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Abstract. Using our state-of-the-art binary evolution code BINSTAR, we cal-
culated mass transfer rates via Roche lobe overflow for a 1.50 + 1.40 M⊙ main
sequence binary system with an eccentricity of 0.25 and orbital period of approx-
imately 0.7 d. The impact of an eccentric orbit, and an asynchronously rotating
donor star on the Roche lobe radius is considered, and their effect on the mass
transfer rate is investigated.

1. Introduction

The Roche model, which assumes that the orbit is circular and that the donor
star is rotating synchronously with the orbital period, is widely applied in the
studies of interacting binaries. The justification for these approximations is
provided by the short timescales needed to circularize the orbit and synchronize
the donor star (Zahn 1977).

However, this model has been challenged by observations, in particular by
the Kepler satellite, which has detected 14 systems with eccentricities between
0.5 and 0.85 (see e.g. Dong et al. 2013). Furthermore, evidence of mass transfer
in eccentric systems has been reported in the post-AGB system HD 44179 (Witt
et al. 2009), BX Mon (Leibowitz & Formiggini 2011) and in the black hole binary
HLX-1 (Lasota et al. 2011). From the theoretical point of view, Sepinsky et al.
(2007b, 2009) found that mass transfer may act to increase the eccentricity on
a shorter timescale than the tidal timescale which acts to decrease it.

Hence, the Roche model cannot be justified in such systems. Indeed, the
rotation of the donor and the eccentricity of the orbit will modify the donor’s
Roche lobe radius (Sepinsky et al. 2007a), in turn affecting the mass transfer
rate. These effects were not accounted for by the standard Eggleton (1983)
formalism.

Here, we present calculations of mass transfer for a main sequence binary
system consisting of a donor star of mass M1 = 1.50 M⊙ and an accretor of mass
M2 = 1.40 M⊙. Their radii are R1 ≈ 1.4 R⊙ and R2 ≈ 1.2 R⊙, respectively.
They have an age of approximately 1.3 Gyr, and a metallicity of Z = 0.001. We
use a mixing length parameter of αMLT = 1.71, and convective overshooting is
not considered. The eccentricity is e = 0.25 and the semi-major axis a = 4.80
R⊙.

In §2, we describe the BINSTAR code, and the key input physics. Calculated
mass transfer rates, and the effect of eccentricity, rotation and deformation of
the donor due to tides and spin are presented in §3. We also discuss the extent
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Figure 1. Left: evolution of the mass transfer rate, Ṁ , with time since
apastron, in units of Porb, with (dotted, red curve) and without (solid, black
curve) tidal and rotational deformation of the donor. Right: The same as
the left panel, but where the Roche lobe radius has been calculated using Eq.
(1) (solid curve), or using Eq. (2) with f = 1.0 (i.e. synchronous rotation of
the donor, dotted curve).

to which mass transfer is expected to be conservative is discussed in §4, before
summarizing our results in §5. Further details of this study can be found in
Davis et al. (2013, in press).

2. Computational Method

BINSTAR is an extension of the 1-dimensional, single star evolution code STAREVOL
(see Siess 2010, and references therein), and is primarily designed for the evo-
lution of low- to intermediate-mass binaries. BINSTAR simultaneously solves for
the stellar structure equations of each star, and for the orbital separation and
eccentricity. BINSTAR can also handle semi-convection, thermohaline mixing and
diffusive overshooting, and contains a nuclear network of 53 species up to 37Cl.
For further details of the binary input physics, see Siess et al. (2013).

2.1. Roche lobe radius

For a binary system where the instantaneous orbital separation is D, and the
donor star is assumed to be in synchronous rotation, its Roche lobe radius is
accurately given by the Eggleton (1983) formula

RL1
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
D, (1)

where the mass ratio q = M1/M2.
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To account for the effect of the eccentricity of the orbit and the rotation
of the donor, we follow the formalism described by Sepinsky et al. (2007a),
that gives the Roche potential (normalized to the gravitational potential of the
accretor) as

Ψ = −
q

(x2 + y2 + z2)
1

2

−
1

[(x− 1)2 + y2 + z2]
1

2

−
1

2

f2(1 + e)4

(1 + e cos ν)3
(1 + q)(x2 + y2) + x. (2)

Here, the x-axis lies along the line joining the centers of mass of the two stars,
in the direction from the donor to the accretor, the z-axis is perpendicular to
the plane of the orbit and is parallel to the spin angular velocity of the donor,
and the y-axis is perpendicular to the x-axis, and completes a right-handed
coordinate set. All coordinates are given in units of D.

If xL1
is the distance (in units of D) from the centre of mass of the donor to

the inner-Lagrangian point (where ∂Ψ/∂x = 0), then the Roche potential, ΨR,
is found by setting x = xL1

, y = 0 and z = 0 in Eq. (2). The volume enclosed
by the surface, Ψ = ΨR, is calculated using a 32-point Gaussian quadrature
technique. Therefore, RL1

is defined as the radius of a sphere with the same
volume as the Roche lobe. In Eq. (2) f is the spin angular speed of the donor
star in units of the orbital angular speed at periastron, i.e.

f =
Ω1

ωperi

. (3)

Hence, f < 1 indicates that the donor is rotating sub-synchronously at pe-
riastron, f = 1 signifies synchronous rotation, while f > 1 indicates super-
synchronous rotation.

2.2. Calculating mass transfer rates

If mass is lost from the optically thin layers of the donor star, then the mass
transfer rate, Ṁ , is calculated using the scheme described by Ritter (1988).
However, this formalism only applies if RL1

and R1 evolve in step. If this is not
the case, mass may be removed from the deeper, optically thick layers. In this
instance, Ṁ is determined using the Kolb & Ritter (1990) formulation. In either

case, Ṁ is a function of the amount that the donor star overfills its Roche lobe,
i.e.

Ṁ ∝ ∆R, (4)

where ∆R ≡ R1 −RL1
.

2.3. Tidal and rotational deformation

The deformation of the stellar structure due to tidal and rotational forces follows
the formalism described by Landin et al. (2009) and Song et al. (2009). Their
method uses the technique developed by Kippenhahn & Thomas (1970), and
subsequently improved by Endal & Sofia (1976), that solves the stellar structure
equations on equipotential surfaces.
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Figure 2. Duration of mass transfer, ttransfer, in units of Porb as a function
of f . The dark grey region indicates that for the corresponding values of f ,
mass transfer never occurs, medium grey indicates that mass transfer occurs
periodically (mainly near periastron), while light gray indicates that mass
transfer occurs over the entire orbit.

3. Duration and rates of mass transfer

The solid curve in the left panel of Fig. 1 shows the evolution of Ṁ , where
Eq. (1) has been used to calculate the donor’s Roche lobe radius. As the stars
approach periastron (t/Porb = 0.5), RL1

shrinks as D declines (Eq. 1), causing
a corresponding rise in the amount that the star overfills its Roche lobe, and
therefore in Ṁ (Eq. 4). The mass transfer rate reaches a maximum value of
about 1.3× 10−5 M⊙ yr−1. The reverse process occurs as the stars move away
from periastron. The evolution of Ṁ has a Gaussian-like profile, in agreement
with the smooth-particle hydrodynamics (SPH) calculations of Lajoie & Sills
(2011).

If the deformation of the donor’s structure due to tides and rotation is taken
into account, the mass transfer rate is enhanced by about a factor of 3 (Fig. 1,
left panel, dotted curve), because the donor’s radius is larger as a result of its
lower surface gravity.

The right panel of Fig. 1 shows that if we take into account the effects of
eccentricity and rotation for the determination of the Roche radius (with f = 1.0

for synchronous rotation), the value of Ṁ at periastron is about a factor of 7
larger than the ‘standard’ value when using Eq. (1). This is because Eggleton’s
formula gives a larger value for the Roche lobe radius than the one derived from
the effective potential (Eq. 2).

For a fixed value of the eccentricity, the donor’s rotation will also impact
on the duration of mass transfer, ttransfer (Fig. 2), via the parameter f in Eq.
(2). We find that if f ∼< 0.7 mass transfer never occurs because the Roche lobe
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Figure 3. Evolution of the parameter β = |Ṁ2/Ṁ1|, for the case where the
donor is rotating synchronously with the orbit at periastron (f = 1.0, black
curve), and super-synchronously (f = 1.02, dotted curve).

radius is too big for the donor to fill it, even at periastron. On the other hand,
for 0.7 ∼< f ∼< 1.8, mass transfer occurs over a part of the orbit, mainly near
periastron, while for f ∼> 1.8, the Roche lobe radius is sufficiently small such
that mass transfer occurs over the entire orbit.

4. Mass ejection from the accretor

For our binary configuration, we find that mass directly impacts the surface
of the accretor. This causes a local increase in temperature and luminosity,
termed hotspot. If Ṁ is higher than some critical value, Ṁcrit, then the hotspot
luminosity will exceed the Eddington value, LEdd, allowing for mass ejection.
To explore this possibility, we implemented in BINSTAR the hotspot formalism
described by van Rensbergen et al. (2008) to calculate Ṁcrit.

Fig. 3 shows the evolution of the accretion efficiency, β, defined as the
ratio of the mass loss rate from the donor to the mass accretion rate of the
gainer. Values of β < 1 indicate non-conservative mass transfer, and occurs
when f ∼> 1. Since increasing f enhances Ṁ (§3), raising the angular speed of

the donor drives the value of Ṁ ever further above Ṁcrit. In turn, this leads to a
higher hotspot luminosity and a greater rate of mass ejection from the accretor.
During one orbit, the total ejected mass from the accretor is about 10−9 M⊙

for the synchronous model, and 2× 10−8 M⊙ for the super-synchronous model.
Note that due to the modulation of Ṁ with orbital phase, β reaches a minimum
at periastron. The saw-tooth behaviour of β is an artifact due to the insufficient
numerical resolution of the donor’s surface layers, and is not a physical feature.
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5. Summary

For the first time, we have calculated mass transfer in eccentric systems using
our state-of-the-art stellar binary evolution code BINSTAR. We find that the
evolution of the mass transfer rate has a Gaussian-like profile, with a maximum
value attained at periastron, in agreement with SPH simulations. The rate is
also significantly enhanced by the tidal and rotational deformation of the donor
star. We point out that mass transfer at periastron is a promising mechanism
for eccentricity generation in Barium stars (e.g. Soker 2000).

Finally, the eccentricity and the donor’s rotation have a significant impact
on both the duration and the rate of mass transfer. Increasing the donor’s
angular speed increases both the duration and rate of mass transfer. If the
donor is rotating too slowly, then mass transfer may not occur.
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