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Abstract—A multiprocessor scheduling algorithm named
U-EDF, was presented in [1] for the scheduling of periodic tasks
with implicit deadlines. It was claimed that U-EDF is optimal for
periodic tasks (i.e., it can meet all deadlines of every schedulable
task set) and extensive simulations showed a drastic improvement
in the number of task preemptions and migrations in comparison
to state-of-the-art optimal algorithms. However, there was no
proof of its optimality and U-EDF was not designed to schedule
sporadic tasks.

In this work, we propose a generalization of U-EDF for the
scheduling of sporadic tasks with implicit deadlines, and we
prove its optimality. Contrarily to all other existing optimal
multiprocessor scheduling algorithms for sporadic tasks, U-EDF
is not based on the fairness property. Instead, it extends the main
principles of EDF so that it achieves optimality while benefiting
from a substantial reduction in the number of preemptions and
migrations.

I. INTRODUCTION

Nowadays, the current trend in the embedded industry is
toward the utilization of multicore/multiprocessor platforms.
Although such multicore platforms offer enhanced computa-
tional capabilities compared to traditional single core systems,
the presence of several shared cores required a shift in the
earlier design of scheduling algorithms. This introduced a
plethora of new (and sometimes unexpected) challenges.

The question of “optimality” (i.e., ability of a particular
scheduling algorithm to meet all deadlines of all tasks for any
schedulable task set) quickly became one of the primary con-
cerns in the design of multiprocessor scheduling algorithms.

Although schedulers like the Earliest Deadline First (EDF)
algorithm are optimal on a single core platform, they were
never extended to the scheduling of sporadic tasks on mul-
tiprocessor while keeping their optimality. However, despite
this loss of optimality on multiprocessor, the simplicity of
its scheduling rules on the one hand and the low scheduling
overheads that it features on the other hand have motivated the
research community to consider EDF as a reference. Several
extensions of EDF to multiprocessor can be found in the
literature and we refer the interested reader to [2]–[5] for
further details.

Concurrently, during the past few years, we have witnessed
the emergence of complex algorithms that fairly distribute the
computing capacity of the platform to tasks [6]–[11]. Most of
them, although shown to be optimal on multiprocessor, incur

nevertheless high scheduling overheads, thereby limiting their
possible deployment in real-world applications.

In this work, we propose an optimal extension of EDF
to multiprocessor (named U-EDF) which is optimal for the
scheduling of sporadic tasks with implicit deadlines. In con-
trast with other existing algorithms, U-EDF is not based on
the fairness property, but instead uses the main principles
of EDF so that it achieves optimality while benefiting from
a substantial reduction in the number of preemptions and
migrations compared to other optimal algorithms.
Related Works
The first optimal scheduling algorithm on multiprocessor
platforms considered periodic task sets. This solution named
Proportionate Fairness (PFair) was, as its name implies, based
on a fair distribution of the processing capacity between tasks
(i.e., each task being executed proportionally to its utilization
factor) [12], [13]. Many PFair algorithms were designed over
the years (e.g., PD [14], PD2 [6], ER-PD [7]). However, al-
though the fairness property ensures the optimality, it generates
an extensive amount of preemptions and migrations, thereby
limiting its applicability.

More recently, it has been noted that imposing a fair
progress in task executions at each and every time instant t
was too restrictive; imposing the fairness constraint only at
task deadlines suffices to reach the optimality [8], [10]. From
this observation, a new family of schedulers called DP-Fair [8]
(or Boundary fair [10]) has been proposed. One may cite DP-
Wrap [8], LLREF [9] or BF [10] as some algorithms following
this refined concept.

Andersson, et al. went even further with the EKG algorithm,
grouping tasks into servers [11]. Servers are scheduled in
a DP-Fair manner but component tasks of each server are
executed according to the EDF algorithm. It has been proven
that EKG is optimal for the scheduling of periodic tasks.

Very recently, Regnier et al. presented the RUN algo-
rithm [15], which reduces the multiprocessor scheduling prob-
lem to a uniprocessor schedule using a dualization technique.
This algorithm is, to the best of our knowledge, the only
solution different from ours (i.e., U-EDF), which does not
use any fairness assumption but is nevertheless optimal for
the scheduling of periodic tasks on multiprocessor. However,
this approach does not handle sporadic tasks yet.

Finally, a previous version of the U-EDF algorithm was



presented in [1] showing a drastic improvement of the number
of preemptions and migrations due to the fairness release.

An interesting observation issued from the study of all the
aforementioned algorithms, is the fact that the number of pre-
emptions and migrations decreases as the fairness constraint
is relaxed. The impact is even amplified when EDF rules
are incorporated in the scheduler. That is, PFair algorithms
cause much more overheads than Boundary Fair (or DP-
Fair) approaches which in turn are more costly in terms of
preemptions than EKG. Finally, it was shown that RUN and
U-EDF dominate all these algorithms [1], [15].

Amongst the previously cited algorithms, some of them
were successfully extended to the scheduling of sporadic tasks
while keeping their optimality (e.g., PD2 and ER-PD [6], DP-
Wrap [8] and LLRE-TL [16]). On the other hand, RUN applies
only to periodic task sets, and the sporadic generalizations of
EKG [17], [18] are optimal only in some particular configura-
tions which often cause an extensive amount of preemptions
and migrations [19].

Hence, we can observe that, so far, the only scheduling
algorithms that are optimal for the scheduling of periodic and
sporadic tasks are based on the notion of fairness.

In this work, we extend the U-EDF algorithm to the schedul-
ing of sporadic tasks with implicit deadlines and prove its op-
timality. Hence, we propose an optimal algorithm for sporadic
tasks extending EDF to multiprocessor, in the sense that it
reduces to EDF on uniprocessor platforms. As a consequence,
U-EDF competes very well with other generalizations of EDF
with respect to the number of preemptions and migrations,
while preserving the optimality for the scheduling of periodic
and sporadic tasks.

II. MODEL

We tackle the problem of scheduling a real-time system τ
composed of n tasks {τi, τ2, ..., τn} on m identical processors
π1, π2, . . . , πm assuming a continuous-time model. Each task
τi

def
= 〈Ci, Ti〉 is a sporadic task characterized by a worst-

case execution time (WCET) Ci and a minimum inter-arrival
time Ti, with the interpretation that each task τi generates a
potentially infinite sequence of jobs, each job has a WCET
of Ci time units and every two consecutive jobs of τi are
released at least Ti time units apart. A job of any task τi has
to complete its execution before its deadline occurring Ti time
units after its release, i.e., prior to the potential release of its
next job. This requirement is known as the “implicit deadline”
task model.

The utilization of a task τi is defined as Ui
def
= Ci

Ti
. We

assume that Ui is not larger than 1 for every task τi in τ .
Informally, the utilization of a task represents the highest
percentage of time the task may use a processor (by releasing
one job every Ti time units and executing each such job
for Ci time units). The total utilization U of the system is
defined as the sum of all the task utilizations: U def

=
∑
τi∈τ Ui.

Roughly speaking, this quantity represents a lower-bound on
the number of processors needed to successfully schedule the
sporadic system τ .

We define the active job of τi at time t (if any) as the job of
τi that arrived before or at time t and has its deadline strictly
after t. From this definition we say that a task is active at time
t if it has an active job at time t. Since we are considering
implicit deadline tasks, each task has at most one active job
at any time t. Hence, without any ambiguity we can refer to
the deadline di(t) of a task τi at time t as:

• the deadline of the current active job of τi at time t if τi
is active;

• di(t) = t if τi is not active at time t.

We say that a task τk has a higher priority than a task τi if
and only if dk(t) < di(t) or dk(t) = di(t) ∧ k < i. That is,
tasks are prioritized according to EDF. Notice that following
the definition of the task deadline at time t, tasks that are not
active at time t have the highest priority. This particularity will
be further motivated in the next section.

We define the higher priority tasks set hpi(t) (respec-
tively the lower priority tasks set lpi(t)) as the set of tasks
with higher (respectively lower) priorities than task τi at time
t (we recall that, in this particular case, terms job and task can
be used interchangeably since each task has at most one active
job at each instant t). Notice that, due to the definition of the
deadline of a task at time t, the higher priority tasks set hpi(t)
of an active task always contains the tasks that are not active
at time t (i.e., tasks with a deadline dx(t) = t). Since EDF is
used to prioritize tasks, the content of hpi(t) and lpi(t) may
be altered by every new job release.

Finally, at any instant t, we define the (worst-case) remain-
ing execution time reti(t) of τi as the (maximum) number
of time units the active job of τi still has to execute before its
deadline di(t). If τi is not active at time t then reti(t) = 0.

III. U-EDF: ALGORITHM INTUITION

In order to give the intuition lying behind the U-EDF
algorithm, in the remainder of this section, we distinguish
between the scheduling of jobs and tasks. Scheduling a set
of jobs assumes that all job release times are known at design
time for the whole system lifespan. In contrast, scheduling
sporadic tasks only assumes that the inter-arrival time between
two job releases of a same task is known beforehand. That
implies that the schedule cannot be constructed offline, since
scheduling decisions depend on the actual job arrivals.

A. Scheduling jobs

The Earliest Deadline First (EDF) algorithm optimally
schedules any feasible set of jobs on a uniprocessor plat-
form [20]. As its name implies, this algorithm gives the highest
priority to the active job with the earliest deadline.

In the next two paragraphs, we present two possible gener-
alizations of EDF to multiprocessor (i.e., both reduce to EDF
when the platform is composed of only one processor): the
first generalization is said to be “vertical” and the second
“horizontal”.



(c)

(d)

(e)

2 3 3

2

3

1 2

2 1 2

3

1

1

3

1 3

3 3

1 2
0

(a)

(b)

1 3

2

21

3

3

2 4 6 8 10
d2
d1

d3

0 2 4 6 8 10
d2
d1

d3

Fig. 1: (a-b) Two possible generalizations of EDF on multi-
processor: (a) Vertical generalization (G-EDF); (b) Horizontal
generalization.
(c-d) Generation of the U-EDF schedule at time 0: (c) Allo-
cation and reservation scheme at time 0. (d) Actual schedule
if no new job arrives before 10. (e) Effective schedule with
processor virtualisation.

1) Vertical Generalization: The straightforward generaliza-
tion of EDF to multiprocessor platforms is certainly global
EDF (G-EDF). With G-EDF, jobs are still prioritized accord-
ing to their deadlines and, at any instant t, the m processors
of the platform are allocated to the m active jobs of highest
priorities. Informally, we qualify this allocation rule as being
vertical for the following reason: at time 0, this G-EDF
scheduling rule schedules the highest priority job on the first
processor and likewise, the kth highest priority job is scheduled
on the kth processor (1 ≤ k ≤ m). That is, in the usual
representation of a schedule (see Figure 1), the m highest
priority jobs are assigned to processors “from top to bottom”.

Unfortunately, as shown in the following example, G-EDF
is not optimal on multiprocessor.
Example: Let us consider a platform composed of two proces-
sors and the three jobs J1 = 〈2, 6〉 , J2 = 〈3, 6〉 , J3 = 〈9, 10〉,
where each tuple 〈c, d〉 describes the computation time c and
the deadline d of a job (as we consider jobs and not tasks, we
do not specify any period). We assume that all these jobs are
released at time 0. Using G-EDF to schedule them, we can see
on Figure 1(a) that J3 misses its deadline. The reason being
that G-EDF always executes the highest priority jobs as soon
as possible without caring for what could happen afterward.
Consequently, after executing J1 and J2, it is already hopeless
for J3 to meet its deadline unless J3 could execute in parallel
on both processors.

2) Horizontal Generalization: We should note that, EDF
schedules highest priority jobs sequentially whereas G-EDF
executes these same jobs in parallel. The rationale behind this
parallel execution scheme is the will to execute highest priority
jobs as soon as possible, in spite of the possibly negative

impact on the future execution context.
But why should we hurry and start using more than one

processor when it is not needed? An alternative approach
consists in scheduling highest priority jobs (i.e., jobs with
earliest deadlines) sequentially on the first processor, and start
to allocate π2 only if processor π1 cannot afford to schedule all
jobs while respecting their deadlines. The idea is to maximize
the workload executed by the first processor before starting to
use the second one. Similarly, we will maximize the workload
assigned on both π1 and π2 before starting to allocate the third
processor π3.
Example: Consider the same platform and three jobs as in
the previous example. The “horizontal” extension is illustrated
on Figure 1(b). Similarly to Figure 1(a), the first job J1 is
executed on π1 between instants 0 and 2. However, contrarily
to G-EDF, the job J2 is also allocated to processor π1 between
instants 2 and 5 (instead of processor π2 in G-EDF). The
objective of this new approach is to maximize the workload on
the already-allocated processors (here π1) before using another
processor (here π2). Five work units are then allotted to J3

on π1, up to its deadline d3. Obviously, we cannot further
schedule J3 on π1 without missing its deadline. Hence, we
consider that π1 is “full”, and continue the execution of J3 on
π2, from time 0 to 4.

In contrast to G-EDF which vertically extends EDF, this
generalization of EDF may be seen as being horizontal.
Indeed, as shown in Figure 1(b) and previously detailed in our
example, after scheduling J1 on π1, we schedule J2 on the
same processor, directly after the completion of J1. The second
processor π2 starts being allocated to a job only if this job
cannot be entirely executed on π1 by its deadline. Jobs are thus
disposed one by one on the processors (following EDF), in a
horizontal manner (similar to the algorithm proposed in [21]).

This horizontal approach is in line with the volition of
EDF as it tries to maximize the amount of work executed by
jobs of highest priorities before their respective deadlines. The
difference between G-EDF and this “horizontal” generalization
is that G-EDF is driven by the aforementioned will to execute
jobs as soon as possible whereas the “horizontal” scheduler
executes as much as possible on as few processors as possible.

B. Scheduling tasks

Unfortunately, the horizontal schedule presented above must
be constructed offline. Furthermore, it needs to know every
job arrival beforehand. However, exact release times cannot
be known a priori when considering sporadic tasks. Therefore,
we propose a new scheduling algorithm divided in two phases:
• First, whenever a new job is released, the “horizontal”

technique is used to pre-assign the active jobs to proces-
sors. During this pre-assignation, extra time proportionate
to the utilization factor Ui of every task τi is preventively
reserved on the platform in any time interval following
the deadline of every task τi. The idea is to save enough
computing resources for the future jobs that might poten-
tially be released and interfere with the schedule of the
currently active jobs.



• Then, according to the allocation decided during the first
phase, active jobs are executed on each processor, using
a slight variation of EDF that avoids parallel execution
of a same job (see Section IV-B).

Example: In Figure 1(c), once τ1 has been assigned to π1,
we reserve (in gray on the figure) a fraction 1/3 of the
processor time (U1 = 1/3) for the execution of future jobs
of τ1 that might be released after its current deadline. Then,
τ2 is assigned to π1, and we reserve an half (U2 = 1/2) of a
processor for the possible future job it might release after its
deadline at time 6. Finally, τ3 is allocated by filling the gaps,
first on processor π1 up to its deadline, and then on π2.

Note that during the scheduling phase, the time reserved
for future jobs (in gray on Figure 1) will actually be utilized
only if new jobs arrive. On the other hand, if no new job
is released by τ1 or τ2, task τ3 will just keep on running as
shown in Figure 1(d).

This new scheduling algorithm composed of these two
phases is called U-EDF.

It is important to understand that the schedule presented on
Figure 1(d) might be modified if new jobs are released. Indeed,
U-EDF recomputes the task allocation whenever a new job
arrives in the system.

Furthermore, the reader probably noticed that, on
Figure 1(d), τ3 instantly migrates from π2 to π1 at time
5, and inversely at time 7. A virtual processor mechanism
presented in [1] avoids these pointless migrations and
produces the schedule illustrated in Figure 1(e).

At this point of the paper, we can understand why the
deadline of a non-active task at time t is set to t. In this case
every non-active task has the highest priority (i.e., tasks are
prioritized using EDF and no task can have a current deadline
smaller than t following the definition given in Section II).
Since U-EDF allocates processor time to tasks in a decreasing
priority order, it means that the first action taken by U-EDF is
to reserve some time (proportionally to the utilization of non
active tasks) for the scheduling of future jobs that non active
tasks could possibly release after t. Therefore, we are certain
to save enough time on processors for the schedule of future
jobs of non active tasks before starting to allocate time to the
active tasks.

IV. U-EDF: ALGORITHM DESCRIPTION

As introduced in the previous section, U-EDF is composed
of two different phases. First, it uses the “horizontal” technique
to give a budget of execution to every task on each processor
(this phase is repeated whenever a new job arrives). Then,
between two such budget pre-allocations (i.e., between two
job releases), it schedules the active tasks according to their
budgets, using a slight variation of EDF on each processor.

A. First phase: Pre-Allocation

As explained earlier, the first phase of our algorithm consists
in pre-allocating time for the execution of tasks on processors,
i.e., for each task determine the time budget reserved for its
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Fig. 2: Computation of ui,j .

execution on each processor. Notice that we say “reserved”
and not “performed”. Indeed, as we reassign tasks at every
new job arrival, there is no guaranty that we will actually
execute τi for its allocated time on πj .

Before explaining the allocation process, we first define
some notations.

Definition 1 (current job allotment): At any instant t, the
allotment ali,j(t) of task τi is the number of time units
allocated on processor πj to the execution of the active job of
τi.

The allotment of τi on πj is decreasing as τi is running
on πj . Hence, assuming that no new job arrives within
[t, t′], if exci,j(t, t

′) denotes the time during which τi has
been running on processor πj in the interval [t, t′] then
ali,j(t

′)
def
= ali,j(t)− exci,j(t, t

′).

Definition 2 (future jobs reservation): The future jobs
reservation resi,j(t1, t2) denotes the amount of time reserved
on processor πj for the execution of the future jobs of τi that
might be released within [t1, t2). This reservation is defined
as:

resi,j(t1, t2)
def
= (t2 − t1)× ui,j(t1)

where ui,j(t)
def
=


 ∑

τx∈hpi(t)∪τi
Ux − (j − 1)




1

0

−


 ∑

τx∈hpi(t)

Ux − (j − 1)




1

0

with [x]ba
def
= max{a,min{b, x}}.

The ui,j(t) value denotes the proportion of the utilization
factor of τi that will be reserved on processor πj for the
schedule of future jobs of τi. This value is obtained by
aligning blocs of size Ui in an increasing current deadline
di(t) order, and then, by cutting this alignment in boxes of
size 1 (see Figure 2). The proportion of Ui contained in the
jth box corresponds to ui,j(t). Finally, resi,j(t1, t2) is equal
to ui,j(t) multiplied by the length of the interval [t1, t2). For
instance, in Fig. 1(c), res1,1(6, 10) = 1

3 × (10 − 6) = 4
3

whereas res1,2(6, 10) = 0 because u1,2 = 0. Notice that this
technique is inspired by McNaughton’s algorithm presented
in [22]. More details about the computation of this quantity
are given in [1].

From this explanation on the computation of resi,j(t1, t2),
it is easy to see that the following equality holds:

Property 1: If U ≤ m, then it holds for every τi, t1 and
t2 such that t2 > t1, that

∑m
j=1 resi,j(t1, t2) = Ui× (t2− t1).
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Fig. 3: Computation of almax
i,j (t) for τi on processor π3.

Definition 3 (task budget): The budget bdgi,j(t1, t2) de-
notes the total amount of time reserved for the task τi on
processor πj in the interval extending from t1 to t2 (with
t2 ≥ di(t1)). It includes the allotment ali,j(t1) for the
currently active job of τi at time t1 and the reservation
resi,j(di(t1), t2) for the execution of the future jobs of τi that
might potentially arrive within [di(t1), t2), i.e.,

bdgi,j(t1, t2)
def
= ali,j(t1) + resi,j(di(t1), t2)

Notice that the two following properties can be derived from
the previous definition.

Property 2: At any time t, the budget allocated to a task
τi on processor πj from time t to τi’s deadline is equal to its
allotment at time t, i.e., bdgi,j(t, di(t)) = ali,j(t) (because
resi,j(di(t), di(t)) = 0 from Definition 2).

Property 3: Let t1 < t2 < t3 be three distinct instants
such that t2 ≥ di(t1). It holds ∀i, j that bdgi,j(t1, t3) =
bdgi,j(t1, t2) + resi,j(t2, t3).

Definition 4 (maximum allotment): At any time-instant t,
the maximum allotment almax

i,j (t) of task τi on processor πj
is defined as the maximum number of time units that can be
allocated on processor πj to the active job of task τi in the time
interval [t, di(t)], i.e., almax

i,j (t) is an upper-bound on ali,j(t).
This is given by

almax
i,j (t)

def
=
(
di(t)− t

)
−

∑

τx∈hpi(t)

bdgx,j(t, di(t))−
j−1∑

y=1

ali,y(t)

The first term of this expression, i.e., (di(t) − t), is the
amount of time between instant t and the deadline of the
active job of τi, the second term

∑
τx∈hpi(t)

bdgx,j(t, di(t))
is the number of time units reserved in [t, di(t)] for the tasks
with a higher priority than τi, and the third term

∑j−1
y=1 ali,y(t)

is the amount of time already reserved for the active job of τi
on the processors of lower indices than πj . This third term is
subtracted in order to prevent the active job of τi from being
executed concurrently on multiple processors (see Figure 3).
Note that it can be shown that almax

i,j (t) is always non-negative.

Algorithm 1 presents the pre-allocation phase of U-EDF.
Tasks are pre-allocated in an increasing current deadline order.
Algorithm 1 maximizes the time allotted to each task τi on

Algorithm 1: Pre-allocation Algorithm.
Input:
TaskList := list of the n tasks sorted by increasing absolute
deadlines;
t := current time;

1 forall the τi ∈ TaskList do
2 for j := 1 to m do
3 ali,j(t) := min{almax

i,j (t) , reti(t)−
∑

y<j
ali,y(t)};

4 end
5 end

each processor. Hence, for every task τi, it assigns on each
processor πj the minimum between almax

i,j (t) and the amount
of remaining execution time of τi that has not yet been
assigned to other processors.

We easily recognize the “horizontal” approach presented in
the previous section. Indeed, Algorithm 1 allocates time to
tasks in an increasing current deadline order and maximizes
the utilization of the first processors before starting using next
ones.

B. Second phase: Schedule

Once the pre-allocation of the tasks amongst the processors
has been done, we use an EDF-like algorithm named EDF-D
(which stands for EDF with Delays) to schedule the tasks on
the processors until the next job arrival (where a reallocation
of the tasks will be performed again).

EDF-D is a scheduling algorithm which operates in the
following way between two job allocations:
• It first builds the set Ej(t) of eligible tasks on πj at time
t. A task τi is eligible on πj at time t if (i) it is not
currently running on a processor of lower index; and (ii)
τi still has to execute on processor πj according to the
current task allotment.

• At any time t, EDF-D schedules the eligible tasks with
the earliest deadline.

In other words, EDF-D behaves the same way as EDF
on each processor, except that as soon as a job is running
on a processor πj , it cannot be scheduled anymore on
any processor with a higher index (see Figure 1(d) for an
illustration). This leads to the following property:

Property 4: If a task τi with ali,j(t) > 0 is not running on
processor πj at time t, then either a task with a higher priority
than τi is executing on πj , or τi is running on a processor with
a smaller index at time t.

C. U-EDF algorithm

Algorithm 2 summarizes the working process of U-EDF.
Whenever an event occurs in the system (i.e., a task arrival,
deadline or completion), Algorithm 2 is called. If the event in
question is the release of a job, U-EDF recomputes a new task
allocation amongst processors. Then, irrespective of the event
type, EDF-D is used to schedule the tasks on the platform.



Algorithm 2: U-EDF scheduling algorithm.
Data: t := current time
if t is the arrival time of a job then

Recompute the task allotment ; // Algorithm 1
end
for j := 1 to m do

// Use EDF-D
Update Ej(t) ;
Execute on πj the task with the earliest deadline in Ej(t) ;

end

Note that U-EDF behaves exactly as EDF when the
platform is composed of a single processor. Indeed, in this
case, all tasks are obviously assigned to the same processor
and a task cannot be delayed when using EDF-D as it never
executes on another processor.

V. OPTIMALITY OF U-EDF

In this section, we prove that U-EDF is optimal for the
scheduling of sporadic tasks on multiprocessor, in the sense
that it always meets all deadlines when U ≤ m and Ui ≤ 1
for every τi ∈ τ . In these proofs, we assume that each job is
executed for its worst-case execution time. However, because
it is a slight variation of EDF which is used to schedule the
tasks on each processor, if a job does not need to execute for its
whole worst-case execution time, then all task deadlines are
still respected. The jobs will just finish earlier than initially
expected.

We starts by defining a valid assignment under U-EDF.
Informally, an assignment is valid when U-EDF succeeds in
entirely allocating all tasks on all processors using Algo-
rithm 1. Formally,

Definition 5 (Valid U-EDF assignment): An U-EDF
assignment is said to be valid at time t iff the
allotment of every task τi ∈ τ is sufficient to
successfully schedule its remaining execution time, i.e.,
∀τi ∈ τ :

∑m
j=1 ali,j(t) = reti(t).

Since, according to Algorithm 2, all tasks have to be
reassigned when a new job is released in the system, the
proof of optimality (Theorem 2) is made by induction on the
job arrival times. The induction is the following: assuming
that U-EDF is valid at the arrival time tr of job Jr, running
EDF-D from tr to the arrival of the next job Jr+1 at
time-instant tr+1, we prove that (i) the U-EDF assignment
is still valid at time-instant tr+1 (Lemmas 2 and 3) and (ii)
all jobs with a deadline before or at tr+1 meet their deadline
(Theorem 1).

Theorem 1 (from [1]): Let ta be the very first arrival time
of a job after t. If the U-EDF assignment is valid at time t and
EDF-D is applied within [t, ta) then all jobs with a deadline
such that di(t) ≤ ta meet their deadlines without intra-job
parallelism.

Theorem 1 was proven in [1]. Notice that [1] deals with
periodic tasks, but the proof of Theorem 1 was written for a
more general model of tasks and still holds for the sporadic
case.

Lemma 1: Let t0 be the very begining of the schedule, i.e.,
when no job has been released yet. For every τi ∈ τ we have∑m
j=1 ali,j(t0) = reti(t0)

Proof: Since at time t0 no job has been released yet, we
have reti(t0) = 0 for every τi ∈ τ . Consequently, Algorithm 1
does not allocate any time unit for the execution of these
tasks, i.e., ali,j(t0) = 0, ∀i, j. Hence, it obviously holds that∑m
j=1 ali,j(t0) = reti(t0).

Now that the basic case has been stated, we will prove
through Lemmas 2 and 3 that the condition

∑m
j=1 ali,j(ta) =

reti(ta) is satisfied at any time ta ≥ t0 corresponding to a
new job arrival.

We first define some new notations. Let Ja of task τa denote
the job released at time ta. According to Algorithm 2, all
tasks have to be reassigned to the processors on Ja’s release
(i.e., at time ta) using Algorithm 1. Since the set of currently
active jobs is modified due to the release of Ja at time ta, we
distinguish between two instants t−a and t+a defined as follows
• t−a considers the task set just before the release of Ja.
• t+a considers the system right after the release of Ja and

the execution of Algorithm 1.
It is essential to understand that from a theoretical point of
view, these two instants are equal to ta but correspond to two
different states of the system.

Hence, Lemma 2 provides informations on the system
until time t−a . Then, Lemma 3 proves that expression∑m
j=1 ali,j(ta) = reti(ta) is satisfied at the instant t+a .

Lemma 2: Let ta be the instant of the next arrival of a job
after t and let t′ be any time-instant such that t < t′ ≤ t−a . If
∀i, j we have ali,j(t) ≤ almax

i,j (t) and tasks are scheduled using
EDF-D in [t, t′], then it holds ∀i, j that ali,j(t

′) ≤ almax
i,j (t′).

Proof: For all tasks τi that have completed their execution
at time t′, we have reti(t

′) = 0 and ali,j(t
′) = 0 for

all πj . Consequently, the condition ali,j(t
′) ≤ almax

i,j (t′) is
obviously satisfied for those tasks and the remainder of the
proof considers only the tasks which have not completed their
execution at time t′, i.e., the tasks τi with reti(t

′) > 0.
Note that the active job of each such task τi cannot have a
deadline di(t) before time t′. Otherwise, since reti(t

′) > 0, it
would mean that τi has missed its deadline at time t′, leading
to a direct contradiction with Theorem 1. That is, we have
di(t) > t′ and thus di(t) = di(t

′). From this point onward,
we will therefore use the notation di instead of di(t) or di(t′)
for the sake of conciseness.

Let us denote by exci,j(t, t
′) the time during which τi has

been running on processor πj in the time interval [t, t′]. We
have

ali,j(t)
def
= ali,j(t

′) + exci,j(t, t
′) (1)



By assumption, we have ∀τi, πj that ali,j(t) ≤ almax
i,j (t)

which gives, together with the above expression, ali,j(t
′) +

exci,j(t, t
′) ≤ almax

i,j (t). Then, using Definitions 3 and 4, this
expression can be rewritten as

ali,j(t
′) + exci,j(t, t

′) ≤ (di − t)−
∑

τx∈hpi(t)

{
alx,j(t)

+ resx,j(dx, di)
}
−

j−1∑

y=1

ali,y(t) (2)

By replacing the term
∑
τx∈hpi(t)

alx,j(t) of Expression 2
with Expression 1, we get

ali,j(t
′) + exci,j(t, t

′) ≤ (di − t)−
∑

τx∈hpi(t)

alx,j(t
′)

−
∑

τx∈hpi(t)

resx,j(dx, di)−
∑

τx∈hpi(t)

excx,j(t, t
′)−

j−1∑

y=1

ali,y(t)

Then, applying Definition 3 and subtracting exci,j(t, t
′) to

both sides, we obtain

ali,j(t
′) ≤ (di − t)−

∑

τx∈hpi(t)

bdgx,j(t
′, di)

−
∑

τx∈hpi(t)∪{τi}

excx,j(t, t
′)−

j−1∑

y=1

ali,y(t) (3)

Let us now focus on the term
∑

τx∈hpi(t)∪{τi}
excx,j(t, t

′)

in the above inequality. Intuitively, this term expresses the
amount of time during which the active job of the tasks in
hpi(t) ∪ {τi} are executed on processor πj in the interval
[t, t′]. Obviously, this amount of time cannot be greater than
the time elapsed between instants t and t′, i.e., we cannot use
processor πj during more than (t′− t) time units within [t, t′].
Hence, two cases may arise:
Case 1:

∑
τx∈hpi(t)∪{τi}

excx,j(t, t
′) = (t′ − t)

Note that the amount of time ali,y(t) allotted to the active job
of τi on a processor πy decreases as τi executes on πy implying
that ali,y(t′) ≤ ali,y(t) (remember that by assumption there
is no reallocation of the tasks between t and t′), leading from
Expression 3 to

ali,j(t
′) ≤ (di − t′)−

∑

τx∈hpi(t)

bdgx,j(t
′, di)−

j−1∑

y=1

ali,y(t′)

and using Definition 4, we get ali,j(t
′) ≤ almax

i,j (t′).
Case 2:

∑
τx∈hpi(t)∪{τi}

excx,j(t, t
′) < (t′ − t)

In this case, there are some time units in [t, t′] for which
processor πj is either idle or it executes at least one task with
a lower priority than τi (i.e., a task from the subset lpi(t)).
There can be only two reasons for that to happen by using
EDF-D (see Property 4):

a) The active job of τi at time t completes its execution on
πj during the time interval [t, t′]. Hence ali,j(t

′) = 0
and it obviously holds that ali,j(t

′) ≤ almax
i,j (t′).

b) The execution of the active job of τi at time t was
delayed on πj , because in the time interval [t, t′] it
was executed on at least one other processor πy with
y < j (see Property 4). Specifically, the amount of time
by which the execution of this active job is delayed
on πj is given by

∑j−1
y=1 exci,y(t, t′) and it holds from

Expression 1 that

j−1∑

y=1

exci,y(t, t′) =

j−1∑

y=1

[ali,y(t)− ali,y(t′)] (4)

Furthermore, since τi did not finish its execution, the
sum of all the execution times of all the tasks in hpi(t)∪
{τi}, plus the delay incurred by τi must be greater than
(t′ − t). That is,

∑

τx∈hpi(t)∪{τi}
excx,j(t, t

′) +

j−1∑

y=1

exci,y(t, t′) ≥ (t′ − t)

(5)
Using Expressions 3, 4 and 5 altogether, we finally
obtain

ali,j(t
′) ≤ (di − t′)−

∑

τx∈hpi(t)

bdgx,j(t
′, di)

−
j−1∑

y=1

ali,y(t
′)

and using Definition 4, ali,j(t
′) ≤ almax

i,j (t′).
This states the lemma.

Lemma 3: Let t ≥ 0 be any time-instant in the scheduling
of τ and let ta ≥ t be the first instant after (or at) time t at
which a job is released. If the assignment is valid at time t for
every τi ∈ τ and EDF-D is used to schedule tasks within
[t, ta), then assuming that only one job is released at this
instant ta, we have for all tasks τi ∈ τ :

∑m
j=1 ali,j(t

+
a ) =

reti(t
+
a ) (i.e., there is a valid assignment after the reallocation

of tasks at time ta) provided that
∑n
i=1 Ui ≤ m and Ui ≤ 1,

∀τi.
Proof: Let Ja of task τa denote the (only) job released at

time ta. We already proved in Lemma 2, that at time t−a (i.e.,
just before the tasks reallocation), we have ∀i, j:

ali,j(t
−
a ) ≤ almax

i,j (t−a ) (6)

Furthermore, the assignment was valid at time t and was
not modified until t−a . Therefore, it must still be valid at time
t−a . Hence, for every τi

m∑

j=1

ali,j(t
−
a ) = reti(t

−
a ) (7)

Moreover, since by assumption, τa is the only task releas-
ing a new job at time ta, the deadlines and the remain-
ing execution times of tasks τi 6= τa do not change be-
tween t−a and t+a , i.e., di(t−a ) = di(t

+
a ) and reti(t

−
a ) =

reti(t
+
a ). Hence, Expression 7 implies that

∑m
j=1 ali,j(t

−
a ) =



reti(t
+
a ) and applying Property 2, it holds that ∀τi 6= τa :∑m

j=1 bdgi,j(t
−
a , di(t

+
a )) = reti(t

+
a ).

On the other hand, after the arrival of its new job, task τa
has a new deadline da(t+a ) equal to ta +Da, and its remaining
execution time is now equal to its worst-case execution time,
i.e., reta(t+a ) = Ca, and because τa already reached its
deadline (from Theorem 1), it must hold that ala,j(t

−
a ) = 0.

Therefore, from Definition 3
∑m
j=1 bdga,j(t

−
a , da(t+a )) =∑m

j=1 resa,j(t
−
a , da(t+a )) and applying Property 1, it holds that∑m

j=1 bdga,j(t
−
a , da(t+a )) = Ua × Da = Ca = reta(t+a ).

Hence, for all tasks τi in τ , we have
m∑

j=1

bdgi,j(t
−
a , di(t

+
a )) = reti(t

+
a ) (8)

For the sake of readability, we will assume from this
point onward that tasks are indexed according to their current
deadlines at time t+a . Hence, if r < s then dr(t+a ) ≤ ds(t

+
a ),

implying that τr has a higher priority than τs at time t+a .
The remainder of the proof is subdivided in two subproofs.

In Subproof 1, we show that, ∀i, j
j∑

p=1

i∑

q=1

bdgq,p(t
+
a , di(ta)) ≥

j∑

p=1

i∑

q=1

bdgq,p(t
−
a , di(ta))

Then, in Subproof 2, we deduce from this expression that∑m
j=1 ali,j(t

+
a ) = reti(t

+
a ) for every task τi in τ , thereby

proving the lemma.

Subproof 1: The first subproof is made by induction.
Let us assume that for task τi−1, we have for all processors
k = {1, ...,m}:

k∑

p=1

i−1∑

q=1

bdgq,p(t
+
a , di(t

+
a )) ≥

k∑

p=1

i−1∑

q=1

bdgq,p(t
−
a , di(t

+
a )) (9)

We prove for task τi that
k∑

p=1

i∑

q=1

bdgq,p(t
+
a , di(t

+
a )) ≥

k∑

p=1

i∑

q=1

bdgq,p(t
−
a , di(t

+
a )) (10)

Basic statement: Notice that the induction hypothesis (i.e.,
Expression 9) is obviously respected when i = 1 since both
sides of Expression 9 are then equal to 0.

Induction Step: Algorithm 1 maximizes the allotment of τi on
πj at time t+a . Hence, according to line 3 of Algorithm 1,
we either have

∑j
p=1 ali,p(t

+
a ) = reti(t

+
a ) or ali,j(t

+
a ) =

almax
i,j (t+a ):

Case 1. If
∑j
p=1 ali,p(t

+
a ) = reti(t

+
a ), then, it means that

τi has been entirely allocated on processors π1 to πj . Since,
according to Expression 8, τi has a budget of execution
of exactly reti(t

+
a ) time units dispersed among the pro-

cessors at time t−a , it must hold that
∑j
p=1 ali,p(t

+
a ) =∑j

p=1 bdgi,p(t
−
a , di(t

+
a )). Using Property 2, we get

j∑

p=1

bdgi,p(t
+
a , di(t

+
a )) =

j∑

p=1

bdgi,p(t
−
a , di(t

+
a ))

The induction hypothesis (Expression 9) gives for k = j,
j∑

p=1

i−1∑

q=1

bdgq,p(t
+
a , di(t

+
a )) ≥

j∑

p=1

i−1∑

q=1

bdgq,p(t
−
a , di(t

+
a ))

Therefore, combining the two previous expressions leads to
j∑

p=1

i∑

q=1

bdgq,p(t
+
a , di(t

+
a )) ≥

j∑

p=1

i∑

q=1

bdgq,p(t
−
a , di(t

+
a ))

which proves Expression 10.

Case 2. If ali,j(t
+
a ) = almax

i,j (t) then it holds from Definition 4
that

ali,j(t
+
a ) = (di(t

+
a )− ta)−

i−1∑

x=1

bdgx,j(t
+
a , di(t

+
a ))−

j−1∑

y=1

ali,y(t
+
a )

Because ali,j(t
+
a ) = bdgi,j(t

+
a , di(t

+
a )) by Property 2 and

adding
∑i−1
x=1 bdgx,j(t

+
a , di(t

+
a )) to both sides, we get

i∑

k=1

bdgk,j(t
+
a , di(t

+
a )) = (di(t

+
a )− ta)−

j−1∑

y=1

bdgi,y(t
+
a , di(t

+
a ))

(11)

Two different cases should now be analyzed: τi 6= τa or
τi = τa. However, due to space limitations, we only give the
proof for the first case (i.e., for τi 6= τa). The proof for τi = τa
is almost identical and can be consulted in the appendix.

Note that for every task τi which does not release a job
at time ta (i.e., every τi 6= τa), we have di(t

−
a ) = di(t

+
a )

and reti(t
−
a ) = reti(t

+
a ). Therefore, in the remainder of this

subproof, we will use the notations di(ta) and reti(ta) to refer
to the deadline and the remaining execution time of task τi at
both instants t−a and t+a .

Hence, using Definition 4, we have at time t−a ,

almax
i,j (t−a ) = (di(ta)− ta)−

i−1∑

x=1

bdgx,j(t
−
a , di(ta))−

j−1∑

y=1

ali,y(t
−
a )

Expression 6 yields

ali,j(t
−
a ) ≤ (di(ta)−ta)−

i−1∑

x=1

bdgx,j(t
−
a , di(ta))−

j−1∑

y=1

ali,y(t−a )

and because ali,j(ta) = bdgi,j(ta, di(ta)) (from Property 2),
adding

∑i−1
x=1 bdgx,j(t

−
a , di(ta)) to both sides gives

i∑

k=1

bdgk,j(t
−
a , di(ta)) ≤ (di(ta)−ta)−

j−1∑

y=1

bdgi,y(t−a , di(ta))

(12)
Then, combining Expressions 11 and 12 leads to

i∑

k=1

bdgk,j(t
+
a , di(ta)) +

j−1∑

y=1

bdgi,y(t+a , di(ta)) ≥

i∑

k=1

bdgk,j(t
−
a , di(ta)) +

j−1∑

y=1

bdgi,y(t−a , di(ta))



Moreover, the induction hypothesis (Eq. 9) gives for k = j−1

j−1∑

p=1

i−1∑

q=1

bdgq,p(t
+
a , di(ta)) ≥

j−1∑

p=1

i−1∑

q=1

bdgq,p(t
−
a , di(ta))

Finally, the previous two expressions lead to
j∑

p=1

i∑

q=1

bdgq,p(t
+
a , di(ta)) ≥

j∑

p=1

i∑

q=1

bdgq,p(t
−
a , di(ta))

which proves Expression 10.

Subproof 2. We now prove that
∑m
p=1 alq,p(t

+
a ) = retq(t

+
a )

for all tasks τq .
Using Expression 10, proved in Subproof 1, we have for

processor πm
m∑

p=1

i∑

q=1

bdgq,p(t
+
a , di(t

+
a )) ≥

m∑

p=1

i∑

q=1

bdgq,p(t
−
a , di(t

+
a )) (13)

Using Property 3 on both sides of Expression 13, we get
m∑

p=1

i∑

q=1

[
bdgq,p(t

+
a , dq(t

+
a )) + resq,p(dq(t

+
a ), di(t

+
a ))
]
≥

m∑

p=1

i∑

q=1

[
bdgq,p(t

−
a , dq(t

+
a )) + resq,p(dq(t

+
a ), di(t

+
a ))
]

implying
m∑

p=1

i∑

q=1

bdgq,p(t
+
a , dq(t

+
a )) ≥

m∑

p=1

i∑

q=1

bdgq,p(t
−
a , dq(t

+
a ))

Finally, applying Definition 3 and Expression 8, this leads to
i∑

q=1

m∑

p=1

alq,p(t
+
a ) ≥

i∑

q=1

retq(t
+
a )

Since Algorithm 1 never allocates more than retq(t
+
a ) to a

task τq at time t+a (see line 3 of Algorithm 1), the previous
inequality is true only if, ∀q :

∑m
p=1 alq,p(t

+
a ) = retq(t

+
a ).

This proves the lemma.

Theorem 2: U-EDF is optimal for the schedule of sporadic
tasks with implicit deadlines such that

∑n
i=1 Ui ≤ m and

Ui ≤ 1 for every task τi ∈ τ .
Proof: By Lemma 1, we know that there is a valid

U-EDF assignment at time t = t0 assuming that no job
has been released in the system, yet. Next, assuming that∑n
i=1 Ui ≤ m and Ui ≤ 1,∀τi ∈ τ , Lemma 3 shows that, if

EDF-D is used to schedule the tasks between two consecutive
task allocations, then a valid U-EDF assignment exists at any
instant corresponding to a new job arrival (Notice that, if ta is
the arrival time of the new job, ta can be equal to t. Therefore,
if two or more jobs arrive at the same instant ta, we just have
to apply multiple times Lemma 3).

Furthermore, Theorem 1 proves that all deadlines between
two such job arrivals are met. Notice that, if no new job arrives
after a given time instant t, Theorem 1 ensures that all tasks

meet their deadlines by assuming that the next job arrival is
ta = +∞. Therefore, U-EDF is optimal for the schedule of
sporadic tasks with implicit deadlines.

VI. SIMULATION RESULTS

We evaluated the performance of U-EDF through extensive
simulations. In each experiment, we simulated the scheduling
of 1,000 task sets from time 0 to time 100,000. Each task had
a minimum inter-arrival time randomly chosen within [5, 100]
using a uniform integer distribution. Task utilizations were
randomly generated between 0.01 and 0.99 until the targeted
system utilization was reached.

Both the clustering and the virtual processing techniques
presented in [1] were implemented for U-EDF. The interested
reader can refer to [1] for further details.

For Figures 4(a) and 4(b), we simulated the scheduling
of implicit deadlines periodic tasks with a total utilization
of 100% of the platform on a varying number of proces-
sors. We compared the average number of preemptions and
migrations generated by U-EDF with that of the three most
efficient optimal scheduling algorithms for periodic tasks on
multiprocessor, namely DP-Wrap, EKG and RUN. Both RUN
and U-EDF clearly outperform EKG and DP-Wrap. This result
can be explained by the absence of fairness in the schedule
produced by RUN and U-EDF. Furthermore, U-EDF shows
to be slightly better than RUN for a number of processors
smaller than 8. Hence, U-EDF seems to be the best alternative
to use on platforms composed of clusters containing less than 8
processors. Moreover, unlike RUN which cannot schedule
sporadic tasks on multiprocessor platforms, U-EDF is easily
extendable to the scheduling of more general task models.
For now, U-EDF is the only existing optimal algorithm for
the scheduling of sporadic tasks which is not based on the
notion of fairness.

Figure 4(c) presents two different results on a platform
composed of 8 processors with a total utilization varying
between 5 and 100%. First, we compare the average number
of preemptions per job generated by U-EDF and Partitioned-
EDF (P-EDF)1 when tasks are periodic. Then, we show
the results obtained for the scheduling of sporadic tasks.
For each sporadic task we randomly selected the maximum
delay that jobs can incur, in the range [1, 100]. Then, each
job release was delayed by a random number of time units
uniformly generated between 0 and this maximum delay.
Note that for P-EDF results, only task sets for which all task
deadlines were met are taken into account in the calculation
of the number of preemptions and migrations. We can
see on Figure 4(c) that U-EDF and P-EDF have the same
average number of preemptions when the system utilization
does not exceed 50%. This particularity is the result of the
clustering technique explained in [1]. The second information
we can draw from these graphs is that the average number
of preemptions generated by U-EDF is slightly higher for
sporadic tasks. This is due to the fact that even if there are

1Tasks are partitioned with the worst fit decreasing utilization heuristic
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Fig. 4: (a) and (b) periodic tasks running on a number of processors varying between 2 and 24 with a total utilization of 100%;
(c) periodic and sporadic tasks running on 8 processors with a total utilization within 5 and 100%.

few active tasks at some time t, the pre-allocation phase
assigns these tasks on as few processors as possible. Hence
there are more tasks interacting with each other than with
P-EDF. Nevertheless, in its current version, U-EDF is not
work conserving (i.e., a processor might stay idle, even if
there is a task with remaining execution time which is not
running on the platform). As a consequence, by using the
processors idle times (which are more likely in sporadic
systems) to schedule pending tasks in a least remaining
execution time order for instance, we could certainly further
reduce the average number of preemptions incurred by jobs
under U-EDF, and have similar results than P-EDF. Note that
even though the U-EDF curves deviate from the P-EDF ones
on Figure 4(c) for a system utilization greater than 50%,
unlike U-EDF, Partitioned-EDF is not optimal and can miss
task deadlines.

A Note on the Implementation: It can easily be shown
that the pre-allocation algorithm has a run-time complexity
of O(n × m) which may seem excessive as Algorithm 1 is
invoked at each job release. However, the processing platforms
include more and more processors/cores every day. For in-
stance, Tilera designed processors with 36 to 100 integrated
cores [23]. In these conditions, it seems quite realistic to
dedicate one core to the execution of a complex scheduling
algorithm in order to drastically increase the total utilization
of the platform when comparing to simpler algorithms, while
keeping a small number of preemptions and migrations.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented the first optimal algorithm for
the scheduling of sporadic tasks on multiprocessor which does
not fairly distribute the platform processing capacity amongst
tasks (or group of tasks). This new technique has shown to be
efficient in terms of preemptions and migrations. Moreover, U-
EDF seems to be easily extendable to the scheduling of more
general model of tasks and systems. Hence, multi-threaded
parallel tasks could be scheduled efficiently with U-EDF on
multiprocessor platforms adopting the methodology proposed
in [24]. Similarly, we are considering generalizing U-EDF to
the scheduling of dynamic task systems. Finally, we believe

that U-EDF could still be optimized to further reduce the
number of preemptions, migrations and scheduling points.
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APPENDIX

A. Additional Proof Sketch of Lemma 3
This lemma has already been partially proven in Section V.

Hence, in this appendix, we only prove the missing part, i.e.,
we prove Expression 10 with τi = τa when we are in case 2
of Subproof 1 in Lemma 3. That is, we demonstrate that for
all j ∈ {1, ...,m}

j∑

p=1

∑

τq∈hpa(t
+
a )∪τa

bdgq,p(t
+
a , da(t

+
a )) ≥

j∑

p=1

∑

τq∈hpa(t
+
a )∪τa

bdgq,p(t
−
a , da(t

+
a )) (14)

assuming that τa is the (only) task releasing a job at time ta
and ala,j(t

+
a ) = almax

a,j (t+a ).
The difficulty for this particular task is that hpa(t+a ) might

contain more tasks than hpa(t−a ). Indeed, the current deadline
of τa which was equal to ta before the arrival of its new job
(see definition of the task current deadline in Section II) is
now equal to the deadline of its newly arrived job implying
that da(t−a ) < da(t+a ). Hence, there may exist some tasks τi
such that di(ta) ≥ da(t−a ) and di(ta) < da(t+a ) leading to
τi 6∈ hpa(t−a ) and τi ∈ hpa(t+a ) (we remind that the current
deadline of every task different from τa does not change).

Two cases could arise considering the value of
bdga,j(t

−
a , da(t+a )) for j ∈ {1, ...,m}:

• bdga,j(t
−
a , da(t

+
a )) ≤ (da(t

+
a ) − ta) −∑

τx∈hpa(t
+
a )

bdgx,j(t
−
a , da(t

+
a ))−

∑j−1

y=1
bdga,y(t

−
a , da(t

+
a )):

In this case we can apply the same argument than for
τi 6= τa (see proof of Lemma 3 in Section V). That is, we
first combine the above expression with Expressions 11.
Then, using the induction hypothesis (Expression 9) for
k = j − 1, we prove Expression 14.

• bdga,j(t
−
a , da(t

+
a )) > (da(t

+
a ) − ta) −∑

τx∈hpa(t
+
a )

bdgx,j(t
−
a , da(t

+
a ))−

∑j−1

y=1
bdga,y(t

−
a , da(t

+
a )):

We are in the situation depicted on Figure 5(a). Let ∆
be the difference between the left side and the right side
of this inequality. That is,

⌧a

⌧a

⌧i

⌧i

da(t+a )ta �
⇡j�1

⇡j

(a)

⌧a

⌧i

ta da(t+a )

⇡j�1

⇡j ⌧i

(b)

Fig. 5: Situation when τi /∈ hpa(t−a ) but τi ∈ hpa(t+a ) (a)
before re-allocation of tasks; (b) after re-allocation of tasks.

∆ = bdga,j(t
−
a , da(t

+
a ))− (da(t

+
a )− ta) +

∑

τx∈hpa(t
+
a )

bdgx,j(t
−
a , da(t

+
a )) +

j−1∑

y=1

bdga,y(t
−
a , da(t

+
a ))(15)

Since Algorithm 1 maximizes the amount of time allo-
cated to any task τi on processors with smallest indices
and because at time ta Algorithm 1 allocates time to the
tasks τi ∈ hpa(t+a ) first, the budget of time that was
reserved for the task τa on processors π1 to πj−1 will
now preferably be assigned to the tasks τi ∈ hpa(t+a ) (see
Figure 5(b)). Therefore, it can easily be shown that the
budget of time of the tasks in hpa(t+a ) on the processors
π1 to πj−1 will increase by at least ∆ time units and
the budget of time of τa on the processors π1 to πj−1

will decrease by at least ∆ time units (see Figure 5(b)).
Therefore, using Definition 4, we have on processor πj

al
max
a,j (t

+
a ) = (da(t

+
a )− ta)−

∑

τx∈hpa(t
+
a )

bdgx,j(t
+
a , da(t

+
a ))

−
j−1∑

y=1

ala,y(t
+
a )

≥ (da(t
+
a )− ta)−

∑

τx∈hpa(t
+
a )

bdgx,j(t
+
a , da(t

+
a ))

−
j−1∑

y=1

bdga,j−1(t
−
a , da(t

+
a )) + ∆

Then, replacing ∆ by its expression given in Expres-
sion 15 and rearranging the terms, we get

almax
a,j (t+a ) +

∑

τx∈hpa(t
+
a )

bdgx,j(t
+
a , da(t

+
a )) ≥

bdga,j(t
−
a , da(t

+
a )) +

∑

τx∈hpa(t
+
a )

bdgx,j(t
−
a , da(t

+
a ))

Because ala,j(t
+
a ) = almax

a,j (t+a ) by assumption, applying
Property 2 we get

∑

τx∈hpa(t
+
a )∪τa

bdgx,j(t
+
a , da(t

+
a )) ≥

∑

τx∈hpa(t
+
a )∪τa

bdgx,j(t
−
a , da(t

+
a ))

and using the induction hypothesis (Expression 9) with
k = j − 1, we prove Expression 14.


