed to infer the projected impact of changes in PfPR with 
time at varied levels of intervention coverage, notably insecticide-treated nets (ITN) (Smith et al., 2009). 
 
There are several important considerations when undertaking parasite prevalence surveys: a) the most 
informative age group are children and adolescents above 2 years of age (Smith et al., 2007b). 
Historically, prevalence was recorded in children aged 2-9 years to provide categorical definitions of risk 
from hypo- to holo-endemic transmission (Metsellar & van Thiel, 1959); b) Optimized sampling of 
infection prevalence should be powered by an estimate of point estimates and anticipated between 
community variance (Design Effect) - most national household sampling for malaria indicators use 
treated net coverage as the sampling reference point and therefore often result in surveys under-
powered to examine infection prevalence; and c) sampling of risk should ideally be repeated in time and 
space to capture the seasonal nature of transmission but at least sampled at the peak of expected 
transmission intensity. It is common for national household sample surveys to be conducted during dry 
seasons when roads are passable and households accessible. These survey times do not always 
correspond to peak malaria seasons. Other approaches to sub-national and national surveys are 
discussed in Section x. 
 
Namibian MIS 2009: Sampling and survey procedures 
 
In Namibia it was decided to undertake a Malaria Indicator Survey (MIS) as promoted by the Roll Back 
Malaria (RBM), Monitoring and Evaluation Reference Group (MERG) among the “malaria” districts in 
2009 (UNICEF, 2007). Previous national sample surveys, including the latest 2006 Demographic & Health 
Survey had not included bio-markers of infection and were undertaken at times of the year when there 
was little malaria and thus concerns about the reported usage figures for ITN, IPTp and anti-malarial 
treatment. Sample sizes for the 2009 MIS were defined based on precision around a presumed 40% IPTp 
and ITN coverage, a design effect of 2 and a 20% non-response rate. The design was a two-stage 
probability sampling among the nine most Northern provinces, allowing for precision between urban 
and rural and three MARA-malaria risk strata (Figure 1: malaria absent, epidemic prone and endemic). 
Multistage sampling within these strata from region, district, constituency to Primary Sampling Unit 
(PSU) and finally 80% of households within the PSU (c. 25 per PSU) resulted in the selection 120 PSU’s 
(29 Urban and 91 Rural) and 3,000 households. 
 
The survey was undertaken between April and June 2009. Field teams were trained over 6 days in survey 
procedures and comprised of two registered nurses, two enumerators and a driver per region, 
supervised by members of the NVDCP. All data were entered directly in the field using Personal Digital 
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Assistants. Ethical approval was provided by The Ministry of Health and Social Services Ethical Clearance 
Committee [Ethical approval number xxxx]. Each household member was asked permission to 
participate in the survey in a language they were familiar with and given the right to refuse. Finger prick 
blood samples were taken from every resident child below the age of five years whose parents or 
guardians provided informed consent located in all the sampled households within each PSU. However, 
in every fourth household every household member was asked to provide a finger prick blood sample 
for malaria parasitology. An RDT, Paracheck Pf®, was used to record infection at the time of the survey 
and thick and thin blood smears made for subsequent detailed parasitology. Despite multiple readings 
of the slides by microscopists at the Namibia Institute of Parasitology, the quality of slide preparation, 
staining, storage and deterioration of staining in transport limited detailed examination of infection 
from the field slides; only 11 of 4,582 slides read more than once were regarded as positive and it was 
decided to ignore the QA slide results. While Paracheck-Pf® has a documented false positive rate (Bell et 
al., 2005; WHO, 2009), due its oversensitive detection of circulating antigens several weeks after active 
infection, it does provide some indication of parasite exposure and therefore adds some value in 
particularly low transmission settings for defining community-level exposure.  
 
Namibian MIS summary of survey data 
 
Table 5 summarizes the data from the MIS survey. Overall prevalence among all age groups sampled in 1 
in 4 households across the 120 PSU’s was only 2.93%. More than 70% of PSU’s sampled showed no 
evidence of infection. In Oshikoto no one tested with an RDT showed evidence of infection. Under-five 
prevalence was similar to the prevalence described when measured in all age groups; no child was 
positive in Omaheke, Oshikoto and Caprivi regions. For the purposes for the present modelling and 
mapping work we have focussed on the samples taken among all ages in the 1:4 households sampled 
within each cluster. The spatial distribution of positive and negative households and aggregated cluster 
locations for all age surveys are shown in Figures 10a and 10b.  
    
Table 5: Summary of RDT positivity by region for households sampled for examination of all age-groups and 
households where only children less than five sampled. 
  
Province Clusters 

(PSU); 
households 
included in 

all-age 
testing 

RDT 
positive/Examined  
(% positive) all ages 

Number (%) 
clusters with 
no positive 

cases – all ages 

Number (%) of 
households 

with no 
positive cases 

– all ages  

All 
households 
sampled for 
children <5 

years 
Clusters; HH 

RDT 
positive/Number 
children sampled 
in all households 

with an U5  
(% positive) 

under fives only 
Omaheke 9; 67 21/249 (8.43%) 3 (33.3%) 54 (80.6%) 9; 56 0/85 (0.00%) 
Otjozondjupa 18; 105 1/347 (0.29%) 17 (94.4%) 104 (99.1%) 18; 98 2/167 (1.20%) 
Kunene 9; 74 4/231 (1.73%) 6 (66. 7%) 71 (95.9%) 9; 52 1/88 (1.14%) 
Omusati 14; 87 28/364 (7.69%) 8 (57.2%) 75 (86.2%) 14; 107 10/151 (6.62%) 
Oshana 12; 85 6/297 (2.02%) 8 (66.7%) 80 (94.1%) 12; 81 2/110 (1.82%) 
Ohangwena 14; 86 16/390 (4.10%) 8 (57.1%) 77 (89.5%) 14; 127 7/191 (3.67%) 
Oshikoto 10; 68 0/313 (0.00%) 10 (100.0%) 68(89.5%) 10; 70 0/97 (0.00%) 
Kavango 28; 213 19/926 (2.05%) 20 (71.4%)  201 (94.4%) 28; 228 8/343 (2.33%) 
Caprivi 6; 47 1/164 (0.61%) 5 (83.3%) 46(97.9%) 6; 54 0/64 (0.00%) 
       
Urban 28; 190 5/565 (0.88%)  24 (85.7%) 186 (97.9%) 28; 159 0/218 (0.00%) 
Rural 92; 642 91/2716 (0.34%) 61(66.3%) 590 (91.9%) 92; 714 30/1078 (2.78%) 
Total 120; 832 96/3281 (2.93%) 85 (70.8%) 776 (93.3%) 120; 873 30/1296 (2.32%) 
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Figures 10a: Clusters sampled in northern 9 regions during the 2009 MIS; Figure 10b: households sampled (all 
age groups). Green represents absence of infection and red presence of infection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling spatial interpolated infection prevalence across nine regions covered by the MIS 
 
Novel approaches to mapping malaria infection risk have been developed using principles of model-
based geo-statistics (MBG) (Hay et al., 2009; Noor et al., 2008; 2009; Gething et al., 2010; Clements et 
al., 2006; Vounatsou et al., 2009). These models are computationally complex but allow for the best 
estimates of infection risk interpolated across space derived from partial data and importantly allow for 
the definition of uncertainty. The models used for global models of P. falciparum infection risk mapping 
(Hay et al., 2009) we have adapted here to develop risk maps of malaria transmission intensity in the 
northern parts of Namibia in 2009. 
      
A fundamental concept behind analyzing geographic data is determining the presence of spatial 
dependence (Tobler, 1970). Spatial dependence simply means co-variation of properties within a 
geographic space driven by the principle that observations at proximal locations are more correlated 
(positively or negatively) than those at locations further away. There are a number of reasons for spatial 
dependence and but all generally relate to factors that lead to spatial correlation, causality or 
interaction (e.g. people who live in same neighborhood are more likely to be similar than those who live 
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in communities further away). Spatial dependence in data leads to the statistical problem of spatial 
autocorrelation which negates the conventional regression wisdom that observations at one location 
are independent of observations at a neighboring location often yielding unstable parameter estimates 
and unreliable significance results (Tobler, 1970; Isaacs & Srivastava, 1989).  
 
Geo-statistical techniques overcome this challenge by incorporating the spatial effects in the data 
analysis. However, not all data from different locations exhibit spatial dependence and before geo-
statistical techniques are used the data need to be explored for the presence of spatial structure or 
autocorrelation. To explore any data for spatial autocorrelation, the variogram, also commonly referred 
to as the semi-variogram, is used. The variogram is a graphical summary of spatial autocorrelation 
structure and has three parameters: the nugget (n) which is the height of the jump of the variogram at 
the Y-axis and is considered to represent the measurement error; the sill (s) which is limit of the 
variogram tending to infinity lag distances; and the range (r) which is the distance in which the 
difference of the variogram from the sill becomes negligible. The semi-variance (half the variance of 
data pairs) is shown on the Y-axis and increases with increasing separation distances or lag between 
data pairs shown on the X-axis. For data to be used to construct the variogram, their location must be 
defined explicitly i.e. they are provided with latitude and longitude coordinates.  
 
Variograms were constructed for the Namibian PfPR data to examine the presence of spatial 
autocorrelation in the data summarized as clusters (n=120) where all age groups were sampled using 
the variogram function and models were fit using variofit function in R (R version 2.10.1, the R 
foundation for Statistical Computation, http://www.r-project.org/ ). In all cases, an exponential model 
was fit to the variogram (Figure 11).  
 
Figure 11: Variogram and model fit for distribution of all cluster level PfPR data where all individuals were examined in each 
clusters (n=120) The X axis shows distance in degrees latitude and longitude while the Y axis shows semi-variance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The variograms of the PfPR data showed the presence of spatial structure in clusters with spatial 
correlation occurring generally up to 0.6 decimal degrees or the equivalent of circa 67 km at the 
equator.  
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The relationship of ecological and climatic covariates with PfPR 

 
A set of ecological and climatic covariates have traditionally been used in malaria mapping including 
temperature, rainfall, vegetation and distance to breeding sites (Craig et al., 1999; Omumbo et al., 
2005a; 2005b; Guerra et al., 2008; Noor et al., 2008; Noor et al., 2009 ). These covariates were identified 
and assembled from a variety of sources (Annex A) and were then categorized into plausible classes 
based on the observed statistical distribution of the covariates which were then extracted at each 
survey location using ArcGIS 9.2 (ESRI Inc., USA). To assess the effects of the covariates on observed 
PfPR a univariate binomial logistic regression model was implemented for each covariate with PfPR as 
the dependent variable in Stata/SE Version 10 (Stata Corporation, College Station, TX, USA). The results 
of the univariate analyses (Table 6) were used to determine an appropriate suite of covariates for 
inclusion in the Bayesian geo-statistical model. A covariate was considered to have met the inclusion 
criteria into the model if the Wald’s P-value was <0.20 when examined against PfPR as the outcome 
variable. Urbanization has been shown to limit the availability of optimum environments for the 
development of the malaria transmitting anopheline populations resulting in reduced vector density, 
biting rates and transmission intensity in many African countries (Trape & Zoulani 1987; Hay et al., 2005; 
Omumbo et al., 2005; Wang et al., 2006), therefore the Bayesian geo-statistical model has been set up 
to implicitly account for this covariate and therefore was not tested independently. 
 
Table 6: Univariate analysis results of urbanization against PfPR 
 
 Number of 

survey 
locations 

Mean (median) PfPR Univariate regression*: 
Odds Ratio (95% CI), P-value 

Median annual minimum temperature    
≤14°C 53 2.6 (0.0) Ref 
>14°C 67 3.0 (0.0) 1.17 (0.13, 10.53), 0.888 

Median annual maximum temperature    
≤30°C 53 2.1 (0.0) Ref 
>30°C 67 3.4 (0.0) 1.60 (0.16, 15.73), 0.686 

Average annual precipitation 
temperature 

   

≤40 mm 59 3.7 (0.0) Ref 
>40 mm 61 2.0 (0.0) 0.533 (0.56, 5.04), 0.584 

Average annual enhanced vegetation 
index 

   

≤0.2 49 3.4 (0.0) Ref 
>0.2 71 2.5 (0.0) 0.72 (0.08, 6.3), 0.767 

Median distance to water features    
≤47 km 59 3.0 (0.0) Ref 
>47 km 61 2.7 (0.0) 0.88 (0.10, 7.60), 0.906 

 

From the univariate analysis presented in Table 6 and the detailed description of the data in Annex A, all 
the covariates explored here did not qualify for inclusion into the Bayesian geostatistical model for 
predicting PfPR in Namibia. This is not to say these covariates aren’t important but probably reflects the 
overall small sample of clusters upon which to test these adequately. As such we have elected not to 
include covariates in this iteration of the model development, but with more data in space and time this 
may become more possible. The MBG therefore simply describes the spatial structure of the data.  
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Bayesian space-time models and use of covariates 
 
The model used for the modelling of spatial risks in Namibia was a spatial Bayesian generalized linear 
geo-statistical approach that provides the ability to predict values of a spatially continuous event, in this 
case PfPR, at un-sampled locations using combinations of the sampled data in space and time, and 
importantly allow for calculation of robust uncertainty estimates around model predictions. The 
underlying assumption is that the probability of prevalence at any survey location is the product of two 
factors: the time and location of the survey, modelled as a transformation of a space-time Gaussian 
random field. All cluster data were sampled among all age groups so no age-standardization was 
necessary resulting in predicted surface of PfPR among all ages. The Bayesian spatial-temporal model 
was implemented in two parts starting with an inference stage in which a Markov Chain Monte Carlo 
(MCMC) algorithm which was used to generate samples from the joint posterior distribution of the 
parameter set and the space-time random field at the data locations. This was then followed by a 
prediction stage in which samples were generated from the posterior distribution of PfPR at each 
prediction location on a 1×1 km grid which was further classified into the following PfPR categories: PfPR 
<1%; PfPR 1-4.99%; PfPR ≥ 5%. To provide a measure of uncertainty we developed coincidental maps of 
the standard deviation from the posterior mean prediction.  
 
Malaria risk classifications and estimations of populations exposed to risk 
 
The product of the MBG simulations for 2009 MIS model run is shown as continuous 1x1 km posterior 
predictions in Figure xx. These were subsequently binned into the four endemicity classes of PfPR and 
shown in Figure xx. The raster malaria endemicity maps were then overlaid on the 2010 projected high 
resolution population map described in detail in Section xx and the number of people in each 
endemicity class, overall and by region for 2010 was extracted using ArcGIS 9.2 Spatial Analyst tool and 
summarized in Table xx. 
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Caveats & Recommendations 
 
Here we tackle some more generic recommendations as they apply to the design of new national 
control ambitions, including elimination, and the more systematic surveillance of risk in Namibia.  
 

1. Value added through use of HIS malaria case reporting data: The data provided through 
routine HIS since 2005, while not perfect, have enormous value in defining risks of malaria. We 
have not applied model based geo-statistical techniques to these data, although we presume 
they will have spatial structure and lend themselves to geo-statistical interpolation (Gething et 
al., 2006). Combining underlying populations within a presumed catchment enables us to 
compute rates of suspected malaria clinic presentation and correct these in accordance with 
expected malaria positivity. It is clear that central reporting is incomplete and rapid surveys of 
retrospective data assembly were successful in filling in omissions for 2009. It would be valuable 
to explore these data further with more elaborate, time-space models and covariate 
assumptions. This is beyond the scope of the present exercise but something that is 
recommended for future investigation. Meanwhile efforts should be made to extend the 
retrospective survey to the southern provinces and include 2008 and the first half of 2010 and 
complete missing facilities and values in the areas further north. Omaheke region appears to 
have only one health district and this is a very large region with obvious differences in case 
incidence and fever positivity north to south; the result is that the entire region is weighted in 
favor of “stable” transmission by northerly facilities. It would be useful during future iterations 
of this risk model to divide this region into two. Using model based geo-statistical interpolation 
may be another approach that would use similarities between facilities to model case incidence 
in space without reference to regional or district boundaries. One caveat not included in the 
computation of case-incidence is the possible differences in formal health sector use for fevers. 
These data are available in various forms including the Namibian DHS in 2006-7 and the more 
recent MIS in 2009. Additional assemblies of service use patterns and semi-qualitative measures 
of catchment distances to different levels of the health system would add precision to the 
refined modeling of these data.  
 

2. HIS reporting of malaria in southern provinces: While case incidence is low in Karas, Hardap and 
Khomas suspected cases have been reported since 2005 and it would seem appropriate to begin 
to strengthen malaria case-reporting in the southern half of Namibia as an officially notifiable 
disease and each case investigated in more detail (including travel histories, precise residence 
and use of prevention and curative interventions). We mention this in the light of possible 
ambitions to systematically eliminate malaria in Namibia. Should this ambition continue to gain 
political traction the health systems will need to respond to enhanced surveillance of low risk, 
sporadic locally acquired infections - even within areas traditionally regarded as low 
transmission risk. It would seem appropriate to begin to build these systems of surveillance of 
rare infections in the south as soon as possible before migrating experience to the more 
Northern provinces as transmission intensity declines in these areas through effective control.  
 

3. Challenges for malaria elimination in Northern Namibia: Despite the caveats of the data 
presented and analyzed in this report there is one clear observation that will present challenges 
for an elimination agenda: the concentration of risks along the Angolan border. A recent 
adaptation of approaches taken here for Northern Namibia to model the distribution of malaria 
risk in Angola suggest that risks along the Namibian-Angolan border are low, parasite prevalence 
in children aged < 5 years below 15% (Gosoniu et al., 2010). However this model cam with much 
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uncertainty as there were only six clusters of data within 100 km of the border. Conversely from 
the Namibian side there is much more data and risks relative to the rest of Northern Namibia 
are high along the border. Future surveys of infection prevalence, whether school or 
community-based, should consider extending sampling either side of this border to more 
uniquely define the risks in this region. Human population movement is high across the border 
and An. arabiensis may travel up to 2km for a blood meal, both combine to suggest that while 
there is a national boundary this may be irrelevant for malaria transmission and the possibilities 
of either country reaching an elimination state.     
 

4. Limitations of MIS 2009: As the mapping exercise described in this report suggests large areas 
of Namibia where empirical data on the point prevalence of infection exist show zero 
prevalence. We need to be cautious in interpreting these data and some of these reservations 
are discussed here and in the following bullets. The sample sizes selected for the MIS were small 
relative to the prevalence of infection (the MIS was powered to detect between area differences 
in ITN use not infection). Inevitably the reports of zero prevalence by cluster and by household 
aggregates may well reflect the sample sizes used, 25 households per PSU and only 120 PSU’s. 
The sampling frame was conditional on providing enough power to show differences in 
intervention coverage by urban and rural classes and basic perceived malaria strata. The sample 
was not optimized for spatial weighting to provide sufficient spatial coverage of risk – this 
requires a different population-to-space sampling frame not traditionally used in MIS or other 
household sampling strategies. Inevitably the MIS data are single point estimate of risk, 
measured using an RDT, do not reflect the seasonal differences in risk but risks only among 
household members between May and June 2009. 

 
5. Measures of transmission intensity and markers of parasite exposure: RDT’s are useful 

contributions to household surveys. They are not perfect and tend to have a high false positive 
rate (WHO, 2009), particularly the Paracheck-Pf® (Bell et al., 2005; WHO, 2009). Attempting to 
reconcile true parasite presence using slides prepared in the field has proved difficult in various 
countries that have recently completed an MIS including Kenya, Liberia, Djibouti and Sudan. The 
staining, fixing and storage of slides demands a level of expertise and experience often not 
included in the staff recruited and trained for household surveys. An alternative method, that is 
less demanding and more cost-efficient, is confirming parasite presence among all RDT positives 
and a random pooled selection of negatives from the same cluster using Polymerase Chain 
Reaction (PCR) detection methods of species-specific parasite DNA extracted from filter papers. 
Preparation, labeling and storage of filter paper blood spots does demand some training but is 
easier than preparation of slides and can be automated in appropriately tooled laboratories 
(Corran et al., 2008). In addition these same filter papers can be used to define historical 
exposure to infection, important when reaching low levels of transmission intensity. 
Measurement of anti-malarial antibodies in exposed populations integrates serological 
definitions of malaria exposure over time, when plotted by age (Drakeley et al., 2005). Species-
specific antibodies can be detected in blood from a finger prick, and samples can be assayed 
quickly in large numbers. Sero-prevalence rates have been used to define malaria endemicity 
(Corran et al., 2007); used to track the progress of elimination in Maurtius (Bruce-Chwatt et al., 
1973); and importantly within the Namibian context distinguish between areas of differential 
exposure when RDT and reliable slide parasite rates are zero (Bouesma et al., 2010). In areas of 
very low parasite exposure sero-epidemiological methods can identify residual or potential foci 
of infection using geo-spatial analysis of individual or household level antibody response 
(Bouesma et al., 2010). Future household or other sample surveys of risk should consider the 
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inclusion of filter papers for confirmatory PCR in all areas and serology in low risk marginal 
areas. 
   

6. Alternatives to household sampling: National household sample surveys are logistically complex 
and expensive and defining their principle aims and objectives is fundamental before beginning 
the surveys. If their intention is to define parasite exposure for risk mapping their designs are 
currently flawed by being only population weighted samples and powered to define 
intervention coverage (MACRO, 1996; UNICEF, 2007). Migrating from these survey designs to 
those powered to define low levels of parasite exposure and are population-plus-spatially 
weighted samples will make these surveys more, rather than less expensive. School children 
provide a community easy to sample and resident within a definable catchment of the sampling 
point and represent the optimal age range for parasite prevalence description (Brooker et al., 
2009). Conducting school malaria surveys is not a new approach in malariology. School surveys 
were a regular part of malaria reconnaissance and control during the elimination control 
strategies of the Global Malaria Eradication Programme (Boyd et al., 1949; Russell et al., 1946). 
For example, during the 1920-40s, large-scale school parasite surveys were frequently 
conducted in the United States: during 1942-43, for example, blood films were collected from 
104,613 school children in seventeen states, with only 201 (0.2%) found to be infected (Faust, 
1949). In the then Southern Rhodesia, school surveys formed part of malaria risk surveillance 
between 1937 and 1948 (Alves, 1958) and during the 1970’s the Blair Institute in Zimbabwe 
continued the tradition of regular school-based malaria surveillance. In Botswana during the 
1960’s school surveys were a common measure of malaria risk. Kenya has also had a long history 
of routine school surveys of malaria infection prevalence as part of responsibilities of the 
Division of Vector Borne Diseases, MoH, since the 1950’s. Kenya has recently resurrected this 
approach to malaria risk mapping to form an integral part of long-term surveillance of the 
impact of scaled intervention nationwide and identification of priority areas for tailored suites of 
intervention (Gitonga et al., 2010). Examining the distribution of 1672 schools in Namibia that 
provide schooling for over 577,000 children (MoE, 2008) shows an obvious congruence with 
where people live (Figure xx). Primary school attendance is high across the country and these 
children are likely to represent the communities surrounding the schools. With the appropriate 
collaboration between MoHSS and MoE a rapid schools based survey could be considered in 
Namibia to improve our understanding of risk. As evidenced in Figure xx spatial over-sampling of 
most schools in the south would add much needed information to existing prevalence data and 
should probably include serology. This is a good example of why spatial weighting of survey data 
is important for mapping infectious disease risks. In the north were most people and most 
schools are located more traditional approaches to population weighting sampling are advised. 
Inclusion of serology in the most southerly parts of the Northern provinces may be advisable 
while in the areas defined so far as more stable transmission this may not be necessary. We 
mention this option for surveillance for two reasons: a) the MIS was inadequately powered to 
provide enough spatially configured data on risk and more data is needed; b) the MIS did not 
consider risks in the south and c) school-based survey are increasingly considered a means to 
indentify foci of infections rapidly and may be useful in focused efforts toward end-game 
elimination ambitions. More discussion is obviously needed around this possibility but raised 
here as an option for future malaria mapping and surveillance to improve upon what has been 
possible to-date.  
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Figure x: Distribution of schools in Namibia in 2008 (MoE, 2008) 

 
 
  

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Non-Gaussian models of risk: Dealing with many zero infection prevalence survey estimates 
within the present MBG Bayesian modeling approaches presents a number of limitations. Our 
approaches assume a normal Gaussian distribution of risks and clearly with a major over-
dispersion of risk skewed to zero these models lose some skill. The variance in prevalence is 
greater than the mean (Vounatsou et al., 2009) and a number of techniques have been used to 
model data with many zeros. The techniques come under the umbrella of zero-inflated (ZI) 
models (Mullay, 1986; Lambert, 1992) and could take the form of negative ZI binomial 
(Denwood et al., 2008) or Poisson ZI (Agarwal et al., 2002; Rodrigues, 2003) models. New work 
at the MPHEG-MAP labs in Nairobi aims to explore these techniques to develop Bayesian geo-
statistical approaches over the next 2 years and will offer new suites of modeling tools for 
mapping malaria transmission from community prevalence data from low risk areas such as 
Namibia where data is dominated by very low or zero prevalence. 
 

8. Inclusion of multiple data types and sources: Despite zero risks being defined through the 
household prevalence surveys, health facility data show evidence of infected fever 
presentations during 2009 from the same areas. Integrating two types of different data into a 
single platform of risk assessment presents a number of challenges. First, the similarities and 
differences in spatial structure between facility and community-level data would need to be 
explored more elaborately. Second there may be possibilities of using facility-level data as a 
covariate of risk may be possible within the MCMC stage of the modeling work. Third, it may be 
possible to use two levels of modeling that provide two different outputs related to clinical 
incidence and parasite prevalence in the community at the inter-section of very low community 
prevalence. This is all work that should be explored more imaginatively within different zero-
inflated MBG suites. 
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Annex A 

The relationship of ecological and climatic covariates with PfPR 
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Maximum and minimum temperature 
 
Temperature has a significant influence on the malaria vector and parasite (Molineux 1988; Craig et al., 
1999; Snow & Gilles 2002). Monthly average temperature raster surfaces at 1×1 km resolution were 
downloaded from the WorldClim website (http://www.worldclim.org/download.html) from which 
annual averages were derived. These surfaces were produced from global weather station temperature 
records gathered from a variety of sources for the period 1950-2000 and interpolated using a thin-plate 
smoothing spline algorithm, with altitude as a covariate, to produce a continuous global surface 
(Hijmans et al., 2005). For Namibia, the histograms (Figure 1) of both average annual minimum and 
maximum temperatures showed a negative skew and as a result the median instead of the mean was 
used to construct categories of temperature. Minimum temperature was classified into areas of median 
≤14°C and >14°C; while maximum temperature was classified into ≤30°C and >30°C (Figure 2). 
 
Figure 1: Histograms of a) average annual maximum; and b) average annual minimum temperature. Both 
covariates are negatively skewed.  

a)                                                                       b) 

    
 
Figure 2: Maps of: a) categories of average annual maximum; and b) average annual minimum temperature.  

a)                                                                                    b) 

                  
The box plots (Figure 3) show that most of the infections are concentrated in areas where median 
temperatures are greater than a minimum of 14 and a maximum of >30°C. The regression results, 
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however, show that the effects of both these temperature covariates are not significant with P-values of 
0.888 and 0.686 respectively (Table 1).  
 
Figure 3: Box plots of PfPR by categories of average annual minimum and maximum temperature 
 

          
 
 
Table 1: Univariate analysis results of categories of minimum and maximum temperature against PfPR 
 
 Number of 

survey 
locations 

Mean (median) PfPR Univariate regression*: 
Odds Ratio (95% CI), P-value 

Median annual minimum 
temperature 

   

≤14°C 53 2.6 (0.0) Ref 
>14°C 67 3.0 (0.0) 1.17 (0.13, 10.53), 0.888 

Median annual maximum 
temperature 

   

≤30°C 53 2.1 (0.0) Ref 
>30°C 67 3.4 (0.0) 1.60 (0.16, 15.73), 0.686 

 
Precipitation 
 
Rainfall, combined with suitable ambient temperatures, provides potential breeding environments for 
Anopheles vectors while humidity is associated with vector longevity (Gill 1920; Dutta et al., 1978). 
Monthly mean precipitation raster surfaces at 1×1 km resolution were downloaded from the WorldClim 
website (http://www.worldclim.org/download.html) and used as a proxy for rainfall. The monthly 
means were used to generate a long term average annual precipitation surface which showed a near-
normal distribution (Figure 4) with a mean of 40 mm average annual precipitation. This mean was then 
used to generate a precipitation surface of two classes <= 40 mm and >40 mm of rainfall and a box plot 
of PfPR by these classes was constructed (Figure 5).  
 
There was no significant association between PfPR and precipitation as demonstrated by the box plot 
(Figure 6) and the univariate regression results with a P-value of 0.584 (Table 2). 
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Figure 4: Histogram of average annual precipitation showing a near-normal distribution 
 

 
 
Figure 5: Maps of categories of precipitation shown as areas ≤40 mm and those >40 mm annual average 
precipitation 
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Figure 6: Box plots of PfPR2-10 by categories of sets of three continuous months in a year with precipitation >60 
mm; sets of three continuous months in a year with precipitation >80; and areas of precipitation of 0-1000mm; 
1001-1500mm; and >1500 mm. 
 

 
 
Table 2: Univariate analysis results of categories of precipitation against PfPR 
 
 Number of 

survey 
locations 

Mean (median) 
PfPR 

Univariate regression*: 
Odds Ratio (95% CI), P-

value 
Average annual precipitation 
temperature 

   

≤40 mm 59 3.7 (0.0) Ref 
>40 mm 61 2.0 (0.0) 0.533 (0.56, 5.04), 0.584 

 
Enhanced vegetation index (EVI) 
 
EVI is an index of intensity of photosynthetic activity (Tucker et al., 2005; Scharlemann et al., 2008). 
Traditionally, this index has been used in malaria risk mapping as a proxy of rainfall (Craig et al., 2009; 
Noor et al., 2009) and a measure of aridity that limits larval growth and vector survival (Guerra et al., 
2008). EVI ranges from 0 (no vegetation) to 1 (complete vegetation). Monthly EVI surfaces have been 
derived from the global Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery for 
the period 2001-2005 and subjected to temporal Fourier analysis at 1×1 km spatial resolution 
(Scharlemann et al., 2008). To define malaria-relevant EVI a category, a histogram of its distribution was 
constructed (Figure 7) which showed a near-normal distribution with a mean of 0.2. The EVI surface was 
then classified to those areas of less or equal to 0.2 and those greater than 0.2 EVI. Although the mean 
of 0.1 does not correspond to accepted definitions of aridity based in a country like Namibia of 0.1 
(Guerra et al., 2008) all the PfPR point had values of >0.1 and this cut-off could not be implemented on 
the data. A box plot of PfPR against the two classes of EVI was constructed (Figure 8). The results of the 
univariate analysis showed that EVI was not as significant predictor (P=0.767) of infection prevalence in 
Namibia (Table 3). 
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Figure 7: Histogram of average annual enhanced vegetation index showing a near-normal distribution 
 

 
 
 
Figure 8: Map of categories of enhanced vegetation index (EVI)  
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Figure 9: Box plot of PfPR by categories of EVI. 
 

  
 
 
Table 3: Univariate analysis results of categories enhanced vegetation index against PfPR 
 
 
 Number of 

survey 
locations 

Mean (median) 
PfPR 

Univariate regression*: 
Odds Ratio (95% CI), P-

value 
Average annual enhanced 
vegetation index 

   

≤0.2 49 3.4 (0.0) Ref 
>0.2 71 2.5 (0.0) 0.72 (0.08, 6.3), 0.767 

 
 
Distance to water features 
 
Distance to permanent and temporary water features has previously been used in malaria mapping as a 
proxy for availability of potential breeding sites for the Anopheles vector [Omumbo et al., 2005; Noor et 
al., 2008; Kleinschmidt et al., 2000). For Namibia a digital rivers file (GIS shapefile format) was 
downloaded from the digital atlas of Namibia project facilitated by the directorate of Environmental 
affairs, Ministry of Environment and Tourism, 2002 (http://209.88.21.36/Atlas/Atlas_web.htm). This 
dataset shows rivers which are perennial and those which are non-perennial mainly in Kavango region. It 
also categorizes the drainage channels as streams, rivers, inland and their respective catchment regions. 
Distances were extracted using ArcView 3.2 (ESRI Inc., USA) GIS extraction tools and thereafter used in 
subsequent analysis. Because the distribution of the distance was skewed (Figure 10) the median 
distance of 47 km was used instead of the mean to produce a categorical map of areas less than equal to 
and those greater than the mean distance (Figure 11). A box plot of PfPR against the two classes of 
distance to water was constructed (Figure 12). Table 10 shows that distance to water was not a strong 
predictor of infection prevalence in Namibia (P= 0.906). 
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Figure 10: Histogram of distance to water features showing a mild positive skewed distribution 
 

 
 
Figure 11: Map of main water features against and map of Euclidean distances to these water features 
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Figure 12: Box plots of PfPR2 by distance categories based on the median (47 km) 
 

 
      
Table 4: Univariate analysis results of categories distance to water features against PfPR 
 
 
 Number of 

survey 
locations 

Mean (median) 
PfPR 

Univariate regression*: 
Odds Ratio (95% CI), P-

value 
Median distance to water 
features 

   

≤47 km 59 3.0 (0.0) Ref 
>47 km 61 2.7 (0.0) 0.88 (0.10, 7.60), 0.906 
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