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Abstract

Although acclaimed as a biofuel crop with high potential to sustainably replace fossil

fuels, Jatropha curcas L. remains a poorly studied plant. Reliable yield assessments with

conventional methods require agroclimatic and physiological knowledge, which is not

yet available for Jatropha. To fill this gap, we tested a novel two-step approach

integrating knowledge from biogeography and population biology with available

Jatropha field data. In the first step, using MaxEnt, a widely implemented model in

biogeography, we predicted Jatropha fitness in response to climate by relating natural

occurrence recorded in herbaria with bioclimatic geodatasets. In the second step, we

relied on population biology principles supported by seed mass addition experiments to

relate fitness to reproductive potential, hence seed yield. Jatropha seed yield in response

to climate was mapped worldwide for actual (1950–2000 average) and future (2020)

climate conditions. The modelled Jatropha seed yield was validated against a set of

on-field yield assessments (R2 5 0.67, Po0.001). The discrepancies between estimated

and measured yields were partially explained by model uncertainties, as quantified by

the sensitivity analysis of our modelling (R2 5 0.57, P 5 0.001). Jatropha has a pan-tropical

distribution, plus specific adaptability to hot temperate areas. Climate variables most

significantly affecting modelled yield response were annual average temperature, mini-

mum temperature, annual precipitation and precipitation seasonality.
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Introduction

The financial sustainability of Jatropha projects requires

reliable productivity estimates. Crop productivity

depends primarily on the effect of environmental con-

ditions, which can be mitigated or amplified by agro-

nomic practices. However, Jatropha knowledge is

currently not able to parameterize reliably traditional

crop productivity models. We highlight the existence of

data locating natural occurrence of Jatropha, which can

be used, with biogeographic modeling and ecological

principles, to generate an alternative method to model

Jatropha productivity.

Given food security and land scarcity concerns,

Jatropha curcas L. (further referred as Jatropha) raised

attention as a sustainable biofuel source for marginal

and degraded semiarid areas (Fairless, 2007; Ndong

et al., 2009). Jatropha’s alleged ability to produce biofuel

in areas unsuitable for intensive food crops production

is expected to support food security, unlike most biofuel

crops of first generation (Preston, 2009). Global demand

for liquid biofuels together with optimistic claims about

Jatropha has triggered a massive promotion and imple-

mentation of Jatropha plantations by private and public

sectors (Planning Commission of India, 2003; GEXSI,

2008). Yet, given the scarcity of data on Jatropha genet-

ics, its basic agronomy and biophysical requirements
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(Achten et al., 2010), such promotion is economically

risky (Openshaw, 2000). Financially sustainable biofuel

policies should set regulatory frameworks based on a

reliable understanding of those factors that influence

biofuel production.

Crop performance is primarily constrained by the

biophysical environment, which influences the avail-

ability of basic resources light, heat, water and mineral

nutrients for plant growth (Mackey & Lindenmayer,

2001). Intensified agricultural systems take advantage

of agronomic practices (e.g. plant breeding, irrigation,

pesticides and fertilizers) to mitigate specific environ-

mental constraints (Boyer, 1982). A clear understanding

of the relationship between environment and crop

performances can develop solid ground upon which

to optimize agronomic practices. Unfortunately, scien-

tific literature reports only limited knowledge describ-

ing how environmental factors influence Jatropha

physiology. Jatropha grows on a wide range of climatic

conditions, from semiarid to humid (annual rainfall

varying from 300 to 3000 mm), with high tolerance to

high temperatures, little frost tolerance and a preference

for deep, well-drained soils (Achten et al., 2008). There-

fore, there is an urgent need for more specific knowl-

edge, highlighting Jatropha productivity response to

environmental factors. This knowledge can further be

translated into spatial assessments of Jatropha yield

across different agroclimatic zones.

Crop productivity in response to the environment is

traditionally defined from either (1) land suitability

models that empirically weigh combinations of crop

responses to relevant agroclimatic factors (FAO, 1983,

1985; Sys et al., 1991; Rossiter, 1996) or (2) physically

based models such as STICS (Brisson et al., 2003), EPIC

(Tan & Shibasaki, 2003) and LPJML (Bondeau et al.,

2007), that simulate phenological processes, physiology,

biogeochemical cycles, etc. Current Jatropha knowledge

is too limited to reliably parameterize these methods.

Furthermore, physically based models are based on

specific plant traits not matching Jatropha, which is a

stem succulent plant potentially shifting from C3 to

CAM metabolism (Maes et al., 2009a). These circum-

stances encourage the development of novel ap-

proaches, which can provide alternative estimates of

Jatropha yield from available data.

Herbaria specimen can provide useful information on

geographic locations of natural occurrences of plants

(Elith et al., 2006). In fact, a substantial collection of

Jatropha specimen and their locations is available from

online herbaria (WBIN, 2002). Availability of environ-

mental geodatasets and advanced computational meth-

ods in statistics have catalyzed a rapid development of

species distribution modeling (SDM) trained on herbar-

ia specimen locations (Elith et al., 2006). Thus, metrics of

species occurrence can be modeled and mapped as a

function of environmental factors (Pearson & Dawson,

2003). MaxEnt (Phillips et al., 2004) is a widely and

successfully used SDM, which relates specimen loca-

tions and environmental geodatasets to derive the re-

sponse of species occurrence probability as

environmental conditions change (the ‘environmental

response’). These environmental functions are then

applied to the same geodatasets to reconstruct the

geographic distribution of species occurrence probabil-

ity. This geographic distribution defines where environ-

mental conditions are more suitable for species

occurrence, including areas that have not been naturally

‘colonized’, due to biotic competition or geographic

barriers (Hutchinson, 1957; Phillips et al., 2004).

Compared with other SDM, MaxEnt has demon-

strated excellent performance, even with a limited

number of specimen locations (Elith et al., 2006; Her-

nandez et al., 2006). For example, species distribution

classifications trained on as few as 15–20 specimen

locations showed robust results for Gecko species in

Madagascar (Pearson et al., 2007) and for 76 plant

species in Ecuador and Bolivia (Loiselle et al., 2008).

Loiselle et al. (2008) found that the effects of biases in

specimen sampling were limited if a minimum of 100

specimen locations were available. A geographical sam-

pling bias, commonly correlated to presence of towns

and transportation routes (Reddy & Davalos, 2003),

does not influence MaxEnt accuracy as long as infra-

structures are distributed evenly along environmental

gradients. MaxEnt provides flexible features, which

reduce moderate levels of climate bias and sampling

geo-locational errors (Graham et al., 2008; Phillips &

Dudik, 2008). However, uncertainties in suitability pre-

diction should be verified while looking at its transfer-

ability effectiveness, it is the ability to successfully

transfer a model outside the training environmental

conditions (Phillips, 2008).

The fitness of a species is measured by its reproduc-

tive success (Hartl, 2000) and is often quantified with

measures of relative and absolute abundance (Zielinski

& Kucera, 1995). Probability of occurrence quantifies

habitat suitability and, as a fitness measure, has positive

relation with species density measures (He & Gaston,

2003; VanderWal et al., 2009) and has been used to assess

species absolute density distribution (Royle et al., 2005;

Gaston et al., 2006). In evolutionary biology terms,

natural selection directly rewards and selects those

reproductive efforts that are most successful in recruit-

ing new individuals, highlighting an optimal trade-off

between resources allocated to seed mass and offspring

recruitment probability (Vermeij, 2004). Indeed, repro-

ductive performance of a species is simply an outcome

of parental fecundity and offspring survival (Silvertown

140 A . T R A B U C C O et al.

r 2010 Blackwell Publishing Ltd, GCB Bioenergy, 2, 139–151



& Charlesworth, 2001). Fecundity is the number of

seeds produced by a flowering plant (Reekie & Bazzaz,

2005), while offspring survival is critically influenced by

positive and vigorous seedling establishment (Rey &

Alcantara, 2000). Seedlings from larger seeds of the

same species, assuming low predation of a toxic seed

such as Jatropha, have higher probabilities of germina-

tion and establishment as they have more embryonic

resources to help rooting under adverse conditions

(Kigel & Galili, 1995; Forget et al., 2005). If fitness

generates high seed mass, it increases the probability

of both seedling establishment and survival, and there-

fore occurrence. Analyses of seed addition projects

worldwide for 84 large-seeded tree species demonstrate

significant positive linear relationships (P 5 0.0026) be-

tween seed mass and seedling recruitment probability

(Moles & Westoby, 2002; Moles et al., 2004) and hence

species occurrence probability. Thus, a linear correlation

between reproductive potentials and density metrics

can be assumed valid.

Crop productivity is traditionally assessed as the

outcome of physiological processes or available agro-

nomic knowledge. To estimate seed yield for an undo-

mesticated and unknown plant, such as Jatropha, we

used a backward approach, where we derive seed mass

productivity from one of its outcomes, species occur-

rence probability. This approach is validated with avail-

able on-site assessments of Jatropha yield. In this study,

we seek to: (1) test significance and response functions

for different environmental variables to predict Jatro-

pha fitness, (2) map Jatropha seed yield under ‘present’

climatic conditions (1950–2000 average) and near-future

climate scenarios (year 2020) and (3) validate results of

Jatropha fitness and seed yield, and illustrate prediction

uncertainties.

Materials and methods

Specimens/species natural occurrence data

Specimen observations describing the location of Jatro-

pha natural occurrences were retrieved from the World

Biodiversity Information Network (WBIN, 2002), an

online network of herbaria databases. Since specimen

locations were retrieved from multiple herbaria sources,

different geographical or ecosystem focuses were inte-

grated, reducing therefore environmental sampling

bias. The geo-locations of these specimens were verified

for consistency with available location labels, when

reported by specimen collectors. Erroneous geo-loca-

tions were either corrected with coordinates from

gazetteers (Global Gazetteer, 2006), if specimen labels

provided sufficient location detail, or were discarded

from further analyses. Only those specimen locations

from the second half of the twentieth century were used

to maintain temporal correspondence between occur-

rence sampling and climate described by geodataset.

325 validated specimen locations were used (Fig. 1)

from Central America (259 locations), South America

(43 locations) and East Africa (23 locations). The

samples from East Africa and South America, outside

Jatropha native range (Maes et al., 2009b), represent

Fig. 1 Locations of Jatropha natural occurrence used for model training (‘Herbarium Specimen’) and locations of on-site yield

assessments (‘Measured Yields’) used for model validation.
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manly specimen of wild and vigorous individuals,

reflecting favorable environmental conditions.

Environmental data

Several environmental geodatasets were acquired and

evaluated for their usefulness to predict Jatropha eco-

logical response. Bioclimatic factors are available from

the WorldClim geodataset (Hijmans et al., 2005) repre-

senting present (1950–2000) and future (2020, HADCM3

model with A2a emission scenario) conditions at high

resolution (30 arc-seconds or �1 km at equator).

WorldClim is the best climate dataset available at high

resolution for global studies, although in mountain and

remote areas uncertainty is high as climate stations are

sparse (Hijmans et al., 2005). Slope was calculated from

the CGIAR-CSI SRTM 90 m digital elevation model

(Jarvis et al., 2008), and was used as a potential expla-

natory variable, as it directly influences hydrological

processes such as waterlogging and soil infiltration.

Physical and chemical soil attributes were characterized

using the ‘Derived Soil Properties’ dataset (5 arc-minute

resolution, or �10 km at equator) accompanying the

FAO/UNESCO Digital Soil Map of the World (Nach-

tergaele et al., 2007), developed for crop suitability

studies on a global scale. All the global environmental

geodatasets were aggregated to 1 min spatial resolution

( �2 km at equator), which was the resolution used in

our spatial modeling.

The Köppen climate classification, based on the ob-

served interaction between climate and native vegeta-

tion (Köppen, 1923) is still widely used to define

agronomic potentials across different climates (Gallup

& Sachs, 2000). A recent Köppen classification map

(Peel et al., 2007) was used, and modified by masking

out frost risk areas, to summarize Jatropha yield for

climate zones.

Evaluation of environmental variables – data reduction

Responses of multivariate nonlinear models based on

data with high collinearity can result in overfitting that

can be highly exacerbated outside training conditions

(Morlini, 2006). To increase transferability effectiveness,

the number of explanatory factors was reduced to a

limited set of more significant and less correlated vari-

ables. This allowed the creation of more generalized

responses to the environment (and a more transferable

model), with a balance between underfitted models

with few parameters and overfitted models with too

many correlated parameters (Burnham & Anderson,

2002). Furthermore, including highly correlated envir-

onmental variables adds limited information to explain

Jatropha suitability, at the expense of additional error

associated with datasets (decreasing signal to noise

ratio). The relative importance of each environmental

variable was evaluated in MaxEnt by means of ‘training

gain’, which is the improved predictability of MaxEnt

based on the incorporation of a particular variable.

The use of slope as a predictor variable returned a

high training gain with suitability decreasing as terrain

flattens, as expected, due to increasing waterlogging

risks. However, we noticed that the Jatropha suitability

response to slope was not affected by changes in total

precipitation. This suggests that the observed response

to slope, rather than reflecting drainage suitability, may

follow a likely topographic bias of natural occurrence,

as trees have been removed preferentially in flatter

areas for human infrastructures. Soil properties gave

limited training gain to the Jatropha MaxEnt modeling,

very likely because global soil datasets suffer of low

accuracy (Gray et al., 2009). Therefore, slope and soil

variables were not used as explanatory variables.

The full set of 18 climatic predictor variables was

reduced to a smaller subset by excluding those vari-

ables that (1) provided limited additional information

(jackknife test of training gain with or without the

variable) or (2) had the most complex bioclimatic mean-

ing among highly correlated variable (Pearson’s corre-

lation 40.85).

The final set of environmental dataset included eight

bioclimatic variables: annual mean temperature (Mean T-

Ann), mean diurnal temperature range (MeanTRng-Dly),

maximum average temperature of the warmest month

(MaxT-WrmMo), minimum average temperature of the

coldest month (MinT-CldMo), annual precipitation

(P-Ann), precipitation of wettest quarter (P-Wet Qrt),

precipitation of driest quarter (P-DryQrt) and precipita-

tion seasonality (standard deviation of monthly precipi-

tation� 100 over mean monthly precipitation, P-Seas).

Modeling Jatropha occurrence probability – MaxEnt
parameterization

Except for those discussed below, default options were

used for parameter selection in MaxEnt (v 3.2.19) as

suggested by the model authors (Phillips & Dudik,

2008). Environmental responses were modeled from a

training area including those countries where � 5

Jatropha specimen locations were recorded (Fig. 1),

and then spatially projected into global predictions.

Pseudo-absence locations are sampled within the train-

ing area following the ‘target-group absences’ approach

in order to minimize sampling biases and increase SDM

predictive performances (Mateo et al., 2010). From the

available specimen locations, 80% (260 points) were

randomly selected for training the MaxEnt model, while

the remaining 20% (65 points) were used to validate the
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predictions. The accuracy of MaxEnt predictions were

tested within the training area using the AUC method

(Fielding & Bell, 1997) on the subset of specimen loca-

tions reserved for validation.

Several features are implemented in MaxEnt to define

the shape of the environmental response curves (Phil-

lips et al., 2006). The threshold feature was not used,

thus the model was allowed to identify more general-

ized (and conservative for transferability) environmen-

tal constraints, more suitable for working at the broader

global scale. Including the Threshold feature increases

the risk of fitting too closely biased points in the speci-

men distribution or reflecting ‘local’ sharp impacts due

to biotic competition (Pearson & Dawson, 2003).

The climatic responses for Jatropha suitability were

derived and projected into two global maps of occur-

rence probability: one reflecting almost present climate

conditions (1950–2000 average) and one for near-future

climatic conditions (2020). Occurrence probability, char-

acterizing Jatropha fitness, is presented as a logistic

distribution varying from 0 to 1. Sensitivity of MaxEnt

results was verified in a Monte Carlo analysis (50

iterations, due to computational limits) with different

parameterization schemes: (1) with and without the

Threshold feature and (2) climatic factors being

randomly substituted by others excluded in the data

reduction process. The sensitivity analysis produced

local distributions of occurrence probability, from

which the standard deviations are projected into a

global sensitivity map.

Modeling Jatropha seed yield from occurrence probability

The linear relationship between seed yield and prob-

ability occurrence was adopted conservatively, in ac-

cordance with recruitment patterns observed globally

in seed mass addition experiments (Moles & Westoby,

2002). Based on literature review and expert knowl-

edge, the maximum seed yield for existing genotypes is

assumed to be 5 ton dry seeds ha�1 yr�1 for mature

plantations under optimal environmental conditions

(Achten et al., 2008). A global Jatropha seed yield map

has therefore been estimated by scaling the occurrence

probability linearly into a yield range between 0

and 5 tons of dry (‘air-dry’) seeds (kernels) ha�1 yr�1.

The standard deviation of occurrence probability

from Monte Carlo analysis is similarly scaled into the

yield range to establish an uncertainty map of Jatropha

yield.

Validation of Jatropha seed yield estimates

The estimated Jatropha seed yield was validated

through linear regression fit with on-site yield assess-

ments (Fig. 1). Residuals, the absolute difference

between estimated and measured yields, were used to

validate the standard deviation of modeled sensitivity,

which we used as predictor of yield estimate uncer-

tainty. The modeled climate responses were tested by

verifying whether the distribution of residuals was

biased towards climatic factors.

Direct measurements of Jatropha yield are available

from fifteen locations (Table 1), mainly commercial

plantations, with plant age varying between 2.5 and 5

years. Mostly these locations had adequate agricultural

inputs, in terms of pruning and fertilizer application.

Measured yields were converted to yield at maturity,

using a Chapman–Richards model (Chapman, 1961)

developed from two measured chronosequences of

Jatropha yield and plant age in Nicaragua (Foidl

et al., 1996) and Allahabad, India (own observation).

The Chapman–Richards model simulates sigmoidal

growth with an asymptotic peak in growth after a

certain age:

Y ¼ að1� e�b�XÞc; ð1Þ

where Y is the organism growth quantity to evaluate

(in our case, seed yield), X is age, and a, b and c are the

asymptote or maximum achievable growth (seed

yield at maturity), the growth rate, and the shape of

the curve near the origin, respectively. The Chapman–

Richards model regression for the two chronose-

quences derived similar growth coefficients for b

(0.793 and 0.91) and c (3.344 and 3.588). This similarity

suggests that a growth model with the average b and c

(0.852 and 3.466) can be applied in both (and other)

locations, where a is modified to match measured

seed yields at specific ages and predict seed yield at

maturity.

Results

Occurrence probability/fitness response to climate
variables

MaxEnt uses trained responses from multiple variables

altering simultaneously, a multivariate relationship

being hard to represent in bi- or tri-dimensional gra-

phics. Therefore the response in fitness for each climatic

variable was graphically represented (Fig. 2) as the

outcome of simplified MaxEnt simulations where only

a single climatic variable was used as an explanatory

factor.

Jatropha showed significant fitness (occurrence prob-

ability above 0.25) for MeanT-Ann between 18

and 29 1C, with optimal values of 26–27 1C (Fig. 2a).

MinT-CldMo defined a strong increase in Jatropha

fitness above 8–9 1C (Fig. 2b). Unlike MeanT-Ann
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and MinT-CldMo, MaxT-WrmMo was less relevant for

overall Jatropha fitness, as it did not decrease much

the overall training gain when omitted. However, the

simulation graph did show fitness increased where

MaxT-WrmMo falls between 35 and 45 1C (Fig. 2c).

Jatropha fitness increased when MeanTRng-Dly

exceeded 4 1C but was o12–14 1C (Fig. 2d).

The environment for Jatropha was more suitable

when P-Ann exceeded 600–900 mm, with an optimum

at 1500 mm followed by a slow decrease as precipitation

further increases (Fig. 2e). We observed high Jatropha

fitness when P-WetQrt is between 500 and 1400 mm

with slowly decreasing fitness for higher precipitations

(Fig. 2f). P-DryQrt response denoted the highest

Fig. 2 Response of Jatropha fitness (logistic distribution of occurrence probability) to bioclimatic variables.
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preference for small levels of precipitation (200 mm)

followed by a strong decreasing in fitness as precipita-

tion in the dry period increased (Fig. 2g). Fitness for P-

Seas peaked when the standard deviation of monthly

precipitation is analogous to the monthly average pre-

cipitation, P-Seas �100 (Fig. 2h).

The environmental variables that caused the greatest

decrease in training gain when omitted were P-Seas and

MeanTRng-Dly. Therefore, these variables had very

specific information to explain Jatropha distribution

that was not present in other variables.

Jatropha seed yield map

Jatropha has mainly a pan-tropical distribution, favor-

ing areas with a dry season (Fig. 3). Additional suitable

areas are located in warm temperate climate zones with

sufficient rainfall. Such areas are mainly in the south of

Brazil, in the north of Argentina, and in a strip domi-

nated by monsoons extending from south of the Hima-

layas to the South China Sea.

Results aggregated into relevant Köppen climate

classes (Table 2) denote high yields in those areas

characterized by a tropical climate (mean temperature

of the coldest month 418 1C), either monsoonal (Am) or

with a distinct dry season (Aw). However, outside the

tropics, suitable growing opportunities for Jatropha are

found in warm temperate climates with no frost risk,

characterized by either having dry seasons (Cw) or

being fully humid (Cf). Other climates, such as tropical

climates with no dry seasons (Af) and subtropical

deserts (Bsh) have moderate yield potential.

The standard deviation of yield results (Fig. 4) from

Monte Carlo analysis describes modeling sensitivity

and potential uncertainties. Areas with highest sensi-

tivity are those where climate regimes differ the most

from the ones encountered in the training area. Among

areas deemed suitable, the highest sensitivity is

observed in subtropical areas (i.e. North India and

South Brazil), and in tropical areas of the eastern coast

of India, South-East Asia and on the coasts of Guinea,

Guinea-Bissau and Sierra Leone.

Fig. 3 Estimated Jatropha productivity (kg dry seeds ha-1 yr-1) for present climatic conditions (1950–2000 average).

Table 2 Average predicted Jatropha productivity within

Köppen climate zones*

Köppen

climate zone

* (Peel et al. 2007)

Jatropha average

productivity

(kg dry

seeds ha�1 yr�1)

Tropical humid climates

Af (tropical wet –

no dry season)

1150

Am (tropical monsoonal –

short dry season;

heavy monsoonal

rains in other months)

2200

Aw (tropical savanna –

winter dry season)

2300

Dry climates

BSh (subtropical steppe –

low-latitude)

750

Subtropical temperate climates

Cw (humid subtropical –

dry winter)

1950

Cf (humid subtropical/

marine without dry season –

hot or warm summers)

1550

*Original classification has been modified to exclude frost risk

conditions (minimum average temperature of the coldest

month o8 1C).
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Changes in seed yield due to climate changes in the

near future (Fig. 5) follow clear subcontinental patterns

with yield decreasing in zones with lower predicted

precipitations (Sahel, Eastern Brazil, Northern Austra-

lia), and yield increasing in regions with decreasing

frost risk (Northern part of India and EastAsia, and

Southern Africa). Average global yield in areas suitable

for Jatropha will decrease slightly due to climate change

(�11% or 300 kg seeds ha�1 yr�1).

Validation

Validation of estimated MaxEnt probability occurrence

reported AUC values of 0.92 when evaluated on testing

data (65 specimen locations). AUC values theoretically

equals 1 for perfect models, while for AUC values equal

to 0.5 or less, models are considered random or worse

than random. In general, when the AUC values is 40.9,

a probabilistic classification is considered reliable

(Araújo et al. 2005). Linear regression between measured

vs. estimated yields (Fig. 6a) showed a good fit (R2 5 0.674,

Po0.001). When plotting the residuals of this regression

against the standard deviation of productivity obtained

from the sensitivity analysis (Fig. 6b), we obtained a

significant linear regression fit (R2 5 0.569, P 5 0.001).

Thus, approximately half of the residual values can be

explained by modelling uncertainties and the remaining

half by unaccounteable explanatory variables (e.g. nutri-

ents availability). Residuals do not show a significant

Fig. 4 Standard deviation of Jatropha productivity (kg dry seeds ha-1 yr-1) from Monte Carlo sensitivity analysis. Areas with highest

standard deviation show the highest prediction uncertainty.

Fig. 5 Change in estimated Jatropha yield (kg dry seed ha-1 yr-1) between future (2020) and present climatic conditions (1950–2000

average).
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linear trend across any of the climatic variables used to

simulate occurrence probability (R2 5 0.1–0.3). There-

fore, it can be assumed that our model reliability is

unbiased towards climate factors and thus appropriate

for studying climatic influences.

Discussion

Several environmental variables describing soil, topo-

graphic and climatic conditions were tested as explana-

tory factors of Jatropha fitness. However, we could infer

significant and reliable responses only from climate

datasets. Lack of explanatory significance for edaphic

factors is very likely due to the inaccuracy typical of

available global soil datasets (Gray et al., 2009). In

reality, soil properties have an important effect on

Jatropha productivity (Openshaw, 2000). We also have

excluded slope as explanatory variable, although sig-

nificant response was reported by its use. The modeled

response to slope shows increasing suitability towards

terrains with medium slopes (20–301), but likely reflect-

ing a topographic bias of natural vegetation occurrence

and its sampling.

In accordance with previous observations (Achten

et al., 2008), we found that Jatropha establishment

requires mean annual temperatures between 18 and

28 1C (with optimal values around 26–27 1C) and aver-

age minimum temperatures of the coldest month above

8–9 1C, indicating a clear lack of tolerance to frost (Sys

et al., 1991). Furthermore, our results show preferences

for average maximum temperatures in the warmest

period varying between 35 and 45 1C. However, max-

imum temperatures had a marginal significance to

predict suitability. This implies that Jatropha is slightly

constrained by maximum temperatures, which is a trait

typical of succulent plants (Ackerly et al., 2000). Suitable

conditions were found with annual precipitation above

600–900 mm, which is higher than early expectations

(Foidl et al., 1996), with an optimum at 1500 mm. While

Jatropha has a drought avoidance strategy and a rela-

tively high water-use efficiency (Maes et al., 2009a), no

scientific study has confirmed previous high yields

expectations for arid and semiarid areas. Fitness de-

creased when annual precipitation exceeds 1500 mm,

probably because of increased risk of waterlogging

(Biswas et al., 2006; Singh et al., 2006) or a lower like-

lihood of drought. It is a common belief among Jatropha

practitioners that seasonal droughts are somehow func-

tional for higher yields. In fact, our results show specific

preferences for limited precipitation in the driest quar-

ter (optimum at 50–200 mm) and seasonal precipitation

regimes (optimum precipitation seasonality at �100).

When precipitation seasonality approaches 100, the

standard deviation of the monthly precipitation distri-

bution approximates its average. Jatropha showed a

preference for a mild mean daily temperature range

(4–12 1C), generally found in hot but not extremely dry

zones (e.g. subject to oceanic influences).

Jatropha seed yield estimates (Fig. 3 and Table 1)

showed that suitable zones for high yields are located

in both tropical and hot temperate areas (with sufficient

precipitation and absence of frost). Results show that

average yield of Jatropha in tropical climates was

halved when planted in fully humid zones rather than

humid tropics with a strong or partial dry season.

Vegetation on coastal ranges benefits from horizontal

precipitations (e.g. sea-fog) from nearby water bodies

(Bruijnzeel & Proctor, 1995). Owing to the lack of

climate geodatasets describing these events, results

exclude the positive impacts of horizontal precipita-

tions on Jatropha suitability.

The average global yield of Jatropha is estimated to

decrease slightly (�11%) under current climate change

(i.e. difference between average 1950–2000 and 2020

conditions), although greater effects can be seen within

specific regions. Cold days, cold nights, and frost events

will become on average less frequent as climate changes

(IPCC 2007). This will make areas of Southern Africa (e.g.

Zambia), South America (e.g. Argentina, Paraguay), the

northern part of South and East Asia (e.g. Northern India,

Fig. 6 (a) Linear regression fit of estimated versus measured

Jatropha seed yields, (b) linear regression fit of residuals (|esti-

mated–measured yields|) versus productivity uncertainty

(standard deviation of Jatropha yield from sensitivity analysis).

148 A . T R A B U C C O et al.

r 2010 Blackwell Publishing Ltd, GCB Bioenergy, 2, 139–151



Nepal and China) more suitable for Jatropha. Similarly,

projected precipitation decreases in already dry condi-

tions (e.g. Sahel) may reduce Jatropha suitability.

Our MaxEnt modeling effort was a based on a set of

primary data (259 specimen locations) considered quite

sufficient to model correctly suitability distribution over

environmental conditions encountered in the training

area (Pearson & Dawson, 2003; Loiselle et al., 2008). In

fact, validation of MaxEnt results over training environ-

mental conditions was rated very positively (AUC 5

0.92). As we move away from these environmental

conditions, higher model sensitivity to MaxEnt parame-

terization (and uncertainty) is observed. The global

MaxEnt estimate of occurrence probability is converted

linearly into seed yield, following observed worldwide

ecological patterns for 64 large-seeded tree species (Mo-

les & Westoby, 2002). A limited number of on-site yield

assessment (n 5 15) is available. Luckily, the locations of

these assessments follow an ideal distribution (i.e. out-

side training area, across a gradient of model uncer-

tainty) that maximizes validation effectiveness.

Measured and estimated yields show a strong linear fit

(R2 5 0.67). The yield data were found in locations where

the annual precipitation ranged from 400 to 1500 mm. As

such, they provide a valid benchmark for semiarid and

subhumid areas, where is the major interest in Jatropha.

Since the residuals analysis showed no significant

trend (R2 5 0.1–0.3) in error across the climate gradients,

our model provides unbiased and conservative Jatro-

pha responses to climate factors. The spatial assessment

of sensitivity provides a tool to detect uncertainty with-

in predicted results, inherent to any modeling, allowing

risk assessment of their use by land managers and

policy makers.

It should be noted that our results describe Jatropha

suitability to climate factors from an ecological perspec-

tive. Therefore, they do not include the potential of

agronomic practices to mitigate climatic stresses and

widen the area suitable to Jatropha. Overall the speci-

men collection corresponds to individuals naturally

occurring, and therefore responses are calibrated for a

range of genotypes adapted to local climatic conditions

in the training area. Although, agronomic and genetic

improvements can increase Jatropha’s global potential,

local performances will always be primarily con-

strained by the biophysical environment. As such this

study can be used to identify locations where the basic

requirements for Jatropha yield are met, or to indicate,

for a certain location, which essential factor has to be

artificially adapted (e.g. irrigation for precipitation).

With this exploration of the occurrence and yield re-

sponse to climatic conditions, further research can focus

on the response of management inputs (e.g. agronomic

practices, genetic improvement).

This study has successfully produced a spatial high

resolution (�2 km) global estimate of Jatropha seed

yield under both current and future climate conditions

by applying principles of biogeography and ecology to

the limited data available for Jatropha. We have ac-

quired further information on the species environmen-

tal requirements based on analysis of a near global

distribution of the species. A measure of uncertainty

has been provided to allow appropriate and informed

use of results.
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