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1. Introduction

Sales catalogues prepared by Christies' and Sotheby's include pre-sale price estimates

established by experts. This makes it possible to analyze whether salerooms provide their

customers (consignors as well as buyers) with unbiased predictions of realized prices.

Intuition leads to conjecture that such estimates should be unbiased. Though a

seller may obviously like high pre-sale estimates, these may discourage buyers from

showing up at the sale: the estimate is not independent from the seller's reserve price,

which prospective buyers may then believe to be too high. On the other hand, a seller is

unlikely to accept low pre-sale estimates, since this depresses his/her reserve price, which,

as a rule, should be lower than the lower bound of the estimate.1 Therefore, one may think

that pre-sale prices should be unbiased estimates of actual sale prices. This argument is

made formal in Milgrom and Weber (1982) who show that in most auction models--first-

price, second-price and English auctions--, "honesty is the best policy" for the seller in the

absence of reserve prices. When these are introduced, the number of buyers may depend

on the details of the information which is released: if the information is favourable (resp.

unfavourable), more (resp. less) bidders will participate. However, it is also shown that the

seller can adjust the reserve price so that the "honesty result" will continue to hold.

One should also expect that all the information available to the experts is reflected

in the pre-auction prices.

The two assumptions are tested using a sample of some 1,600 lots of English silver

sold between 1976 and 1991 by Christie's and Sotheby's. Section 2 briefly describes the

dataset. Section 3 discusses the econometric model used to test for unbiasedness of pre-

sale estimates and presents the empirical results, which show that pre-sale prices are

biased, though the bias is quite small and can therefore be neglected in practice. In Section

4, we analyze whether experts use all the information that is available to them when they

make their estimates and show that this is not the case: their pre-sale estimates could

therefore be improved.

2. The data

Our estimates are based on a data set, collected by Dorchy (1992), consisting of 1,621

English silver coffee- and teapots, auctioned by Christie's and Sotheby's London between

1 This is at least announced as a rule by Christie's: "It is Christie's general policy that the reserve for any
lot shall not exceed its low pre-sale estimate." (Christie's sale catalogues, Information for Prospective
Buyers).
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1976 and 1990.2 The number of pieces sold varies between 242 in 1980 and 39 in 1976;

pieces were chosen in sales catalogues that were at hand; in principle, there should

therefore be no selection bias. For each piece, we collected a certain number of

characteristics, described in the sales catalogues (see Table 2), as well as pre-sale estimates

and hammer prices.

Since prices will play an important role in what follows, a brief description of the

data is in order. Salerooms publish a range for the pre-sale price estimate. Table 1 gives

over- and underestimations (p is the saleprice, p̂min and p̂max are respectively the

minimum and the maximum of the pre-sale price range). The proportion of hammer

prices that fall within the range varies between 49% (in 1982 and 1989) and 37% (in 1988

and 1990). Under- and overestimations vary more from year to year, but there seems to be

no "error correction mechanism" at work. We also checked whether there were

differences between "cheap" and "expensive" pieces,3 and, though the proportions vary

across time, there seems to be no obvious pattern. Details can be found in Table 1. Note

that the proportion of collectibles below the minimum estimate (p ≤ p̂min) is low, since it

includes only those lots which have reached the reserve price set by the seller. Unsold lots

are not included.

Table 1 Observed under- and overestimations
(in %)

____________________________________________________________________

p < p̂min p̂min ≤ p ≤ p̂max p > p̂max Nb of obs.

____________________________________________________________________

Christie's all 12.3 42.7 45.0 1,053
Sotheby's all 13.0 38.7 48.3 568

"Cheap" pieces 14.8 42.6 42.6 825
"Expensive" pieces 10.2 40.0 49.8 796

All together 12.6 41.3 46.1 1,621

____________________________________________________________________

Table 2 presents aggregate information on the sample, in particular, average

hammer prices by saleroom and the number of observations according to each categorical

variable (for instance, number of Queen Ann style objects, etc.). These variables are

defined in the next section, after equation (3.4).

2 London is the main market for silverware, and New York sales are not included in the database. It would
of course be interesting to check whether auctioneers in London and New York behave similarly or not.
3 The cutting point between "cheap" and "expensive" is the median price in each year.
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Table 2 Main characteristics of the data
(No. of items and average prices in £)

_____________________________________________________________________

No. of items or Average prices
sample means

________________________________

Sotheby's Christie's Both
_____________________________________________________________________

All items 1621 1480 1524 1509

Weight (in oz.) 27.5

Teapots 910 1216 1070 1126
Coffeepots 711 1799 2111 1998

Provenance
Without 1558 1343 1436 1403
With 63 5900 3462 4120

Goldsmiths
Unknown 819 1004 836 894
Moderately known 710 1834 1937 1899
Well-known 92 3295 4198 3962

Sty le
Queen Ann (1688-1713) 39 5118 5731 4939
George I (1714-1726) 86 6799 7730 7416
George II (1727-1759) 391 2088 2256 2195
George III (1760-1782) 258 1293 1118 1180
Regency (1783-1819) 389 658 557 596
George IV (1820-1829) 136 479 435 449
William IV (1830-1849) 159 571 508 532
Victorian (1850-1880) 72 610 453 499
Modern (post 1880) 91 467 316 353

Other characteristics
Arms 551 2231 2196 2208
No arms 1070 1100 1175 1148
Monogram 126 1063 1352 1242
No monogram 1495 1518 1538 1531
Stand 27 693 712 705
No stand 1594 1494 1538 1522
Other 201 1551 1449 1478
No other 1420 1472 1536 1513
_____________________________________________________________________

3. Testing for unbiasedness

In this section, we test whether pre-sale estimates are unbiased predictions of realized

prices. Let p̂i be the pre-sale estimate of the price of lot i. Unbiasedness requires that the
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best estimate be p̂i = E(pi | Ω), where Ω is the information set available to the expert. The

actual price pi will then be equal to

(3.1) pi = p̂i + ui;

ui is a random disturbance with zero mean and E(ui | Ω) should be equal to zero, implying

that the random disturbance is orthogonal to every variable contained in the information set

Ω, or that the estimate p̂i takes into account all the information contained in Ω.

It is straightforward to test whether p̂i is an unbiased prediction of pi. Indeed, one

could run a regression of realizations pi on estimates p̂i

(3.2) pi = α + βp̂i + υ1i

and test the hypothesis H0: {α = 0, β = 1}. If H0 is accepted, predictions are unbiased.4

We also assume that houses may behave differently in setting the pre-sale

estimate, but that this is not the case for the reserve price which is suggested by the seller

and not by the saleroom.5 Equation (3.2) is therefore extended to

(3.3) pi = αcδci + αsδsi + βcδcip̂ci + βsδsip̂si + υ1i,

where δci = 1 (resp. δsi = 1) if lot i is sold by Christie's (resp. Sotheby's), with δci + δsi =

1;6 the parameters are respectively (αc, βc) and (αs, βs) for Christie's and Sotheby's, while

p̂ic and p̂is are their pre-sale estimates. This specification makes it possible to take into

account possible differences in the behaviour of experts of both salerooms.

In our case however, the price pi is observed only if the lot is sold, that is, if there

are bids that reach the (unobserved) reserve price ri. Therefore, instead of the simple

model (3.3), we are led to consider the truncated regression model7 consisting of equation

(3.3), where the price pi is observed only if pi ≥ ri, as well as an equation which explains

the reserve price ri. The reserve price is a stochastic variable that is latent, but we observe

4 Note that, as is shown in Gouriéroux and Pradel (1986), this procedure can be used on cross section
data; for time series, this test may be invalid, if the disturbance υ1i is correlated with future predictions

p̂t+k, k > 0.
5 In reality, the reservation price is probably influenced by experts and may depend on the price estimate.
6 This parametrization is chosen, since it simplifes the presentation in what follows.
7 If our dataset contained observations on lots that were bought-in, we could maximize the likelihood
function of the censored version of the model. Both the censored and the truncated model lead to
consistent and asymptotically normal estimators of the parameters under usual regularity conditions. For
small samples, there is (limited) evidence that the ML estimates are not very different in the two cases.
See Wales and Woodland (1980).
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the variables that determine it; these are precisely the variables zk in the information set Ω.

The equation for the reserve price is therefore

(3.4) ri = Σkγkzki + υ2i,

where the γk's are parameters to be estimated; υ1i and υ2i are both random disturbances.

If errors are normal and homoskedastic, the maximum likelihood method can be used to

estimate model (3.3)-(3.4).8

The variables appearing in equation (3.4) are the following: (a) one dummy to

distinguish between teapots and coffeepots; (b) weight (in ounces); (c) a dummy that takes

the value one if the lot has a "good" provenance, i.e. if, in the past, it was owned by a well-

known collector or by some historical figure; (d) two dummies to distinguish unknown,

moderately known or well-known silversmiths;9 (e) eight dummies for styles (Queen Ann

to Modern); (f) four dummies for other possible characteristics, such as the presence of

arms, of a monogram, etc.). We also include a general price index for silverware, which is

constructed on the basis of an OLS regression of the prices of the 1,621 lots of the sample

on time dummies representing the year of sale,10 as well as characteristics.11 This two-step

procedure is used to avoid estimating 15 additional coefficients (15 annual dummies) in

equation (3.4). When estimating (3.4), the coefficient of the price index is constrained to

be equal to unity.

Finally, there remains the question of which value to choose for p̂, the value of the

pre-sale estimate. Intuition suggests the midpoint of the range (p̂max; p̂min) published in

the sales catalogues, but this might be a simplification since it assumes the distribution of

pre-sale estimates to be unimodal and symmetric. Note that this is the assumption used by

Ashenfelter (1989). We decided to let the data determine the pre-sale estimate by

specifying it as

(3.5)  p̂k = θkp̂k,min + (1-θk)p̂k,max, 0 ≤ θk ≤ 1, k = c, s.

8 See Maddala (1983), pp.174-178. If errors are not normal, estimates are inconsistent. Therefore, it
would be appropriate to estimate the parameters using a semi parametric technique that does not rely on
normality. No such technique is available yet. On the other hand, testing for normality cannot be done
using the observed skewness-kurtosis of the residuals, since the errors are truncated.
9 Silversmiths were classified by Mr. Brand Inglis, an English silver expert and collector. Instead of
classifying silversmiths into three categories, we could have used artist (silversmith) dummies, as is
usually done in hedonic regressions with paintings. However, in our case, the number of lots per artist
was often fairly small, and the estimated coefficients would have been very imprecise.
10 An alternative would be to use auction dummy variables. These were not available in our dataset.
11 See Chanel et al. (1992) for further details of the method, which, in essence, takes the form of a
"hedonic regression."
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This includes two additional parameters θc and θs (one for each saleroom) into equation

(3.3). The midpoint of the range corresponds of course to θ = 0.50, and it is possible to

test whether houses are different (H0: θc = θs) and whether the θ are significantly different

from 0.50 (H0: θc = θs = 0.50). 

Since we suspected errors in (3.3)-(3.4) to be heteroskedastic, we first ran a White-

test on the residuals of (3.3) estimated by OLS. The test detects the presence of very

strong heteroskedasticity, which is avoided if all variables are weighted. We chose as

weights the midpoint of the pre-sale estimate range (p̂max; p̂min).12

Estimation results are displayed in Tables 3 and 4. Table 3 provides the results of

equation (3.3) estimated both by OLS and ML, when θc = θs = 0.50 and when the θ are

left unrestricted.13 As can be checked, the results with θ = 0.50 (midpoint of the range) or

with θ free are very close. In both the OLS and the ML cases, all the tests show that the

hypotheses H0: θc = θs and H0: θc = θs = 0.50 cannot be rejected at the 5% probability

level. The intuitive view that the best value of the pre-sale estimate is the midpoint of the

range seems thus acceptable.

Therefore, in order to simplify the presentation, we concentrate our discussion on

the case in which we impose the restriction θc = θs = 0.50. Complete results are given in

Table 4 and include: (1) the OLS estimation of equation (3.3) (OLS); (2) the maximum

likelihood estimation of the truncated model (3.3)-(3.4) (ML1); (3) the results for the

same model, in which we assume that Christie's and Sotheby's behave identically (ML2);

(4) the results for the same model, with the restriction that houses behave identically and

that estimates are "unbiased" (ML3). Results can be summarized as follows:

(i) OLS results reject unbiasedness: the F-statistic for the hypothesis H0: {αc = αs = 0; βc

= βs = 1} is equal to 111.4, while the tabulated value with 4 and 1,617 d.f. is equal to 3.30

at the 1% probability level.

(ii) The coefficients for the reserve price equation (3.4) are roughly the same in equations

(2), (3) and (4) of Table 4, and lead to reasonable results: Weight has a positive and

significant influence. Good provenance does not seem to matter. The reason is probably

due to the fact that the variable is very imprecise: Good provenance may go unobserved if

the seller wishes to remain anonymous.14 The reserve price for well-known silversmiths is

12 We could also have chosen p̂ = θp̂min + (1-θ)p̂max, where θ is the unknown coefficient. This would
have made the model highly nonlinear, and we chose to simplify estimation somewhat. Actually, what
matters here is to remove heteroskedasticity, and this weighting does so.
13 Estimated coefficients for (3.4) are not shown in the ML results of Table 3. They are given in Table 4
for the case θc = θs = 0.50. The corresponding results for θ unrestricted are almost the same.
14 The dummy variable (well-known collector or not) is constructed on the basis of the information
provided by the pre-sale catalogue.
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higher than for moderately known and unknown artists, though not significantly so. Most

of the style coefficients in equations (2), (3) and (4) are not significantly different from

zero, though Wald and likelihood ratio tests strongly reject the hypothesis that style

coefficients have no effect (i.e.  are equal to zero) (see Table 5): They point to the fact that

reserve prices are generally lower for more recent pieces. Some special characteristics,

such as a monogram, increase the reserve price significantly. On the contrary, the presence

of a stand has a strong negative effect on the reserve price; though this may be due to the

items included in our sample, it is consistent with the data presented in Table 2, which

shows that an object with a stand is some £700 to £800 cheaper than the average object.15

Table 3 Estimation results for model (3.3)-(3.4)
Testing for the value of θ in p̂ = θp̂min + (1-θ)p̂max

______________________________________________________________________

(1a) OLS (1b) 0LSa  (2a) ML (2b) ML
θ = 0.50 θ unrestricted θ = 0.50 θ unrestricted

_______________________________________________________

Coeff. St.dev. Coeff. St.dev. Coeff. St.dev. Coeff. St.dev.
______________________________________________________________________

αc 18.87 (4.99) 18.65 (5.06) 15.06 (7.56) 14.89 (7.58)
αs 13.79 (11.61) 14.88 (11.62) -71.42 (23.95) -68.84 (23.89)
βc 1.17 (0.02) 1.16 (0.05) 1.05 (0.03) 1.03 (0.07)
βs 1.20 (0.03) 1.09 (0.07) 1.14 (0.04) 1.05 (0.10)

θc 0.50 - 0.47 (0.14) 0.50 - 0.44 (0.21)
θs 0.50 - 0.15 (0.21) 0.50 - 0.17 (0.31)

Likelihood function -966.33 -964.43 -851.69 -850.96

H0: θc = θs
Wald test χ2(1) = 1.61 χ2(1) = 0.52
LR test χ2(1) = 1.68 χ2(1) = 0.92

H0: θc = θs = 0.50
Wald test χ2(2) = 2.80 χ2(2) = 1.23
LR test χ2(2) = 3.80 χ2(2) = 1.46

______________________________________________________________________
aThis is the result of an estimation using non-linear least squares.

(iii) The hypothesis that Christie's and Sotheby's behave identically is strongly rejected

and so is the hypothesis that either house is unbiased. Obviously the hypothesis that both

15 Estimations which were run without these items are very close to those which include them. The
"stand" dummy seems thus to capture the effect well enough.
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houses provide unbiased estimates and behave identically is also rejected. The Wald and

the likelihood ratio tests for these hypotheses are given in Table 5.

Table 4 Estimation results for model (3.3)-(3.4)
Testing for the unbiasedness of pre-sale estimates (θc = θs = 0.50)

______________________________________________________________________

(1) OLS (2) ML1 (3) ML2 (4) ML3
Houses identical Houses identical

and unbiased
_______________________________________________________

Coeff. St.dev. Coeff. St.dev. Coeff. St.dev. Coeff. St.dev.
______________________________________________________________________

αc 18.87 (4.99) 15.06 (7.56) 17.03 (6.31) 0.00 -   
αs 13.79 (11.61) -71.42 (23.95) 17.03   (6.31) 0.00 -   
βc 1.17 (0.02) 1.05 (0.03) 1.06 (0.02) 1.00 -   
βs 1.20 (0.03) 1.14 (0.04) 1.06   (0.02) 1.00 -   

Teapots .00 -   .00 -   .00 -   
Coffeepots 101.15 (27.07) 147.98 (30.92) 107.76 (23.62)

Weight (in oz.) 5.29 (0.70) 5.87 (0.76) 5.83 (0.71)

No provenance .00 - .00 - .00 -
Provenance -1.95 (28.64) 16.28 (30.03) 0.70 (27.81)

Unknown .00 -  .00  -   .00 -   
Moderately known 27.28 (15.53) 26.25 (19.83) 24.22 (16.16)
Well-known 75.39 (70.45) 100.30 (71.34) 93.43 (70.00)

Queen Ann (1688-1713) .00 -   .00 -   .00 -   
George I (1714-1726) 214.30 (137.00) 233.43 (135.15) 233.78 (142.59)
George II (1727-1759) 50.63 (104.44) 35.34 (106.31) 56.43 (109.62)
George III (1760-1782) 53.60 (102.32) 50.88 (103.30) 55.13 (107.81)
Regency (1783-1819) -25.93 (100.91) -31.60 (100.71) -36.35 (106.70)
George IV (1820-1829) -54.51 (104.40) -135.23 (134.67) -60.07 (109.50)
William IV (1830-1849) -64.63 (104.08) -105.78 (107.44) -66.00 (109.19)
Victorian (1850-1880) -47.20 (106.73) -101.32 (109.50) -48.86 (110.42)
Modern (post 1880) -102.22 (104.83) -148.25 (105.71) -119.45 (109.55)

No special charact. .00 -   .00 -   .00 -   
Arms -11.52 (18.48) -4.25 (23.65) -5.69 (19.05)
Monogram 49.73 (22.15) 69.82 25.76 (54.09) (23.04)
Stand -778.06 (337.64) -768.22 (350.68) -766.40 (337.34)
Other 79.63 (24.86) 120.23 (30.95) 89.57 (23.19)

Intercept -83.75 (101.43) -121.33 (100.64) -80.82 (106.73)

St. dev. of resid. of eq. (3.3) 0.50 (0.01) 0.49 (0.01) 0.52 (0.01)
St. dev. of resid. of eq. (3.4) 0.29 (0.02) 0.28 (0.03) 0.32 (0.02)

Likelihood function -966.33 -851.69 -861.22 -872.07
______________________________________________________________________
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Table 5 Testing of hypotheses
 (θc = θs = 0.50)

____________________________________________________________

H0 Wald-test LR-test χχχχ2-critical Result
value (1%)

____________________________________________________________

Style coefficients
(all 8 coefficients are zero) 40.8 29.1 20.1 rejected

Both houses "identical"
(αc = αs; βs = βs) 16.2 19.1 9.2 rejected

Unbiasedness Christie's
(αc = 0; βc = 1) 18.6 13.3 9.2 rejected

Unbiasedness Sotheby's
(αs = 0; βs = 1)  12.4 12.8 9.2 rejected

Both houses "identical"
and unbiased
(αc = αs= 0; βc = βs = 1) 44.5 40.8 13.3 rejected

____________________________________________________________

We therefore consider equation (2) of Table 4 to be our basic result. Unbiasedness

of price estimates is strongly rejected for both houses, though, as can be seen from Table

4, the bias is not very large; equation (3.3) is

p = 15.06 + 1.05 p̂ for Christie's

and

p = -71.42 + 1.14 p̂ for Sotheby's.

Christie's has a tendency to underestimate systematically, while Sotheby's

overvalues inexpensive (worth less than £ 510) pieces and undervalues expensive ones

(worth more than £ 510). This finding is consistent with the observation that globally, in

both houses, 46% of the objects are sold at values above the maximum estimate (see Table

1).

The results which appear in the last column of Table 3 could lead to the

impression that when θ is left unrestricted for each saleroom, there is no bias. If we do not

impose this restriction, the outcomes of the tests of Table 5 are unchanged, except in one

case: Christie's pre-sale estimates are found to be unbiased (the LR statistic is 3.94

instead of 13.3) with p = 14.89 + 1.03 p̂, which is not very different from above. The

complete set of tests when θ is left unrestricted is given in Table 6. It shows that the

evidence against unbiasedness, while still present, is less strong than in Table 5.
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Table 6 Testing of hypotheses
 (θc, θs unrestricted)

____________________________________________________________

H0 Wald-test LR-test χχχχ2-critical Result
value (1%)

____________________________________________________________

Style coefficients
(all 8 coefficients are zero) 40.6 28.9 20.1 rejected

Both houses "identical"
(αc = αs; βs = βs) 15.2 20.3 9.2 rejected

Unbiasedness Christie's
(αc = 0; βc = 1) 4.4 3.9 9.2 accepted

Unbiasedness Sotheby's
(αs = 0; βs = 1)  8.7 9.9 9.2 rejected

Both houses "identical"
and unbiased
(αc = αs= 0; βc = βs = 1) 18.6 16.7 13.3 rejected

____________________________________________________________

4. Orthogonality of the information set and the estimates

We can obviously not exclude that the equation for the unobserved reserve price is

misspecified: Indeed, experts have a chance to look at the lot, can judge its quality and its

"beauty," which is hardly described by the rather limited set of characteristics that we use

in equation (3.4).

Nevertheless, one may wonder whether the characteristics which are described in

the sales catalogues are fully taken into account by experts in their pre-sale assessments.

This assumption can be examined by testing whether characteristics are orthogonal to

errors made in estimating prices; this implies running a regression of forecasting errors pi

- p̂i on characteristics zki

(4.1)  pi - p̂i = Σkφkzki + εi,

and testing H0: φk = 0, all k. However, as before, pi - p̂i is observed only if pi ≥ ri, and

OLS estimates of (4.1) would be inconsistent (since ε has an expectation which depends
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on the zk's and on p̂, given the truncation condition). To correct for this inconsistency, we

estimate (4.2) instead of (4.1):16

(4.2)  pi - p̂i = Σkψkzki + λwi + εi,

where λwi is the conditional expectation of ε given that pi ≥ ri and wi is the inverse Mills

ratio:

(4.3) wi = 
φ[(αcδci+αsδsi+βcδcip̂ci+βsδsip̂si -Σkγkzki)/(σ

2
1+σ2

2)1/2]

Φ[(αcδci+αsδsi+βcδcip̂ci+βsδsip̂si -Σkγkzki)/(σ
2
1+σ2

2)1/2] 
.

In (4.3), φ(.) and Φ(.) are the normal density and the cumulative normal respectively, and

the parameters αc, αs, βc, βs, γk, as well as the variances of the residuals σ2
1 and σ2

2 of the

two equations are set at the values estimated in eq. (2) of Table 4, since these are consistent

estimates (under normality). To correct for heteroskedasticity, all the variables in (4.2) are,

as before weighted by the midpoint value of the pre-sale estimate range.

The result of this regression is given in the first two columns of Table 7.

Orthogonality now simply consists in testing H0: ψk = 0, all k, using an F-test, thus

comparing the residual variance of (4.2) with that of model

(4.4) pi - p̂i  =  λwi + ζi.

The value of the F-test is 4.74 (with 1,602 and 17 degrees of freedom)17 and shows that

the zk characteristics are not orthogonal to the prediction errors: Experts do not take into

account all the information contained in the characteristics.

However, in this test, we assume that experts can correctly predict the time trend

also, which is probably too demanding. Therefore, we ran the same test, introducing time

dummies among the variables, so that model (4.2) now reads

(4.5)  pi - p̂i  = Σtδtyti + Σkψkzki;p̂i)  +  λwi  + ζi,

where yti is a dummy equal to unity if the sale i took place in year t, and is equal to zero

otherwise, and δt is the corresponding regression coefficient. This formulation makes it

possible to take into account the fact that experts may have mispredicted the actual time

trend. Again, orthogonality consists in testing H0 : ψk = 0, all k. The resulting F-statistic

16 See Bloom and Killingsworth (1985).
17 A White test was run and in both cases, and heteroskedasticity is strongly rejected.
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Table 7 Orthogonality between forecasting errors
and characteristics (θc = θs = 0.50)

___________________________________________________________________

Without time correction With time correction
Coeff. St. dev Coeff St. dev.

____________________________________________________________________

Teapots 0.00 -  0.00 -  
Coffeepots 3.91 (10.41) 4.36 (10.22)

Weight (in oz.) 1.56 (0.36) 1.82 (0.35)

No provenance 0.00 - 0.00 -
Provenance -15.62 (16.04) -7.00 (15.84)

Unknown 0.00 -  0.00 -  
Moderately known 15.20 (7.76) 19.31 (7.63)
Well-known 45.84 (40.78) 34.92 (39.81)

Queen-Ann 0.00 -  0.00 -  
George I 148.74 (98.88) 176.69 (96.75)
George II -52.13 (70.40) -21.56 (69.02)
George III -59.49 (69.58) -2.22 (68.45)
Regency -86.16 (68.85) -43.84 (67.66)
George IV -86.99 (69.16) -46.73 (67.95)
William IV -85.39 (69.25) -56.97 (67.98)
Victorian -72.41 (69.63) -34.88 (68.36)
Modern -100.89 (69.01) -58.49 (67.85)

No special charact. 0.00 -  0.00 -  
Arms 16.16 (7.97) 11.09 (7.87)
Monogram 13.48 (13.79) 9.92 (13.66)
Stand 104.69 35.35 73.18 (34.71)
Other 27.74 (12.20) 43.11 (12.16)

Inv. Mills ratio 21.57 (7.62) -27.15 (9.64)

Time dummies -  -  yes

Intercept 85.35 (69.03) 22.10 (68.55)

Residual sum of squares
Full model 316.6 297.4
Model with ψk = 0 332.5 315.7

F-test (17 and n d.f.)* 4.74 5.76
n 1,602 1,587

____________________________________________________________________
* The critical value at the 1% probability level is 2.0.
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is equal to 5.76 (with 1,587 and 17 d.f.) with the same result as before: Even if experts are

"forgiven" for possible errors they make in estimating the trend, they can be seen as not

using all the information they have access to.18

5. Conclusions

Estimates of pre-sale prices made by experts are significantly biased (especially if the pre-

sale estimate is taken as the midpoint of the high and low estimates), though the bias is

rather small. Sotheby's overestimates low prices (less than £510) and underestimates high

prices. One possible explanation is that Sotheby's wishes to shun buyers of cheap

collectibles by predicting higher prices, and attract others by predicting lower prices.

Christie's has a tendency to undervalue more systematically. For both houses, the

undervaluation is larger the more expensive the collectible, and this is consistent with a

behaviour by which salerooms try to make more attractive the objects they sell.19 This

conclusion is somewhat less optimistic than Ashenfelter's (1989) who considers that

"auctioneers do seem to provide genuine expertise in predicting prices," and is at odds

with the theoretical prediction of Milgrom and Weber (1982). This bias is smaller if the

pre-sale estimate is not taken as the midpoint of the high-low range. But this can also be

considered as odd, since the midpoint is an intuitive choice, and one can hardly explain

why experts would not center their range on their best price prediction.

An even more surprising fact is that experts do not seem to take fully into account

the information that is contained in the sales catalogues which they set up before the

sale.20 The results of Section 4 show that their prediction error could be reduced by

making better use of this information. This is somewhat at variance (but not in

contradiction) with Ashenfelter's remark that "the auctioneer's price estimates are far better

predictors of the prices fetched than any hedonic price function." Our result seems to

imply that auctioneers could provide better pre-sale estimates by adding to their

information the one that is given by hedonic functions (e.g. large differences between the

hedonic prediction and the pre-sale estimate could at least trigger experts to wonder why

this happens).

18 Alternatively, the information provided in the catalogues may be irrelevant in the estimation process,
but then one may wonder why it is collected and published.
19 In a rational world, this should be well-known by buyers!
20 See Beggs and Graddy (1997) for a similar result.
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