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Buoyancy-driven flows induced by the hydrodynamic Rayleigh-Taylor or double-
diffusive instabilities develop symmetrically around the initial contact line when two
solutions of given solutes with different densities are put in contact in the gravitational
field. If the solutes affecting the densities of these solutions are involved in chemical
reactions, changes in composition due to the underlying reaction-diffusion processes
can modify the density profile in space and time, and affect the hydrodynamic patterns.
In particular, if the density difference between the two reactant solutions is not too
large, the resulting chemo-hydrodynamic patterns are asymmetric with regard to the
initial contact line. We quantify both experimentally and numerically this asymmetry
showing that fingers here preferentially develop above the reaction zone and not
across the mixing zone as in the non reactive situation. In some cases, the reaction
can even lead to the onset of a secondary double-diffusive instability between the
product of the reaction, dynamically generated in situ, and one of the reactants.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774321]

I. INTRODUCTION

Buoyancy-driven instabilities in fluids are genuine sources of fluid motions.1, 2 The well-known
Rayleigh-Taylor (RT) instability occurs as soon as a denser solution overlies a less dense one in
the gravitational field1, 3 like typically when salted water sinks into fresh water. This instability has
been the subject of numerous studies as it impacts several climatic, environmental, and industrial
applications. The double-diffusive (DD) instability is another buoyancy-driven instability,4, 5 which
arises when two different contributions to the density profile are opposing (classically heat and mass,
but it can also be that of two different solutes2, 6, 7). DD occurs when the total density profile is stable
(i.e., density increases downwards along the gravitational field) but the destabilizing component
(heat, for instance) diffuses faster than the stabilizing one (mass). It leads to convective motions that
have been well studied in oceanography8 (where it leads to so-called “salt fingers”), geology,9 or in
the analysis of convection in star or planet mantles,5 for instance.

In some applications like industrial processes,10 CO2 storage,11 or thermonuclear burning of
stars,12 for instance, such convective motions may interplay with chemical reactions. The coupling
arises when the reaction dynamically modifies a physical property of the flow like its density,
viscosity, or surface tension.13, 14 This change in turn can affect the flows but in some cases can also
more drastically modify the patterns or even trigger an instability in an otherwise stable system.15

In the case of buoyancy-driven instabilities, such a chemo-hydrodynamic coupling has already
been well studied for traveling autocatalytic fronts (see Refs. 16–18 and references therein) and
combustion problems.12, 19 In parallel, the coupling between convective motions and a simple A + B
→ C reaction has been addressed both experimentally20–29 and theoretically.24, 27, 29–32 In the specific
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case of acid-base reactions, buoyancy-driven destabilization of the miscible interface between two
solutions containing the separate reactants A and B has been studied in Hele-Shaw cells (two
glass plates separated by a thin gap and oriented vertically in the gravitational field). In horizontal
systems, convection within the gap is characterized by one or two convection rolls29–31 that affect the
propagation speed of the underlying A + B → C reaction-diffusion front.33 In vertical systems, if
an aqueous solution of HCl is put on top of a denser aqueous solution of NaOH, convective motions
rapidly develop above the miscible contact line.24, 27 These are due to a diffusive layer convection
(DLC) mechanism2, 34 arising when a less dense solution of a fast diffusing component overlies a
denser solution of a slow diffusing one. As the acid diffuses faster than the base, a depletion zone
is created dynamically in time above the contact line where the acid has diffused out without being
replaced yet by the slow diffusing base. Another pattern sometimes also appears below the contact
line but with a different wavelength.22, 26 These lower structures have however been attributed to the
presence of the color indicator used to visualize the convective patterns and acting as an effective
reactant modifying the density profile.25, 26 In absence of a color indicator, visualization can be made
by interferometry24 or schlieren techniques.27 In that case, the DLC convective plumes are observed
only above the contact line. This is different from the non reactive situation34 where convection
is also obtained below the miscible interface where the fast diffusing species is accumulating. The
asymmetry of the DLC pattern is related to the chemical reaction which consumes the acid before
it can accumulate in the lower layer and replaces it by a third species of intermediate contribution
to density. These experiments clearly show that the chemical reaction affects the symmetry of the
DLC pattern.

In this context, it is of interest to understand to what extent such an active role of chemistry can
affect RT or DD patterns as well. Indeed, RT and DD modes are encountered in numerous systems,
and it is therefore important to know whether the properties of RT and DD patterns are the same or
not in reactive systems. Some theoretical works have already demonstrated that reactions can affect
the stability properties of DD modes,35–37 however, their active influence on nonlinear dynamics
remains largely unexplored.

To do so, we study here by combined experimental and theoretical analysis, the influence of a
simple A + B → C chemical reaction on buoyancy-driven Rayleigh-Taylor and double diffusion
instabilities. We consider a stratification of a solution of reactant A on top of a miscible solution
of reactant B within a Hele-Shaw cell oriented vertically in the gravitational field. In absence of
reaction, a RT instability is obtained if the density ρA of the upper solution is larger than the density
ρB of the lower one. If we start from an initially statically stable configuration (ρA < ρB), DD modes
are obtained if B diffuses sufficiently faster than A.2, 4, 6 If A reacts with B to yield the product C,
then the density profile is affected in space and time by the reaction.

We demonstrate that, in that case, the reaction can have a profound influence on the dynamics as
it breaks the symmetry of the RT and DD patterns. Indeed, instead of deforming the miscible interface
symmetrically around the position of the initial contact line, the convective structures develop only
above it. In some cases, a second structure appears later in time and can be attributed to the dynamic
generation of the product C in the course of time. We analyze the changes in patterns by comparing
experiments done using non reactive solutions and reactive acid-base systems. We quantitatively
compute the amplitude of the symmetry breaking as a function of the relative concentrations of
the two reactants A and B. We enlighten the experimental results by numerical simulations of a
reaction-diffusion-convection (RDC) model of buoyancy-driven convection triggered around an A
+ B → C reaction-diffusion front using values of parameters dictated by the experiments. Good
agreement between both experimental and numerical results is obtained.

This article is organized as follows: Section II describes the experimental results, while the
theoretical study is presented in Sec. III before conclusions are addressed in Sec. IV.

II. EXPERIMENTAL STUDY

Let us first describe the experimental set-up and the chemicals used before reviewing the
properties of the hydrodynamic patterns obtained experimentally with and without reactions.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Refractive index modulations of the experimental non reactive (top) and reactive (bottom) buoyancy-driven patterns:
(a) non reactive Rayleigh-Taylor, (b) non reactive double diffusion, (c) non reactive diffusive layer convection, (d) reactive
Rayleigh-Taylor, (e) reactive double diffusion, and (f) reactive diffusive layer convection. Time of the snapshots: (a) 5 s, (b)
18 s, (c) 68 s, (d) 15 s, (e) 30 s, and (f) 151 s. The field of view of each image is 1.8 cm × 2.7 cm. The scale bar represents a
length of 1 cm. The horizontal middle line is added to show the position of the initial contact line.

A. Experimental set-up

The experimental set-up consists in a Hele-Shaw cell made of two borosilicate glass plates
separated by a thin polymer spacer giving a gap width of 0.5 mm. Specific injection holes and exhaust
system allow to obtain a well-defined planar interface between two miscible solutions within the
gravitational field.38 To avoid the perturbative influence of any color indicator on the dynamics,25, 26

we use the aqueous solutions as prepared, and, as they are transparent, a phase-shifting schlieren
technique is used to track the convective patterns.39, 40 This optical technique allows to visualize
the variations in space and time of the refractive index, which can in turn be related to the density
variations inside the solutions. The images show the refractive index gradients in a grey scale but a
colormap has been added here to enhance the contrast. This colormap is presented in Fig. 1 and is
the same for all experimental figures. The largest values of this map correspond to sharp gradients
of refractive index and indicate strong density variations. Changes in brightness from one picture to
the other are related to the acquisition process of the pictures. All experimental figures have a field
of view of 1.8 cm × 2.7 cm. Aqueous solutions of NaCl and sucrose in various compositions are
chosen to analyze non reactive hydrodynamic instabilities, while aqueous solutions of NaOH and
HCl are used to study the same instabilities in presence of a chemical reaction. A summary of the
composition and the related densities of the various solutions are given in Table I.
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TABLE I. Concentrations and densities of the different solutions used during the experiments. Solutions were prepared with
sucrose Sigma BioUltra ≥ 99.5%, NaCl Sigma Ultra ≥ 99.5%, NaOH Chem Lab for analysis 99%, and 6 mol/l HCl Fluka
analytical volumetric solutions. The density is measured at the temperature of the sample given in column 4.

Concentration Density Temperature
Solute (±0.004 mol/l) (±0.0005 g/cm3) (±0.1 ◦C)

Sucrose 0.500 1.0651 23.0
NaCl 0.300 1.0119 23.8
NaCl 0.683 1.0280 23.4
NaCl 1.456 1.0597 23.4
NaCl 1.715 1.0673 23.2
NaOH 0.200 1.0084 22.7
NaOH 0.300 1.0125 23.5
NaOH 0.400 1.0167 23.5
NaOH 0.500 1.0208 23.6
NaOH 0.600 1.0253 23.5
NaOH 0.700 1.0291 23.6
NaOH 0.800 1.0331 23.7
NaOH 0.900 1.0370 24.5
NaOH 1.000 1.0408 24.2
HCl 1.000 1.0171 22.9

B. Non reactive buoyancy-driven patterns

Let us first remind the classical RT, DD, and DLC dynamics that develop in the absence of any
chemical reaction when two miscible solutions containing solutes A and B of different densities
are put in contact in a vertical Hele-Shaw cell (see top of Fig. 1). Figure 1(a) shows refractive
index changes for the Rayleigh-Taylor instability obtained by putting a denser solution of NaCl
in concentration 0.683 mol/l on top of pure water. Vivid convection is obtained immediately after
contact and leads to convective fingers extending both upwards and downwards, and deforming the
initial contact line keeping an up-down symmetric mixing zone. Indeed, on average, the fingers
extend on the same distance above and below the initial position of the interface.

In order to trigger double diffusion, a solution of sucrose in concentration 0.5 mol/l and density
1.0651 g/cm3 is put on top of a denser solution of NaCl in concentration 1.715 mol/l and of density
1.0673 g/cm3 (Fig. 1(b)). As the salt NaCl diffuses roughly three times faster than sucrose (DNaCl

= 1.611 × 10−5 cm2/s,41 while Dsucrose = 0.523 × 10−5 cm2/s42), the denser stabilizing component
B on the bottom diffuses thus faster than the stabilizing component A on top within an initially
statically stable situation. These provide the conditions for a DD instability also deforming the
interface into rising and sinking fingers extending symmetrically around the initial contact line
(Fig. 1(b)). Note that more time is needed to reach a same mixing zone than in the RT case, as
diffusion (which is a slow process) has to act to destabilize the system.

The third possible buoyancy-driven instability is the DLC one obtained when starting from a
stable density gradient but with the upper component A diffusing faster than the lower component
B. Putting a less dense solution of salt (in concentration 1.456 mol/l and of density 1.0597 g/cm3)
on top of the denser 0.5 mol/l solution of sucrose produces the DLC convective patterns seen in
Fig. 1(c). As already observed experimentally34 and discussed theoretically,2 DLC modes develop
convection cells both above and below the contact line, which remains unperturbed at early times.
These fluid motions appear at the locations where the depletion and accumulation zones develop due
to the fact that component A diffuses faster towards the lower layer than the component B diffuses
upwards.2 Appreciate that more than a minute is necessary for the DLC fingers to extend on a same
distance as that reached by RT modes in 5 s. The DLC mechanism needs indeed more time for
diffusion to trigger the adverse local density gradients at the origin of the convection.

To sum up, as soon as non reactive solutions containing various solutes are put in contact in
the gravitational field, convective modes develop because of either RT, DD, or DLC mechanisms. In
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all three cases, convective patterns develop symmetrically around the initial contact line. The only
stable configuration is the one for which ρA < ρB and DA ∼ DB.2

C. Reactive convective patterns

Let us now focus on the corresponding reactive cases (see bottom of Fig. 1) obtained when A
and B are involved into a reaction. The dynamics were studied in the particular case of the acid-base
reaction between HCl and NaOH. Their respective diffusion coefficients are DHCl = 3.336 × 10−5

cm2/s41 and DNaOH = 2.129 × 10−5 cm2/s.41 As DHCl > DNaOH, reactive DLC is obtained when
starting from a less dense solution of HCl on top of a denser solution of NaOH. Figure 1(f) shows
an example for 1 mol/l HCl (ρ = 1.0171 g/cm3) on top of 0.5 mol/l NaOH (ρ = 1.0208 g/cm3).
Reactive DLC has already been extensively studied both without24, 27 and with22, 25, 26 color indicator,
and will not be further addressed here. We recall however that, in this case, the reactive DLC patterns
are asymmetric with regard to the contact line24, 27 as seen in Fig. 1(f).

Let us focus on both RT and DD cases. Both can be obtained when a solution of NaOH is put on
top of a solution of the faster diffusing acid. We will, in the remainder of the article, keep the lower
HCl concentration fixed to 1 mol/l (ρ = 1.0171 g/cm3) and vary the concentration of the upper NaOH
solution. If the top solution is less or equally dense (ρNaOH ≤ 1.0171 g/cm3), than DD convection
develops as the faster diffusing acid is in the lower layer (see Fig. 1(e) for NaOH 0.4 mol/l and ρ

= 1.0167 g/cm3). The development of the convective fingers during time is shown on Fig. 2. RT is

(a) (b) (c)

(d) (e) (f)

FIG. 2. Evolution in time of the reactive DD convective patterns obtained with NaOH 0.4 mol/l on top of HCl 1 mol/l. Time
of the snapshots: (a) 15 s, (b) 20 s, (c) 25 s, (d) 30 s, (e) 35 s, and (f) 40 s. The scale bar represents a length of 1 cm.
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(a) (b) (c)

FIG. 3. Reactive convective patterns obtained when a solution of NaOH 0.3 mol/l is put on top of a 1 mol/l HCl solution.
Time of the snapshots: (a) 30 s, (b) 15 min, and (c) 32 min 30 s. The scale bar represents a length of 1 cm.

obtained for denser NaOH on top (see Fig. 1(d) with NaOH 0.5 mol/l and ρ = 1.0208 g/cm3). Even
though DD and RT fingers look very similar, they can readily been differentiated experimentally
thanks to the initial condition (RT if the upper solution is denser than the lower one and DD in the
reverse case) and the time scales on which they evolve. As seen in Fig. 6, less than 3 s are needed
for RT fingers to grow half a centimeter and very vigorous convection is observed while 10–50 s are
needed for onset of the milder convection in DD.

As can be seen by comparing the top and bottom rows of Fig. 1, the chemical reaction breaks
the symmetry of the convective patterns. Indeed, instead of developing fingers both above and below
the initial contact line, the fingers grow in the reactive case preferentially above this line. This
observation is particularly surprising for the Rayleigh-Taylor instability, where the vivid convective
flows due to the unfavorable difference in densities are usually expected to slave any chemistry. As
shown in Sec. II D, this breaking of symmetry only operates if the density difference "ρ between
the two solutions is small enough to be dynamically affected by the reaction. Above a given "ρ,
the reaction is not efficient enough to have an impact and the classical symmetric Rayleigh-Taylor
convective modes take over again.

Besides the breaking of symmetry, the reactive system also shows the possibility of coexistence
within the same system of two different patterns originating from successive instabilities. An example
is shown in Fig. 3. As we start from a less dense 0.3 mol/l solution of NaOH on top of HCl, an
asymmetric DD pattern appears at early time. Much later on, another pattern appears in the lower
layer in the shape of thin vertical stripes, which elongate downwards and deform during time.
The occurrence of this secondary pattern is due to a double-diffusive instability between the NaCl,
dynamically produced in the reaction zone, and the underlying HCl. To prove this, we have checked
that similar fingers develop within a few minutes in absence of any reaction when a solution of NaCl
in concentration 0.3 mol/l is put on top of a denser 1 mol/l solution of HCl inside a Hele-Shaw
cell (Fig. 4). In the reactive case (Fig. 3), the analogous DD pattern takes however much longer
(∼15 min) to appear as a secondary instability resulting from the reaction between NaOH and HCl
because it requires the reaction to generate enough NaCl product in the middle reaction zone for DD
between NaCl above HCl to develop.

D. Influence of the concentrations

In order to study the influence of changes in the concentration on the dynamics, the concentration
of the top solution (NaOH) is varied while keeping the concentration of the bottom solution (HCl)
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(a) (b)

FIG. 4. Non reactive double-diffusive pattern obtained with a solution of NaCl 0.3 mol/l on top of HCl 1 mol/l. Time of the
snapshots: (a) 53 s and (b) 124 s. The scale bar represents a length of 1 cm.

to 1 mol/l and the related density to 1.0171 g/cm3. The vertical extension of the patterns is measured
by image processing to quantify the growth of the patterns. First, the experimental pictures of the
refractive index are binarized and the noise is removed with a MATLAB program. The binarized
pictures display white convective patterns on a black background. By summing the values of the
pixels along a horizontal line, we obtain a vector of the size of the length of the picture that has
elements equal to zero if their index corresponds to a row with only black pixels and to a non zero
value otherwise. Non zero elements of this vector thus represent the convective zone and their index
gives us the position of this convective zone in the experimental picture. The first and the last non zero
elements provide the top location ztop and the bottom zbottom one of the convective zone. Knowing
the position z0 of the initial contact line with regard to z = 0 at the lower side of the image, we can
next define the upward and downward contribution to the length of the patterns: L+

m = ztop − z0 and
L−

m = zbottom − z0. The lengths obtained for four experiments are averaged. These averaged lengths
are plotted in Fig. 5 with L+

m corresponding to the extent of the upward growing mixing zone, and
hence, to the curves with positive values, while L−

m are those for the downward motions and negative
values. It can be appreciated that these quantities have similar values at large NaOH concentrations,
while L+

m > |L−
m | at lower concentrations (which is the sign of an asymmetry such that fingers extend

more upwards than downwards). The total length of the mixing zone is then defined as Lm = ztop −
zbottom and is shown in Fig. 6.

The cases of reactive double diffusion and Rayleigh-Taylor convection are hereafter commented
separately. As can be seen from the densities in Table I, reactive double-diffusive cases are those for
screened concentrations of the base up to 0.4 M (ρA ≤ ρB), while reactive Rayleigh-Taylor occurs
in our screened concentrations from 0.5 M on (ρA > ρB).

1. Double diffusion

As shown in Fig. 5(a), the upward contribution L+
m to the length of the DD fingers obtained

when ρA ≤ ρB is clearly more important than the downward contribution L−
m at lower concentrations

in NaOH. Indeed, in that case, there are no fingers growing downwards. If we now consider the total
length of the convective zone (Fig. 6), the growth of the fingers first presents an induction period
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FIG. 5. Evolution of the upper (L+
m ≥ 0) and lower (L−

m ≤ 0) extent of the fingers for different concentrations (and related
densities) of the base solution. (a) Reactive double diffusion cases for which the density of the base solution is lower than or
equal to 1.0171 g/cm3, the density of the 1 mol/l acid solution; (b) reactive Rayleigh-Taylor cases for NaOH densities larger
than 1.0171 g/cm3. The continuous line at L±

m = 0 represents the position of the initial contact line.

during which the length remains constant or increases very slowly. The induction time becomes
shorter, i.e., convection takes in faster when the concentration of the alkaline solution increases.
Moreover, once the growth has started, the curves are steeper, i.e., the pattern grows faster at larger
concentrations.

2. Rayleigh-Taylor

In Fig. 5(b), it can be seen that, in the RT case, an asymmetry is clearly visible for NaOH
concentrations lower than 0.9 M, but the convective zone develops more symmetrically around the
initial contact line as the concentration of the top solution increases. The increase of the downward
contribution is not only due to the downward movement of the reaction zone. Indeed, this base line
gradually deforms and takes the shape of sinking fingers when the concentration is increased. At
high alkaline concentrations, the sinking fingers develop as fast as the rising ones and a classical
symmetric RT instability similar to that shown in Fig. 1(a) is recovered. Moreover, as the NaOH
concentration increases, the density ratio also becomes larger and the system becomes more unstable.
Hence, the induction time becomes shorter and the slope of the mixing length increases (Fig. 6).
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FIG. 6. Evolution of the length of the fingers for different concentrations of the NaOH solution. Densities for the related
concentrations are given in Fig. 5.
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III. THEORETICAL STUDY

In order to enlighten the experimental findings, let us now turn to numerical simulations of the
corresponding reaction-diffusion-convection model.

A. Model

The Hele–Shaw cell is approximated by a two-dimensional vertical slab of width LX and
height LZ in a (X, Z) reference frame, where the gravitational acceleration ḡ = (0,−g) is oriented
downwards along the Z axis. As sketched in Fig. 7 (left panel), the alkaline solution A, containing
NaOH in the initial concentration A0 and of density ρ0

a is placed on top of the HCl solution B,
with concentration B0 and density ρ0

B . The chemical reaction A + B → C (where C is the resulting
salt NaCl) occurs between the two miscible solutions, which are initially sharply separated by a
horizontal planar interface at LZ/2. Although this reaction is well known to be exothermic, we apply
the isothermal hypothesis to our model since, as heat diffuses much faster than mass, its contribution
to the density gradients is quantitatively negligible.27 According to the experimental data in Sec. II,
the solutions are sufficiently diluted that the coefficients DA, DB, and DC can be considered as
constant and cross-diffusive terms neglected. Moreover, we can also assume a linear dependence of
the density ρ upon the reactant concentrations:

ρ(A, B, C) = ρ0 (1 + αA A + αB B + αC C) , (1)

where ρ0 is the reference density of the solvent (water), and αI = 1
ρ0

∂ρ
∂ I is the solutal expansion

coefficient of solute I and I its concentration. Equation (1) relies on the assumption that all compounds
diffuse as ionic pairs.26

The spatio-temporal dynamics of the system obeys a set of partial differential equations in which
the chemical kinetics of an A + B → C reaction, governed by the kinetic constant k, is coupled
to Fickian diffusion and to natural convection described by the Stokes equations through the state
equation (1). The dimensional form of the resulting reaction-diffusion-convection system is

∂t A + (V · ∇)A = DA∇2 A − k AB, (2)

∂t B + (V · ∇)B = DB∇2 B − k AB, (3)

∂t C + (V · ∇)C = DC∇2C + k AB, (4)

FIG. 7. (Left panel) Sketch of the vertical slab defining the spatial domain of our RDC problem. (Right panel) Two different
initial density profiles for the nonlinear simulations. The density of the bottom solution is equal to 1 (black branch). The
top solution density is varied by changing the initial concentration A0. The left branch (ρ1 = 0.98, red online) gives a
double-diffusive instability, while the right profile (ρ2 = 1.02, blue online) leads to a Rayleigh-Taylor instability.
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∇ P = µ∇2V − ρ(A, B, C)g 1z, (5)

∇ · V = 0 . (6)

Hydrodynamic equations are derived in the Boussinesq approximation,1 assuming that density
changes only affect the gravitational term ρg of Eq. (5). V = (U, V )T is the velocity field, µ is the
dynamic viscosity, and P is the pressure. The model is conveniently cast into a dimensionless form by
using the time scale of the chemical process tc = 1/(kB0), the reaction–diffusion characteristic length
Lc =

√
DBtc, the velocity scale Vc = Lc/tc =

√
DB/tc, while we use Pc = µ

tc
and B0, respectively,

as the pressure and concentration scales.
Moreover, we define a dimensionless pressure gradient by including the hydrostatic pressure

gradient term as ∇′p = ∇′P/Pc − ρ0Lcg/Pc. The dimensionless density is defined by ρ ′ = (ρ
− ρ0)/ρc, where ρc = Pc/Lcg. The introduction of the set of scaled variables {τ = t/tc, (x, z)
= (X, Z−LZ/2)/Lc, (a, b, c) = (A, B, C)/B0, v = V/Vc with v = (u, v)T , p = P/Pc} and dropping
the primes to the dimensionless pressure gradient and dimensionless density leads to the following
dimensionless equations:

∂τ a + (v · ∇)a = δa∇2a − ab, (7)

∂τ b + (v · ∇)b = ∇2b − ab, (8)

∂τ c + (v · ∇)c = δc∇2c + ab, (9)

∇ p = ∇2v − (Ra a + Rb b + Rc c) 1z, (10)

∇ · v = 0, (11)

where δa = DA/DB and δc = DC/DB are the ratios between the molecular diffusion coefficients of
the base and salt, respectively, to that of the acid. Following previous works27 (also see Table II), we
use δa = 0.64 and δc = 0.48. The solutal Rayleigh number Ri of species I, defined as

Ri = gB0L3
cαI

DBν
, (12)

controls the solutal buoyancy contribution of each chemical species I to the convective flows. In
Eq. (12), ν = µ/ρ0 is the kinematic viscosity of the medium. Defining the vorticity ω = ∇ × v and
the stream function, ψ , through the relations, u = ∂zψ , v = −∂xψ , the equations can be written in
the (ω − ψ) form by taking the curl of both sides of Eq. (10). Our RDC model then reads

∂a
∂τ

+
(

∂ψ

∂z
∂c
∂x

− ∂ψ

∂x
∂c
∂z

)
= δa∇2a − ab, (13)

∂b
∂τ

+
(

∂ψ

∂z
∂c
∂x

− ∂ψ

∂x
∂c
∂z

)
= ∇2b − ab, (14)

∂c
∂τ

+
(

∂ψ

∂z
∂c
∂x

− ∂ψ

∂x
∂c
∂z

)
= δc∇2c + ab, (15)

∇2ω = Rb

[
Ra

Rb

∂a
∂x

+ ∂b
∂x

+ Rc

Rb

∂c
∂x

]
, (16)

∂2ψ

∂x2
+ ∂2ψ

∂z2
= −ω . (17)
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TABLE II. Values for the parameters in Eqs. (13)–(17).

(I) Species DI (10−5 cm2/s) αI (10 cm3/mol) δi αI/αB

(A) NaOH 2.129 4.4 0.64 2.5
(B) HCl 3.336 1.8 1.00 1.0
(C) NaCl 1.611 4.1 0.48 2.3

Given the uncertainty about the reaction rate constant k, which is embedded in Lc in the
definition of the Rayleigh number, we cannot aim at a quantitative estimation of the parameters
from experimental data. Nevertheless, we can obtain reliable re-scaled pictures of the problem by
setting Rb = 1 and computing the ratios Ra/Rb as equal to αa/αb and Rc/Rb = αc/αb. In this way, the
amplitude of the stream function remains arbitrary but the dynamics induced by the relative weight
of each species to the density profile is kept balanced, since the proper ratios αA/αB and αC/αB are
preserved. According to the results reported in Almarcha et al.,27 we set Ra/Rb = 2.5 and Rc/Rb

= 2.3 (see Table II).

B. Numerical scheme

The systems (13)–(17) are solved by using the alternating direction implicit method (ADI)
proposed by Peaceman and Rachford.43 An iterative procedure ensures the convergence of ω and ψ

over the entire spatial domain at any time step, requiring the error between the stream function at
the (n − 1)th and (n)th iterations to be lower than 1 × 10−5.

We consider a spatial domain of dimensionless width Lx = 250 and height Lz = 400, discretized
over a grid of 500 × 800 points, by using equal horizontal and vertical meshes hx = hz = 0.5.

We apply no-flux boundary conditions for the concentration fields i of species I at the four solid
boundaries of the reactor. No-slip conditions at the rigid walls directly apply to the stream function
as

ψ = ∂ψ

∂x
= 0 at x = 0; x = Lx , (18)

ψ = ∂ψ

∂z
= 0 at z = 0; z = Lz . (19)

From the no-slip boundary conditions, a second order form for the rigid wall vorticity can be derived
according to Woods’ formula,44

ω|x = −3 ψ |x+hx

(hx)2
− 1

2
ω|x+hx at x = 0, (20)

ω|x = −3 ψ |Lx −hx

(hx)2
− 1

2
ω|Lx −hx at x = Lx , (21)

ω|z = −3 ψ |z+hz

(hz)2
− 1

2
ω|z+hz at z = 0, (22)

ω|z = −3 ψ |Lz−hz

(hz)2
− 1

2
ω|Lz−hz at z = Lz . (23)
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FIG. 8. Asymptotic dimensionless density profiles ρ′(a, b, c) as a function of the re-scaled variable ξ for different ratios
a0/b0 of initial concentrations, with b0 = 1 mol/l. The initial contact line is at ξ = 0.

Simulations are run for 300 time units, using the time step ht = 1 × 10−3, which was tested to
give convergent solutions. The step functions defining the initial distribution of the reactants,

a0(x, z) =
{

[0.38, 0.42] if z ≥ Lz/2
0 elsewhere ,

b0(x, z) =
{

1 if z ≤ Lz/2
0 elsewhere ,

are added of a small amount of numerical noise at the interface in order to favour the emergence
of the instability and speed up calculations. The stability and reliability of the numerical code were
validated by recovering the results previously obtained for similar systems.31

C. Density profiles

A first theoretical approach consists in analyzing the asymptotic dimensionless density profiles
ρ ′(a, b, c, ξ ).27 These are derived by introducing in the explicit relation,

ρ ′(a, b, c, ξ ) = Ra

Rb
a(ξ ) + b(ξ ) + Rc

Rb
c(ξ ), (24)

the numerical asymptotic solutions to the pure reaction-diffusion problem (13)–(15), with ψ = 0.
At long times (τ → ∞), a balance occurs between reaction and diffusion rates, which gives rise to
asymptotic concentration profiles in the re-scaled variable ξ = z/

√
τ . The resulting density profiles

for different initial concentrations a0 are plotted in the vertical orientation to facilitate the comparison
with our experimental geometry (see Fig. 8). The density of the pure solution B (A) is recovered
as ξ → −∞ (+∞). For example, if we consider the case where the initial concentration of A is
a = a0/b0 = 0.2, as ξ → +∞ Eq. (24) reduces to ρ ′(a, b, c,+∞) = Ra

Rb
a = 0.5, since the concen-

trations of b and c tend here to zero. In virtue of analogous considerations, the bottom density is
equal to the constant value ρ ′(a, b, c, −∞) = b = 1. Approaching the interface (ξ → 0±), all the
species contribute to the nonmonotonic configuration of the dimensionless density. Although ρ ′(a,
b, c, ξ ) do not contain any dynamic information on the system since they do not take into account
the coupling with convective flows, they provide qualitative insights on the instability scenarios to
be expected and, indeed, can give key elements to explain the experimental outcomes.

Let us first describe the curves corresponding to the alkaline concentration interval [0.2–0.4].
The top solution is less dense than the bottom one, which means that the initial stratification is
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statically stable. However, as the solute in the lower denser solution (HCl) diffuses faster than
the one in the upper solution (NaOH), the system is unstable with regard to a double-diffusive
mechanism. In addition, because of the chemical reaction, the density profile is nonmonotonic as
a minimum appears above the initial contact line. This is due to the formation of less concentrated
NaCl, which moves upwards towards the less concentrated solution and replaces the reactants.31, 33

The presence of this minimum implies that a denser solution locally overlies a less dense one. This
region is buoyantly unstable and convection is likely to develop here. This situation corresponds to
the experiments where convection appears embedded in the top of the system. Moreover, it has been
observed throughout the experiments that the system becomes more unstable as the concentration
of NaOH increases. This is also consistent with the description provided by asymptotic density
profiles. It has indeed been shown that the strength of convection induced by extrema in a density
profile can be related to the relative magnitude of these extrema with respect to the magnitude of
the density jump between the two reactants.26 Here, as the initial concentration of NaOH in the
upper layer increases, the density jump between the two reactants decreases, while the magnitude of
the minimum increases. In other words, the stable feature is diminished, while the unstable feature
increases. This trend can be related to the experimental data plotted in Fig. 6, where the finger growth,
and thus the hydrodynamic instability, develop faster as the top solution concentration approaches
the threshold concentration 0.4.

If we now focus on the domain of the Rayleigh-Taylor instability (profiles in the range [0.5–1]),
the system is globally RT unstable, as the top solution is denser than the lower one. However, due to
the chemical reaction, a minimum appears in the reaction zone. This minimum can be considered as
a stabilizing barrier that prevents the convective patterns from developing downwards, and leads to
a breaking of the symmetry of the resulting Rayleigh-Taylor pattern.26 It must be noted that at larger
NaOH concentrations the pattern recovers the classical RT symmetry. Indeed, the system becomes
readily unstable as the characteristic hydrodynamic time is then shorter than the time scale related
to the chemical reaction. As a consequence, the stabilizing minimum in density does not have time
to develop. A genuine example of this fact is the symmetric dynamics exhibited by the system when
the concentration of the upper alkaline solution is 1 (solid curves in Fig. 5(b)).

D. Nonlinear simulations

A further confirmation of the dramatic influence of chemical processes in the symmetry of
hydrodynamic instabilities can be obtained by means of numerical simulations of the nonlinear
RDC systems (13)–(17). Following the experimental approach, we explore here spatio-temporal
scenarios observed in the transition from a DD regime to the RT instability by varying the initial
jump of density (ρ0

A − ρ0
B) between the two solutions. The initial concentration a0 is taken in the

range [0.38–0.42] with Ra/Rb = 2.5, keeping the concentration of the bottom solution b0 = 1
constant, which corresponds to scan the dimensionless density ρ ′ = Ra/Rba0 of the upper solution
in the interval [0.98–1.02] over a solution with unitary density (see Fig. 7, right panel). Within
this density range, the transition from the DD to the RT regime is smooth, as the density jump
is small and the effect played by the chemical reaction is large. As discussed in Sec. III C, if the
density jump between the two solutions is too large, the global dynamics then falls back into the
traditional non reactive hydrodynamic scenarios. We directly compare the spatio-temporal evolution
of the concentration fields in the reactive cases to the analogous non reactive scenarios obtained
by neglecting kinetic terms in Eqs. (13)–(15). A consistent comparison is made by using the same
general conditions and parameters (Ra = 2.5, δa = 0.64) both in the non reactive and reactive cases,
the latter ones also considering the parameters for the species C, Rc = 2.3, and δc = 0.48.

We compute the temporal evolution of the two separate contributions to the total mixing
length, L+

m = ztop − z0 and L−
m = zbottom − z0, whose magnitude gives the entity of the upward and

downward finger growth referred to the initial contact line at z0 = Lz/2. The definition of L+
m and

L−
m is based, in the numerics, on the transversely averaged value of the concentration profile a(x, z,

t) over the x-direction, at a given time t:45

〈a〉(z, t) = 1
Lx

∫ Lx

0
a(x, z, t) dx, (25)
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FIG. 9. Numerical non reactive double-diffusive pattern when the top solution A is less dense (ρ1 = 0.98, a0/b0 = 0.38, Ra

= 2.5) than the underlying solution B, and solute B diffuses faster than A (δa = 0.64). The numerical concentration map for
species A is reported at times 130, 180, 220, and 260. The size of the spatial domain is Lx = 250 × Lz = 400 and the aspect
ratio is preserved.

and, typically, ztop = sup{z : 〈a〉(z, t) ≤ 0.99} and zbottom = sup{z : 〈a〉(z, t) ≤ 0.01}. The mixing
length is computed with regard to the concentration of A, since it diffuses slower and provides
steeper concentration gradients for the identification of edge points. Time series for L+

m and L−
m is

built up by collecting ztop and zbottom as functions of time.

1. Double diffusion

We first consider the DD case starting from the initial density profile ρ1 shown in Fig. 7, right
panel. Figure 9 illustrates the emergence of fingers in the absence of any reactive process. Here, the
dynamics is followed by showing the concentration of species A. The distribution of B is similar
(though more blurry as this species diffuses here faster) and hence not shown. Note that, although the
experimental figures show refractive index fields, the dynamics of the concentration fields computed
numerically are similar, as the refractive index of the solution is related to its composition. In the
fully developed nonlinear regime, the finger growth is characterized by a symmetry with regard to
the initial position of the interface between the two reactants, represented as a white line in each
snapshot. The origin of this symmetry is intrinsic in the particular form of the equations and the
base-state profiles of the initial concentration, and is extensively discussed by Trevelyan et al.2

As found in the experimental results, this symmetry is broken by the chemical reaction as
illustrated in Fig. 10. The instability develops on a time scale comparable with the non reactive
case, nevertheless, the fingers exhibit a preferential growth in the upward direction. The breaking of

FIG. 10. Asymmetric reactive double-diffusive pattern affected by the reaction A + B → C (δc = 0.48, Rc = 2.3). All other
conditions are the same as in Fig. 9.
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FIG. 11. Symmetric non reactive Rayleigh-Taylor pattern. All conditions are the same as in Fig. 9 except that the top solution
A is now denser (ρ2 = 1.02, a0/b0 = 0.42) than the underlying solution B.

symmetry, favored by the formation of the salt according to the mechanism discussed in Sec. III C,
is quantitatively followed in Fig. 13(a) comparing the evolution of the mixing lengths L+

m and L−
m

for the reactive (squares) and non reactive (triangles) cases. The curves described by triangles are
consistent with a standard behavior due to a DD mechanism. After an initial period (∼200 time
units) driven by the diffusive process in which L+/−

m scale as
√

t , the system switches to a convective
linear growth L+/−

m ∼ vt . The mirror behavior delineated by L+
m and L−

m is clearly not preserved
when the interface dynamics is affected by the chemical reaction. In the reactive case, L+

m initially
follows that of the non reactive case, but diverges from it as soon as the system is controlled by the
convective instability. On the other hand, L−

m , negligible during the diffusive regime, only slowly
diverges from the initial reference position. The patterns obtained by numerical simulations closely
remind those found in the experiments.

2. Rayleigh-Taylor

When the starting concentration of solution A, a0, is increased beyond the threshold 0.4, the
upper layer of the system becomes denser than the bottom solution (see the profile ρ2 in Fig. 7,
right panel) and the resulting dynamics undergoes a RT instability. The onset and the development
of the density fingering are followed in Fig. 11. The distortion of the planar interface between the
two fluids is symmetric with respect to the initial contact line.

Here again, in the reactive case, the denser solute A is consumed to produce C of intermediate
density which, in turn, suppresses the finger formation along the downward direction (see Sec. III C)
as seen in Fig. 12. The peculiar asymmetry is highlighted by comparing the concentration map of A

FIG. 12. Asymmetric reactive Rayleigh-Taylor affected by the reaction A + B → C (δc = 0.48, Rc = 2.3). The same
conditions as in Fig. 11 are considered.
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FIG. 13. Upward (L+
m ) and downward (L−

m ) contribution to the total mixing length as a function of time for the (a) double-
diffusive and (b) Rayleigh-Taylor scenarios. Triangles trace the mixing length dynamics related to the pure hydrodynamic
instability, while squares follow the reactive case.

at the same times as in Fig. 11 and by tracing the dynamics of L+
m and L−

m as a function of time in
Fig. 13(b). Once more, the simulations are in agreement with the related experimental findings.

The parallel between Figs. 9–12 points out the strong similarity exhibited in the spatio-temporal
patterns of the RT or DD instability, both in the presence or absence of the chemical contribution.
This feature has already been discussed in a previous paper by Trevelyan et al.2 and was found to
be correlated to the similar topology of the ψ eigenfunctions in proximity of the interface, where
the instability actually develops. Physically this means that the density profiles at the basis of the
hydrodynamic flow present similar symmetries with a local minimum located at almost the same
position along the vertical direction, close to the initial interface. For the small initial density jump
considered here, the transition from the DD to the RT scenarios is smooth. Hence, the system can
be destabilized by an analogous wavelength, while different modes can be observed by further
increasing the density difference between the two layers. However, the RT instability develops faster
than the DD one as seen by comparing Figs. 13(a) and 13(b), since a longer time is needed for DD
to set in.

IV. CONCLUSIONS

We have analyzed, both experimentally and theoretically, the influence that a simple A + B →
C reaction can have on convective Rayleigh-Taylor and double-diffusive modes at the interface of a
solution of A overlying another miscible solution of B of different density in the gravitational field.
We have shown that the chemical reaction breaks the symmetry of the convective patterns in the
sense that the resulting fingers extend preferentially above the initial contact line for the acid/base
reaction chosen here, while they develop symmetrically around it in the non reactive case. This is
related to the fact that species A and B are consumed in the course of time to yield the product C of
different density.

We observe that, in the RT convective regime, the influence of the chemical reaction on the
pattern evolution loses importance when the endpoint density contrast increases. In other words, the
symmetry of the convective RT pattern is recovered when the upper solution is sufficiently denser
than the lower one for the chemical reaction to be ineffective to modify the RT instability. Further
quantitative studies to delineate the exact conditions for chemistry to be operative remain to be
developed.

Finally, we have also observed experimentally that within the reactive double diffusion regime,
a second striped pattern can develop later below the first fingered pattern. This second pattern can
be attributed to a secondary double diffusive instability between the slow diffusing reaction product
(NaCl) and the fast diffusing bottom reactant (HCl).
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These results point to the importance of taking chemical reactions into account in any modeling
of reactive fluid flow processes. If the reaction actively modifies a physical property of the fluid like
the density here, one cannot avoid taking the kinetics of the processes into account in the analysis of
the problem as clearly the symmetries of the pattern which develop and their nonlinear dynamics are
different than in the non reactive case. The understanding of this paves the way to a wealth of new
experimental and theoretical studies that should focus on deciphering the active role of chemical
reactions in the numerous applications in which Rayleigh-Taylor and double diffusion instabilities
are observed.
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17 L. Rongy, G. Schuszter, Z. Sinkó, T. Tóth, D. Horváth, A. Tóth, and A. De Wit, “Influence of thermal effects on buoyancy-

driven convection around autocatalytic chemical fronts propagating horizontally,” Chaos 19, 023110 (2009).
18 J. D’Hernoncourt and A. De Wit, “Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic

fronts,” Physica D 239, 819 (2010).
19 L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and R. Tripiccione, “Reactive Rayleigh-Taylor systems:

Front propagation and non-stationarity,” Europhys. Lett. 94, 54004 (2011).
20 K. Eckert and A. Grahn, “Plume and finger regimes driven by an exothermic interfacial reaction,” Phys. Rev. Lett. 82, 4436

(1999).
21 K. Eckert, M. Acker, and Y. Shi, “Chemical pattern formation driven by a neutralization reaction. I. Mechanism and basic

features,” Phys. Fluids 16, 385 (2004).
22 A. Zalts, C. El Hasi, D. Rubio, A. Ureña, and A. D’Onofrio, “Pattern formation driven by an acid-base neutralization

reaction in aqueous media in a gravitational field,” Phys. Rev. E 77, 015304(R) (2008).
23 K. Tanoue, H. Ikemoto, M. Yoshitomi, and T. Nishimura, “Instabilized heat and mass transfer in exothermic chemically

reacting flows,” Therm. Sci. Eng. 17, 121 (2009).
24 C. Almarcha, P. M. J. Trevelyan, P. Grosfils, and A. De Wit, “Chemically driven hydrodynamic instabilities,” Phys. Rev.

Lett. 104, 044501 (2010).

Downloaded 25 Jan 2013 to 164.15.129.100. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S0022112010005008
http://dx.doi.org/10.1017/S0022112001006504
http://dx.doi.org/10.1017/S0022112081001614
http://dx.doi.org/10.1029/96WR03811
http://dx.doi.org/10.1017/S0022112002008522
http://dx.doi.org/10.1017/S0022112002008522
http://dx.doi.org/10.1146/annurev.fl.26.010194.001351
http://dx.doi.org/10.5539/jgg.v3n1p42
http://dx.doi.org/10.1007/s12217-008-9022-7
http://dx.doi.org/10.1103/PhysRevE.83.046312
http://dx.doi.org/10.1017/S0022112009007666
http://dx.doi.org/10.1021/la00093a007
http://dx.doi.org/10.1063/1.4756930
http://dx.doi.org/10.1103/PhysRevE.85.015304
http://dx.doi.org/10.1017/S0022112007004673
http://dx.doi.org/10.1063/1.3122863
http://dx.doi.org/10.1016/j.physd.2009.07.004
http://dx.doi.org/10.1209/0295-5075/94/54004
http://dx.doi.org/10.1103/PhysRevLett.82.4436
http://dx.doi.org/10.1063/1.1636160
http://dx.doi.org/10.1103/PhysRevE.77.015304
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501


014103-18 Lemaigre et al. Phys. Fluids 25, 014103 (2013)

25 C. Almarcha, P. M. J. Trevelyan, L. A. Riolfo, A. Zalts, C. El Hasi, A. D’Onofrio, and A. De Wit, “Active role of a color
indicator in buoyancy-driven instabilities of chemical fronts,” J. Phys. Chem. Lett. 1, 752 (2010).

26 S. Kuster, L. A. Riolfo, A. Zalts, C. El Hasi, C. Almarcha, P. M. J. Trevelyan, A. De Wit, and A. D’Onofrio, “Differential
diffusion effects on buoyancy-driven instabilities of acid-base fronts: The case of a color indicator,” Phys. Chem. Chem.
Phys. 13, 17295 (2011).

27 C. Almarcha, Y. R’Honi, Y. De Decker, P. M. J. Trevelyan, K. Eckert, and A. De Wit, “Convective mixing induced by
acid-base reactions,” J. Phys. Chem. B 115, 9739 (2011).

28 K. Tsuji and S. C. Müller, “Chemical reaction evolving on a droplet,” J. Phys. Chem. Lett. 3, 977 (2012).
29 K. Eckert, L. Rongy, and A. De Wit, “A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational

acceleration,” Phys. Chem. Chem. Phys. 14, 7337 (2012).
30 L. Rongy, P. M. J. Trevelyan, and A. De Wit, “Dynamics of A + B → C reaction fronts in the presence of buoyancy-driven

convection,” Phys. Rev. Lett. 101, 084503 (2008).
31 L. Rongy, P. M. J. Trevelyan, and A. De Wit, “Influence of buoyancy-driven convection on the dynamics of A + B → C in

reaction fronts in horizontal solution layers,” Chem. Eng. Sci. 65, 2382 (2010).
32 S. H. Hejazi and J. Azaiez, “Stability of reactive interfaces in saturated porous media under gravity in the presence of

transverse flows,” J. Fluid Mech. 695, 439 (2012).
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