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ABSTRACT

Context. Studies of interacting binary systems typically assume that tidal forces have circularized the orbit by the time Roche lobe
overflow (RLOF) commences. However, recent observations of ellipsoidal variables have challenged this assumption.

Aims. We present the first calculations of mass transfer via RLOF for a binary system with a significant eccentricity using our new
binary stellar evolution code. The study focuses on a 1.50+1.40 M, main sequence binary with an eccentricity of 0.25, and an orbital
period of Py, ~ 0.7 d. The reaction of the stellar components due to mass transfer is analysed, and the evolution of mass transfer
during the periastron passage is compared to recent smooth particle hydrodynamics (SPH) simulations. The impact of asynchronism
and non-zero eccentricity on the Roche lobe radius, and the effects of tidal and rotational deformation on the stars’ structures, are also
investigated.

Methods. Calculations were performed using the state-of-the-art binary evolution code BINSTAR, which calculates simultaneously
the structure of the two stars and the evolution of the orbital parameters.

Results. The evolution of the mass transfer rate during an orbit has a Gaussian-like shape, with a maximum at periastron, in qualitative
agreement with SPH simulations. The Roche lobe radius is modified by the donor star’s spin and the orbital eccentricity. This has
a significant impact on both the duration and the rate of mass transfer. We find that below some critical rotation rate, mass transfer
never occurs, while above some threshold, mass is transferred over the entire orbit. Tidal and rotational deformation of the donor star
causes it to become over-sized, enhancing the mass transfer rate further by up to about a factor of ten, leading to non-conservative
mass transfer. The modulation of the mass transfer rate with orbital phase produces short-term variability in the surface luminosity
and radius of each star. The longer-term behaviour shows, in accordance with studies of circular systems with radiative stars, that the

donor becomes ever small and under-luminous, while the converse is the case for the accretor.
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1. Introduction

Roche lobe overflow (RLOF) is of fundamental importance for
a wide variety of binary star systems (for a review see Pringle
1985), such as cataclysmic variables, low-mass X-ray binaries
and Algols. RLOF impacts upon both the binary orbit through
the exchange (or perhaps the loss from the system) of mass and
angular momentum, and on the evolution of the stellar compo-
nents themselves, which may lead to a variety of exotic events.
Accretion onto a high-mass white dwarf, for example, may lead
to Type Ia supernovae (see Wang & Han 2012, for a review), or
novae events (see e.g. Warner 1995). Alternatively, a common
envelope phase is expected to result from RLOF from a red or
asymptotic giant branch star (Pazcynski 1976). Clearly, the out-
come of binary evolution greatly depends upon both the rate at
which material is transferred, and upon the nature of the stars.

Briefly, during RLOF, material from the donor (with
mass M) is channelled as a narrow stream through the inner
Lagrangian point, £, which falls into the gravitational potential
well of the accretor (mass M;). Depending on the initial sep-
aration, the matter stream will either impact directly onto the
surface of the companion star, or form an accretion disk around
it. The mass transfer rate through the £; point is determined by
how much the star over-fills its Roche lobe, which in turn is dic-
tated by the Roche lobe geometry and the donor’s structure (see
Ritter 1988; D’ Antona et al. 1989).
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The validity of the Roche model rests on three assump-
tions: that the stellar components can be treated as point masses,
that the orbit is circular and that the donor star is rotating syn-
chronously with the orbit. Studies of binaries undergoing RLOF
generally consider that the last two of these assumptions hold
by the time RLOF commences (e.g. Willems & Kolb 2004), the
reason being that tidal forces act on very short timescales, owing
to the strong dependence of the tidal torques on the ratio of the
stellar radius with the orbital separation (Zahn 1977). Therefore,
tides will have circularized the orbit, and synchronized the donor
star with the orbit, by the time RLOF starts.

However, the assumption of circular orbits for RLOF has
been challenged by observations. Petrova & Orlov (1999) com-
piled a catalogue of 128 eccentric binaries which reveals that
approximately 15 per cent of these systems are semi-detached,
while 5 per cent have evolved into contact. Nicholls & Wood
(2012) confirmed large eccentricities, between 0.14 and 0.42,
among seven ellipsoidal variables. This is a surprising result be-
cause these systems, which are close to filling their Roche lobes,
should be nearly circular given their short separation and the effi-
ciency of the tidal torques. These observations suggest that some
of these binaries will therefore fill their Roche lobes while still
possessing eccentric orbits. The idea of episodic mass transfer at
periastron corroborates the hypothesis of Jorissen et al. (2009)
to explain the evolution of KIII-type giants on the eccentricity-
orbital period plane.
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From a theoretical point of view, the assumption of a cir-
cular orbit with a synchronously rotating donor star during
RLOF has also been called into question by Sepinsky et al.
(2007b, 2009). They investigated the secular orbital evolution
of an eccentric binary with a 1.44 M, neutron star paired with a
range of donor masses, as a result of both conservative and non-
conservative mass transfer via RLOF at periastron. They com-
pared the timescale for the evolution of the eccentricity due to
tides and RLOF and found that, in contrast to tides which al-
ways act to circularize the orbit, mass transfer may either in-
crease or decrease the eccentricity, over timescales ranging from
a few Myr to a Hubble time. Furthermore, the timescale over
which mass transfer acts to increase the eccentricity may be
shorter than the tidal timescale which acts to decrease it. This
occurs for mass ratios ¢ = M;/M, < 0.6, which lies in the
low-mass binary regime. Similar behaviour was also found by
Sepinsky et al. (2010) who studied the orbital evolution of ec-
centric binaries by investigating the gravitational interaction be-
tween the matter stream and the stellar components. Hence, it is
not guaranteed that mass transfer will circularize the orbit.

The eccentric nature of the binary orbit also means that the
Roche model assumptions (i.e. where circular orbits and syn-
chronous rotation is assumed) no longer applies (e.g. Limber
1963; Savonije 1978). Sepinsky et al. (2007a) analysed the ef-
fect of eccentricity and asynchronism on the Roche geometry.
They found that the Roche lobe radius for a donor star which
is rotating super-synchronously with the orbital motion at peri-
astron will be smaller than the radius calculated using the clas-
sical Eggleton (1983) formula. The converse is true for a sub-
synchronously rotating donor star. As pointed out by Lajoie &
Sills (2011b, henceforth LS11) this will impact upon both the
rate and duration of mass transfer.

The recent attempts to simulate mass transfer in eccentric
binaries have all used SPH techniques (e.g. Regds et al. 2005;
Church et al. 2009; Lajoie & Sills 2011a, LS11), and did not
consider the possibility to address the problem using a binary
stellar evolution code, which can accurately model the internal
structure of the stellar components. To the best of our knowl-
edge, only Edwards & Pringle (1987) have attempted to calcu-
late RLOF in eccentric binaries analytically. However, they con-
sidered a binary with a small eccentricity of 5 x 10, and only
modelled the flow in the vicinity of the £; point.

In this paper, we present the first simulation of mass trans-
fer for significantly eccentric systems using the state-of-the-art
binary evolution code BINSTAR (Siess et al. 2013). To facil-
itate comparisons with the work by LS11, we consider their
1.50+1.40 M, binary, with an eccentricity of e = 0.25. In the
light of the study by Sepinsky et al. (2007a) we investigate the af-
fect of asynchronous rotation and eccentricity on the Roche lobe
radius, and how this impacts on the mass transfer rate. We also
examine the response of the structure of each star due to mass
transfer, and to the deformation caused by rotation and tides.
The secular orbital evolution of the binary system is deferred to
a future study.

The paper is structured as follows. In Sect. 2, we describe the
BINSTAR code, how we calculate the Roche lobe radii, the mass
transfer rate, and how we account for the effects of rotation and
tides on the stellar structure. Our results are presented in Sect. 3,
which are discussed in Sect. 4. We conclude with a summary of
our investigation in Sect. 5.

2. Computational method

BINSTAR is an extension of the single star evolution code
STAREVOL. For further details regarding the stellar input
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physics, we refer the reader to Siess et al. (2000) and Siess
(2006, 2007, 2009, 2010), and references therein.

In the following sections, we describe the key binary input
physics used in this investigation. For a thorough description of
the BINSTAR code, we refer the reader to Siess et al. (2013).

2.1. Roche lobe radius

In an eccentric orbit, the separation between the two stellar com-
ponents, D, changes with time. For an orbit with a semi-major
axis a and an eccentricity e, D is found from

2

D= a(l —e%) ’ )
1 +ecosvy

where v is the true anomaly. Accordingly, the Roche lobe radius

of the donor star, Rz, will change along the orbit. The expres-

sion for R, as given by Eggleton (1983) can be modified by

replacing a with D, i.e.

P 0.494%3
L7 06477 +In(1+4'7)

2

Henceforth, we term this the standard Roche lobe formalism.

However, this formula is strictly valid only for circular orbits
and for donors, which are rotating synchronously with the orbit.
We follow Sepinsky et al. (2007a) and calculate R, by taking
the eccentricity of the orbit and any asynchronism of the donor
star into account. The potential in this case (normalized to the
gravitational potential of the accretor, Gg 2) is given by (Sepinsky
et al. 2007a)

q 1

Y(x,y,2) = - T 1
(C+2+2)7 [(x=1)2+y%+ 2]

- %ﬂ(l + )X + ) + x, 3)

where the x-axis lies along the line joining the centres of mass of
the two stars, in the direction from the donor to the accretor, the
z-axis is perpendicular to the plane of the orbit and is parallel to
the spin angular velocity of the donor, and the y-axis is perpen-
dicular to the x-axis, and completes a right-handed coordinate
set. All coordinates are given in units of D. In Eq. (3)

_ ff+e)!

" (1 +ecosv)?

“)

quantifies the degree of asynchronism and eccentricity, and f is
the spin angular speed of the donor star in units of the orbital
angular speed at periastron, i.e.

Q
f= L. 5)

Wheri

Here, the orbital angular speed, w, is given by

21 (1 + ecosv)?
= - 6
@ Po, (1- 62)3/2 ©)

where Py is the orbital period. Since, in general, the potential
in an eccentric system is varying with time, this will induce os-
cillations of mass elements inside the star, and perturb its hy-
drostatic equilibrium. However, Sepinsky et al. (2007a) show
that such motions are negligible if the dynamical timescale,
Tayn = (GM, /R%)‘l/ 2 of the donor is much less than the tidal
timescale, T4ge = 27/|w — ], in which case the instantaneous
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shape of the star can be approximated by the instantaneous sur-
faces of constant W (e.g. Limber 1963; Savonije 1978). This
so-called “first approximation” is valid for main sequence stars
where Py, 2 10 h (Sepinsky et al. 2007a), hence for our 0.7 d
system.

Sepinsky et al. (2007a) provide fit formulae for R, as a
function of A and ¢ for eccentric orbits and asynchronous
donors. However, because of discontinuities in some regions of
the (A, g) parameter space (Sepinsky, priv. comm.), the volume
of the Roche lobe is calculated numerically using a 32-point
Gaussian quadrature integration technique (Press et al. 1990),
from which we derive the equivalent Roche lobe radius.

2.2. Calculating mass transfer rates

To calculate the mass transfer rates during each periastron pas-
sage, we follow the prescription outlined in Ritter (1988) and
Kolb & Ritter (1990).

We consider a donor star of mass M, radius R, effective
temperature Teg,1, and with a mean molecular weight and den-
sity at the photosphere, ppn1 and pph 1, respectively. The mass
transfer rate, M, in the case where material is removed from the
optically thin region of the donor’s atmosphere (i.e. where the
optical depthis 7 < %) is calculated using

Rl - RL} ) (7)

—Ml = Mo exp( ~
Hp

(Ritter 1988) where Hp = Hp/y is the pressure scale height of
the donor at the location of £, which can be calculated from
the pressure scale height at the photosphere, Hp, and a correction
factor, y, which accounts for the geometry of the Roche lobe (see
Appendix A). Also, My is the mass transfer rate if the donor star
exactly fills its Roche lobe, and is given by

2w Ri:] RTff] 312
= F —( e’) Prh.1 ®)

Here, R is the ideal gas constant, G is the gravitational constant
and F(g) is a function of ¢, and is determined from the area of
the equipotential surface which intersects with the £; point:

F(g)=qp 9@ 9@ - 1-q])7"*. 9)

In turn, B = R%, and g(q) is given by

1

+ Txs ) el (10)

q
9(q) = =~
*

where xy, is the distance from the centre of mass of the donor
star to the £; point, in units of D. For the Roche model, x, can
be determined by numerically solving

q 1

2 _1)2
xy, (g =D

—Axy,(1+q)+1=0 (11)

(Sepinsky et al. 2007a), with A = 1 for synchronously rotating
stars in circular orbits.

If the donor is significantly overflowing its Roche lobe, or
if the donor’s radius and Roche lobe radius are not evolving in
step, then Eq. (7) is no longer valid. Instead, mass is also lost
from the optically thick layers of the star (where 7 2 2/3). The

mass transfer rate in this case becomes (see also Deloye et al.
2007)

3

: : z
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(12)

where P, T, u and M, is the pressure, temperature, mean molec-
ular weight and the mass of the donor star respectively at the
radial coordinate r, and I'; = (dInP/dInp),q is the adiabatic ex-
ponent. The integral in Eq. (12) is evaluated numerically from
the L point to the photosphere (subscript “ph”).

If the donor star is rotating asynchronously with the orbit,
and the eccentricity is non-zero, Eq. (9) is modified according to
(see Appendix A)

pol—

F (g, A) = g8 {9(q) [9(9) - A - qA]} 7, (13)

where the asterisk makes the distinction from Eq. (9).

2.3. Initial model
2.3.1. The binary model

To compare our results with the SPH simulations of LS11, we
consider their 1.50+1.40 M main sequence binary system con-
figuration. They construct their SPH models from the theoretical
density profiles of a 1.50 M, donor star with a 1.40 M, accreting
companion, calculated from their stellar evolution code, YREC
(Guenther et al. 1992; see LS11 for further details).

Their stars have a metallicity of Z = 0.001, and an age of
approximately 1.3 Gyr, representative of binary systems pop-
ulating old open clusters. They use a mixing length parameter
amir = 1.71, with no convective overshooting or rotation (Sills,
priv. comm.). With their input physics, we find that the donor and
accretor have a radius of approximately 1.4 and 1.2 R respec-
tively, in agreement with LS11. We also follow LS11 and syn-
chronize the spin angular velocity of the stars to the orbital an-
gular speed at apastron, yielding f ~ 0.36. The surface angular
speed of the stellar components is then Q; = Q) ~ 6 x 107 57!,
For simplicity, we assume that the stars rotate as solid bodies,
since the treatment of differential rotation is beyond the scope of
the paper.

Pertinent to this study, we find that each star possesses a thin
surface convective envelope, due to the first ionization of hy-
drogen. Their radial extents are relatively small (approximately
0.0014 R, for the 1.50 Mg donor, and 0.002 R, for the 1.40 M
accretor), and their masses negligible, but they are crucial for un-
derstanding the response of the stellar structure to mass changes
(see Sect. 3.2). Each star also has two additional convection
zones! associated with the first and second ionization of he-
lium, but they play a secondary role. Henceforth, we denote the
zone associated with the ionization of hydrogen as the surface
convection zone. The upper layers of this convective region are
super-adiabatic and energy transport via convection becomes in-
creasingly inefficient, until all the flux is transported purely by
radiation in the atmosphere. To aid numerical stability, the num-
ber of shells in the donor and accretor are kept constant and are
equal to 818 and 847, respectively.

! For the accretor, the convection zones due to ionized hydrogen and

the first ionization of helium are merged into a single zone.
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2.3.2. Integrating the orbit

With an eccentricity, ¢ = 0.25 and a semi-major axis, a =
4.80 Ro, the orbital separation at periastron is rpei = 3.60 Ro,
and the orbital period Py ~ 0.7 days.

To resolve numerically the orbital motion, we impose the
evolutionary timestep Af not to exceed some fraction, oy, of
the time it takes for the stars to travel the circumference 27a,
given a value v, of the orbital speed at that orbital phase i.e.

A = Fo (2’“’), (14)
Uorb
with
2 1
Vorb = \/G(M1 + M>) (— - —)' (15)
D a

For our simulations, we use Fo, = 5 X 1073, which give us
timesteps of approximately 107° yr.

2.4. Treatment of mass loss and mass gain

In the surface layers of the star, variations in the luminosity result
from the release of gravo-thermal energy per unit time and per
unit mass

as
Egrav = -T (E)m 5

where s is the specific entropy, and the subscript m denotes that
the derivative is evaluated at a fixed mass coordinate. In the sit-
uation where mass is lost or gained by the star, mass and time
can no longer be considered as independent variables. Following
Neo et al. (1977) we use a pseudo-Lagrangian variable, g;, for
each star i = 1, 2, which is defined as

(16)

m; — Ml/
- M -M

gi a7)

where M is the mass coordinate above which mass is lost or
gained, m; is a mass coordinate located at m; > M and M;(?) is
the stellar mass at time 7. In those layers affected by a change
in mass, ¢; varies between 0 and 1. For the donor, we take the
value of M to coincide with the location of the Roche lobe ra-
dius inside the star. We ensure that the time-step, At, is small
enough such that |M|At < M, — M. For the accretor, mass is
deposited uniformly above the mass coordinate corresponding
to a fraction ficer of the accretor’s mass. Hence, M, = facer Mo,
where we arbitrarily set fy..r = 0.9. We find that the response of
the accretor to mass gain is independent of the value of fic;.

In this scheme, Eq. (16) can be re-cast as (see Neo et al.
1977; Fujimoto & Iben 1989)

B —T(ﬁ) +T( ds ) o0lnM;
o), dlng;), ot °

_ (b (h)
= Egrav T Egravs

Egrav

(18)

where the subscripts §; and 7, indicate that the derivatives are to
be evaluated at constant g; and ¢, respectively. The first and sec-
ond terms on the right hand side of Eq. (18) correspond to the
non-homologous, sg;f;i and homologous, s(glgw, gravo-thermal
energy generation rates, respectively.
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The gravo-thermal luminosity, Lg.y, is then the sum of the

non-homologous, Lg}gﬂ and homologous, L(glgw, contributions
given by

— g(nh) (h)
Lgrav = Lg?av + Lgrav’

M oy M
n
f Egrav dm+f Egray dm.
M M

i i

19)

nosity, Ly, is imparted to the stellar layers, and what fraction
is radiated away. For the case of direct-impact accretion Ulrich
& Burger (1976) argue that, due to the small fraction of the ac-
cretor’s surface that is covered by the hot-spot, the energy dissi-
pated from the shock region will have a negligible effect on the
internal structure of the star. For disc accretion, it is uncertain
what fraction of the luminosity emitted from the star-disc bound-
ary layer is absorbed by the accretor (e.g. Siess et al. 1997). As
shown in Sect. 3.3, however, accretion occurs via direct impact.
Hence, following e.g. Kippenhahn & Meyer-Hofmeister (1977),
Tout et al. (1999), Braun & Langer (1995), we assume that the
accreted mass has the same specific entropy as the shell in which
it is deposited.

For the models presented in Sects. 3.1 and 3.2, we also as-
sume that mass transfer is fully conservative, i.e. 8 = |M,/ M| =
1. We investigate the possibility of relaxing this assumption fur-
ther in Sect. 3.3.

It is unclear what fraction, 0 < @, < 1, of the accretion lumi-

2.5. Effects of tides and rotation on the stellar structure

To account for the deformation of the stellar structure caused
by tidal and rotational forces, we implemented the prescrip-
tion described by Landin et al. (2009), and Song et al. (2009).
Their method employs the technique developed by Kippenhahn
& Thomas (1970, henceforth KT70), and improved by Endal
& Sofia (1978), to quantify the distortion of the star in a
1-dimensional stellar evolution code.

Consider an equipotential, ¥, of surface Sy and volume Vi,
which encloses a mass My. Following KT70, the stellar structure
equations are modified by applying the correction factors fp and
fr, which are respectively given by

47rr$ 1
T0 = Gty Sutg Ty 20
and

47rr&, : 1
Jr =[ Se J Y= (21)

where ry is the radius of a sphere with volume Vy. The effective
gravities, averaged over S, are given by

T 27
(9) = L f f g(r,0,¢) ? sin 0d6 dg, (22)
Sy Jo Jo

where the local gravity, g(r, 8, ¢), is obtained by differentiating
the potential at the considered location, P(r, 8, ¢), i.e.

2 2 27172

(6.0) oY N 10¥ N 1 oY
r,0,¢)=||— - — :

g or r 00 rsiné d¢
In this expression, the potential consists of four contributions;

the spherically symmetric part of the gravitational potential,
Wgrav, the cylindrically symmetric potential due to rotation, ¥y,

(23)
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the potential due to tides W¢e and the (non-symmetric) gravi-
tational potential due to the distortion of the star resulting from
rotation, Wit ride and tides Wiseror, and can be written

Y(r,0,¢) = \Pgrav + o + Piige + \Pdist,ml + \Pdist,lide’

4 .
GMy 1 GM. J
= T et st + T2 1+ ;(%) so,u)}
4
4n P (1)
25 Pa(c0s6) T +4nG My ,Z:; ool

where 4 = sinf cos ¢, r is the distance from the centre of the
star to P(r, 6, ¢) and P; is the jth Legendre polynomial. The in-
tegrals J and 1 ; are respectively given by

5 + ,
J’\f Lk 2 ko 25)
2j+3 .
o, +3+7n;
Ii=| po LTy, (26)
0 My  j+n;

for j = 2,3,4 (Kopal 1959). In Egs. (24) to (26), ry is the mean
radius of the considered equipotential surface, and n; is deter-
mined numerically by solving the Radau equation

dn/ p( 10)

g 6500 D= jG+1),

( i + 1)+7]/(7]/ 27)
using the boundary condition 7;(0) = j — 2 (see Landin et al.
2009; and Song et al. 2009, for details). In Eq. (27), p(ro) is the
mean density at rg.

Note that in their study, Song et al. (2009) only use the
above prescription to the interior of the star, while an analyti-
cal approximation is applied at the surface (Song, priv. comm.).
Furthermore, they neglect terms higher than second order (i.e.
Jj > 2). In doing so, they predict equal values for the effective
gravity at the location facing the companion and on the opposite
side (see their Fig. 2). In contrast, we find that tidal deforma-
tion at the surface closer to the companion is larger, giving a
lower effective gravity here, because in our approach we take
the higher-order terms into account.

3. Results

In the next section, we present the mass loss rate from the donor
calculated using the standard Roche lobe formalism (Eq. (2)),
and in Sect. 3.2 we analyse the structural response of the stel-
lar components due to the mass exchange. The impact of tides
and rotation on the structure of the so-called “distorted mod-
els” is also discussed. In Sect. 3.3, we examine to what extent
this evolution remains conservative, while in Sect. 3.4 the ef-
fects of asynchronism and eccentricity on the Roche lobe radius
and mass loss rate are investigated.

3.1. Mass transfer rates

As we can see from Fig. 1, RLOF commences just before pe-
riastron, and ceases just after, with a maximum mass transfer
rate at closest approach of M, ~ 1.3 x 1073 M yr~! for the non-
distorted model. Moving towards periastron, the donor’s Roche
lobe radius shrinks as the separation between the two stars de-
creases (Eq. (2)). The amount that the donor star overfills its

I°8|o(7||/yr)

: B 0.45 0.5 0.55
L ; ] t/P, |

0.55 0.6

t/ l:)orb

Fig. 1. Mass loss rate, M1, during the first periastron passage as a func-
tion of time since apastron, in units of P, when the effects of tides
and rotation on the donor’s structure are ignored (black, solid curve)
or included (red, dotted curve). The red squares labelled (a) to (f) on
the black curve indicate different moments in time, and correspond
to the panels labelled (a) to (f) in Figs. 2 and 6. The inset shows the
evolution of the timescale over which the mass transfer rate changes,
Ty = |M,/M,| for the non-distorted model.

critical Roche surface (hereafter termed the overfilling factor)
consequently rises, and M, increases (Eqgs. (7) and (12)). After
reaching a maximum at periastron, both the degree of RLOF
and M, decline. This produces a Gaussian-like shape in the time
evolution of M, where the duration of RLOF is approximately
11 per cent of the orbital period.

For the distorted model, M (at a given phase) is higher than
for the non-distorted case (dashed, red curve in Fig. 1), and at
periastron peaks at approximately 2.6 X 10~ M, yr~'. The rea-
son stems from the fact that the combined effects of tides and
rotation reduce the effective surface gravity (g), increasing the
donor’s radius (a relative increase of about 0.4 per cent compared
to the non-distorted model), and thus the overfilling factor at any
orbital phase. The effect of increased stellar radius has also been
reported within the SPH simulations of LS11 and Renvoizé et al.
(2002; see also Uryu & Eriguchi 1999, who use a different com-
putational technique). The small increase in the donor’s radius
has a significant impact on M due to its sensitivity on the over-
filling factor, but marginally affects the duration of mass transfer,
increasing it to about 12 per cent.

Such a modulation of the mass transfer rate with orbital
phase was suggested to account for a change in the speed of
the bipolar outflows emanating from the accretor of HD 44179
within the Red Rectangle. In this paradigm, the velocity of the
ejected material is maximum at periastron, and minimum at
apastron (Witt et al. 2009). Furthermore, variations of the X-ray
luminosity of the intermediate-mass black hole HLX-1 (Lasota
et al. 2011) and of the optical and ultra-violet luminosity of the
symbiotic system BX Mon (Leibowitz et al. 2011) have also
been attributed to such a modulation of the mass transfer rate.
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Fig. 2. Stellar luminosity profile, L, (black solid curve, left axis), and
contributions from the homologous, Lg;?,v (blue, short-dashed curve,
right axis) and the non-homologous, Lg;};\), (red, long-dashed curve, right
axis) terms for the non-distorted donor star at different moments in time,
specified in the bottom left-hand corner of each panel (see Fig. 1). The
shaded regions indicate convection zones.

3.2. Reaction of the stars

In contrast to circular orbits, mass transfer occurs periodically
during each periastron passage, and changes with the orbital
phase (Fig. 1), which gives rise to a corresponding short-term
variability of the radius and luminosity of each star. The response
of the donor and accretor during mass transfer is discussed in
Sects. 3.2.1 and 3.2.2, respectively.

3.2.1. The donor star

In accordance with e.g. Webbink (1977a) and Neo et al. (1977),
the action of removing mass from radiative layers (where
the entropy gradient is positive) absorbs energy ((’)L(g};‘?w or <
0; see blue, short-dashed curves in Fig. 2). Conversely, in
the super-adiabatic region (right-most shaded area in Fig. 2)

mass loss causes a slight increase in L, because in those lay-
ers ALy, /dr > 0.

As discussed in Webbink (1976), a changing mass transfer
rate will perturb the thermal structure of the star over a timescale
Ty = |M;/M,|. Initially, 7,; is so short (inset of Fig. 1) that
only the outermost surface layers, which consist of the surface
convection zone, can restore thermal equilibrium on a timescale
Tt < Ty In these super-adiabatic layers (which encompass
about 3 per cent of the donor radius at point (b)), eé?fv) ~ 0 and
the luminosity increases due to the dominant contribution from
ey (panel (b), Fig. 2).

Subsequently, as M, increases towards periastron, an ever-
growing deficit in L(g};;v(oc M) within the radiative layers devel-
ops. In parallel, as 7,; is also increasing, the condition 7y, < 7y
moves deeper (encompassing about 10 per cent of the donor’s ra-
dius at point (c)). Because ngv dominates over a larger fraction
of the radiative envelope, the luminosity deficit grows in these
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layers (black curves in Fig. 2) and entails an over-all reduction
of the star’s surface luminosity L; (e.g. point (c), left panel of
Fig. 3) and radius R; (left panel, point (c) on black curve of
Fig. 4), as attested by L(g?l;\), > 0 (red long-dashed curves, pan-
els (b) and (c) in Fig. 2).

Away from periastron, both |Lg}2w| and 7,; decline. The for-
mer will still cause R; and L; to shrink (Figs. 3 and 4, e.g.
point (d)) but at a slower rate. The latter will give rise to a de-

crease in Lg}?& due to decompression of the deep radiative layers

where 7,; < Ty, and eventually Lg}?& becomes negative (panel (d)

of Fig. 2). Once mass loss shuts off, the radiative layers expand
as energy flows from the interior to fill the luminosity deficit and
restore thermal equilibrium (Fig. 2, panel (f)), causing a corre-
sponding rise in L; and R; (e.g. point (f) in Figs. 3 and 4).

By the time the donor starts overfilling its Roche lobe at the
second periastron passage, the star has not yet fully recovered
thermal equilibrium and R; and L, are slightly smaller than at the
beginning of the simulation. Subsequent mass transfer episodes
perturb the structure further, and R; and L; become ever smaller
at each new mass transfer episode (black curve, Fig. 5). Despite
the short-term reaction of the donor during periastron, the afore-
mentioned longer-term behaviour is in accordance with studies
of predominantly radiative stars in circular orbits (e.g. Webbink
1977a,b; Siess et al. 2013).

For the distorted model (red, dotted curves in Figs. 3 and 4),
the donor is over-sized and under-luminous compared to the
non-distorted model for all orbital phases. The evolution of R,
and L, during the periastron passage are qualitatively the same as
for the non-distorted model, but for two main differences. Firstly,
before mass transfer starts, Ry rises while L; declines. This is
because, as the stellar separation shrinks, the surface gravity de-
creases due to the strengthening of the tidal interaction terms on
the right hand side of Eq. (24). In turn, the stars’ structure will
be less compact, and the reverse process occurs once the stel-
lar separation increases. Secondly, the evolution of R; and L;
during mass transfer is perturbed more significantly, due to the
larger mass transfer rates obtained in the tidally distorted case,
as discussed in Sect. 3.1.

3.2.2. The accreting star

As with the donor, the reaction of the accretor is initially dictated
by the surface convection zone, but because the extent of that
region is about twice that of the donor’s, it governs the reaction
over a longer duration (almost until periastron, see panels (b)
and (c) in Fig. 6%). The response of the accretor is opposite to that
of the donor star; mass addition to the convective layers causes
the surface luminosity, L,, and radius, R;, to shrink (points (b)
to (c) in right panels of Figs. 3 and 4).

As the stars move away from periastron, the compression de-

. h) - ..
celerates as 7, declines, and Lgai increases. The positive con-

tribution of L(gllzw due to the response of the radiative layers dom-
inates (panel (d), Fig. 6), causing a rise in L, and an expansion
of the surface layers (e.g. point (d), Figs. 3 and 4).

At t > 0.53P4 since apastron, mass accretion has become
negligible (Lg;zw ~ () and contraction resumes (Lg}?;i > 0; see
panel (f), Fig. 6) as the excess energy originally created in the
radiative layers by the deposition of matter is now radiated away.

2 The values of L(gﬂ), and Lgﬂw may seem high compared to the sur-
face luminosity but what is physically relevant is the sum of these two
contributions which, as previously stated, is not affected by the choice
of f acer+
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Fig. 4. Similar to Fig. 3, but now depicting the evolution of the radius for the donor R; (left panel) and the accretor R, (right panel) during the first

periastron passage.

Note that |L(gr;2‘),| is much smaller (panel (f)) because the accretor
is no longer perturbed by mass deposition, and is relaxing to-
wards thermal equilibrium. Hence, L, and R, decrease slightly
(point (f) in Figs. 3 and 4). Subsequent mass transfer episodes
causes L, and R, to gradually rise from orbit to orbit (red, dotted
curve in Fig. 5), again in accordance with studies of accreting
radiative stars in circular binaries (e.g. Neo et al. 1977; Webbink
1976).

The impact of tides and rotation on the accretor is the same as
for the donor, except that at r * 0.52 Py, the distorted model has
a somewhat higher luminosity than the non-distorted case. This
is because the higher mass accretion rate creates a larger energy

excess in the radiative layers below the surface convection zone
due to compression.

For the non-distorted models, we find that, during the peri-
astron passage, the surface luminosity of the donor decreases by
as much as ALy ~ —1.3 Ly, while for the accretor it increases
by as much as AL, ~ 2 L,. However, these variations almost
cancel out, and the net change in the luminosity for the entire
system (ALy = AL; + ALy) is ALy = 0.7 L. This corresponds
to a variation of about 0.03 magnitude, which may not be eas-
ily observable. For the distorted models, on the other hand, we
find AL, = —-2.6 L, and AL, ~ 6.5, and so a change of about
0.1 mag (ALs =~ 3.9 L), which detection may be more feasible.
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Fig. 5. Evolution of the surface luminosity of the donor L, (solid black
curve, left axis) and of the accretor L, (dashed red curve, right axis) just
before mass transfer recommences over a duration of about 30 perias-
tron passages.

We emphasize, however, that despite the low values of ALy, the
change in the intrinsic luminosities of each star is significant and
takes place over a brief period of time (approximately 1-2 h in
our model).

3.3. Effect of direct impact accretion

For an accretion disc to form, the minimum distance of approach
between the matter stream and the accretor must satisfy

Rumin = 0.0425D[g(1 + ¢)1"/* > R», (28)

(Ulrich & Burger 1976). For our system, Ry, = 0.2 Ry < R,
implying direct impact accretion and the formation of a hot-spot,
in accord with LS11. The presence of a hot-spot may give rise
to mass ejection from the system. To investigate this possibility,
we follow van Rensbergen et al. (2008), and briefly summarise
below their formalism that we implemented within BINSTAR.

According to these authors, the hot-spot luminosity, Lys, is
given by

0%
Lys = Sacc Lace = KLqee, (29)

acc
where S, is the fraction of the accretor’s surface inhabited by
the hot-spot and a, is the accretion efficiency. A fit to the vari-
able K was performed by van Rensbergen et al. (2011) using an
observed sample of 13 Algol binaries, and is given by

(30)

1.645
K~ 3.9188(M) :

Mo
The accretion luminosity, L, is calculated from the potential

difference between the £; point, ¥(x,,,0,0) and the point of
impaCL \Pimp(ximps Yimp> 0) (USing Eq. (3)), Yielding
Lace = IMLI(¥ 2, = Wimp)- (31

The point of impact, (Ximp, Yimp), can be found from ballistic tra-
jectory calculations. However, to do this for eccentric systems
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Fig. 6. Similar to Fig. 2 but now for the accretor. Note that —Lg}flf, has
been plotted (right axis).

where the separation, hence the potential, are varying with time,
is beyond the scope of the paper. To estimate (Ximp, Yimp), WE USe
the angle between the point of impact and the line joining the two
stars, @, determined from the ballistic trajectories calculated by
Flannery (1975) for different values of ¢ in circular orbits. For
our system, we use @ =~ 70°. From Egs. (29) and (31), it is ob-
vious that Ly follows the same orbital modulation as M, and if
M, exceeds some critical value M., the luminosity in the hot-
spot region may exceed the Eddington value, Lgqq, allowing for
mass ejection. van Rensbergen et al. (2008) give

GM,

Moo < 1 LgaaR, [ GM; 1, 2
crit = P C,impw
VYo = Wimp || GM2 \7Fijimp R2 2
1 1 .
- §R§Q§) -L, " Em[}, (32)

where 71 jmp and rc imp are the distances from the point of impact
to the centre of mass of the donor and the binary system respec-
tively and E,o is the rate of change of the accretor’s rotational
kinetic energy. Due to the small amount of mass that is trans-
ferred (up to approximately 10~7 M, in one orbit), the change in
the accretor’s spin speed is negligible over the timescale of the
simulation, and E.y = 0.

The temperature of the hot-spot, Tys, can be estimated from
O'Tf{s = Lys/Sus, where Spys ~ 102 cm? is the area of
the hot-spot on our accretor’s surface (see Gunn et al. 1999;
van Rensbergen et al. 2008). At periastron, Tys ~ 10° K, so
the material in that region is fully ionized, justifying our use of
the electron scattering opacity in the expression for Lgqg.

3.4. Effects of asynchronism and eccentricity

Figure 7 shows the effects on M, of an eccentric orbit and
an asynchronously rotating donor on the Roche lobe radius®

3 The step-like features near periastron, particularly evident for the
synchronous and super-synchronous models, are a result of low spatial
resolution in the surface layers of the donor star, revealed by the small
time-steps used. This produces the corresponding features in Fig. 9.
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Fig.7. Left panel, left axis: similar to Fig. 1, but here the effects of
asynchronism and eccentricity on the Roche lobe radius are taken into
account (Egs. (3) and (4)). Black, solid curve: standard Roche lobe
formalism; red, dotted curve: f = 0.90; green, short-dashed curve:
f = 1.00; blue, long-dashed curve: f = 1.02. Right panel, right axis:
the same but for the distorted models.

(Egs. (3) and (4)). Three cases are considered: sub-synchronous
rotation of the donor with the orbital motion at periastron, f =
0.90 (red, dotted curves), synchronous rotation (f = 1.00, green,
short-dashed curves) and super-synchronous rotation (f = 1.02,
blue, long-dashed curves).

For the non-distorted models, at a given orbital phase, in-
creasing the value of f increases M,. At periastron, for exam-
ple, M rises from approximately 7.0 x 10°° Mg yr~! for the
sub-synchronous case to about 9.6 x 107> M, yr~! for the super-
synchronous case; about a factor of 14 increase. The explanation
resides in the fact that a higher value of f yields a smaller Roche
lobe radius. In turn, the donor will over-fill its Roche lobe fur-
ther (i.e. an increase in (R; — Rz, )/R; with increasing f; see
top panel of Fig. 8), which will cause the mass transfer rate to
grow (Egs. (7) and (12)). Despite the enhanced mass loss rate,
we find that mass transfer is still fully conservative. Values of
M,;; are higher than M, at periastron by about a factor of 100
for the sub-synchronous case to about a factor of 6 for the super-
synchronous case.

On the other hand, for the tidally and rotationally distorted
models, the mass transfer rate at periastron is typically a factor
of 10 higher than for the non-distorted configuration, for a given
value of f. This increase in M, leads to both a higher hot-spot lu-
minosity (as high as about 10° L, at periastron for the distorted,
super-synchronous case) and non-conservative evolution for the
synchronous and super-synchronous models (top panel, Fig. 9),
with values of M of 7X 107* M, yr‘1 and 6x 107* M, yr‘1 , re-
spectively. The accretion efficiency 8 at a given phase is smaller
for the super-synchronous case, because for this model M, is
higher, and so it further exceeds M it leading to more mass ejec-
tion. Due to the modulation of M; with orbital phase, 3 is a
minimum at periastron. During one orbit, the total ejected mass
from the accretor is about 10~° My and 2 x 1078 M, for the syn-
chronous and super-synchronous models, respectively (bottom
panel, Fig. 9).

The change in the Roche lobe radius with f can be ex-
plained in terms of the location of the £; point. Recall that £,
is where 0¥/dx = 0, i.e. where a particle experiences no net

20
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Fig. 8. Relative difference between the donor radius and its Roche lobe
radius at periastron, [(Ry — Rz, )/Ri]peri (top panel), and the duration of
mass transfer, fynsfer, in Units of the orbital period (bottom panel), as a
function of f for our 1.50 M, donor.
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Fig. 9. Top panel: accretion efficiency, 8 = |M,/M;| versus time for the
distorted models, where R, is determined from Eqs. (3) and (4), with
f = 1.00 (black, solid curve) and f = 1.02 (red, dotted curve). Bottom
panel: mass of ejected material, M, (in units of 1078 M,,), as a function
of time.

acceleration, due to the balance of the centrifugal and gravita-
tional accelerations. Let the position of the £; point at a given
phase for a given value of f be x.,(0). If f is then increased
(causing a corresponding increase in (A), then a test particle at
xr,(0) will experience a stronger centrifugal acceleration, hence
an outward displacement. The new location of xz, therefore
needs to be situated closer to the donor star [xy, < xz,(0)] to
re-establish a net zero-acceleration. Since the Roche equipoten-
tial surface passes through the £; point, a decreasing value of
xr, means that both the volume and the radius of the Roche lobe
will shrink.

A shrinking Roche lobe radius with rising f also means that
mass transfer will occur for a longer duration, because mass
transfer will start (end) earlier (later) in the orbit. This dura-
tion, fansfer, 18 Shown in the bottom panel of Fig. 8. For our
super-synchronous case, mass transfer lasts for approximately
17 per cent of the orbital period.
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We also see that if f < 0.7, mass transfer does not oc-
cur at all. This is because the Roche lobe radius of the super-
synchronously rotating donor increases so much, compared to
the value obtained from Eq. (2), that the donor star never fills
it. Indeed, as Fig. 8 shows, (R; — Rz,)/R; < 0 at periastron for
f < 0.7. Therefore, if we evolve our 1.50+1.40 M, system with
f = 0.36, our system will never undergo mass transfer, in con-
trast with LS11. At periastron, for f = 0.36, the relative increase
in the Roche lobe radius due to asynchronous rotation, compared
to the value obtained from Eq. (2), is approximately 6 per cent,
in agreement with Sepinsky et al. (2007a). We return to the com-
parison of our work with that of LS11 in Sect. 4. On the other
hand, for f 2 1.8, Fig. 8 shows that mass transfer will occur over
the whole orbit, since at all phases Rz, < R;.

Finally, the change in A with orbital phase, will cause a cor-
responding change in the donor’s Roche lobe radius. To under-
stand this more clearly, we can recast Eq. (4) in terms of the
instantaneous ratio of the spin angular speed of the donor star,
and the orbital angular velocity, i.e.

2
A= (%) (1 + ecosv). (33)
w

As we move from periastron to apastron, the orbital speed de-
creases. Therefore, for a given value of Q, the donor star will
rotate progressively more super-synchronously with the orbital
motion, causing a corresponding rise in both A, and the cen-
trifugal acceleration. Consequently, the Roche lobe radius will
be progressively smaller than the value calculated by the stan-
dard Eggleton (1983) formalism, as apastron is approached.

4. Discussion

The evolution of the mass transfer rate has a Gaussian-like be-
haviour, with a maximum value occurring at periastron, in ex-
cellent agreement with the findings of LS11. However, we also
report major differences.

LS11 obtain a maximum mass transfer rate which occurs in
fact slightly after periastron. This delay is due to the time re-
quired by the material ejected from the donor to fall down the
potential well of the companion star and be accreted. This is ap-
proximately the free-fall time, of the order of 73 =~ 0.06Py,
(LS11). In BINSTAR, this delay is absent because the code
does not currently follow the ballistic trajectory of the ejected
material. Instead, it assumes that mass transfer occurs instanta-
neously. The delay found by LS11 is more physical as a result
of their more realistic treatment of mass transfer, but it does not
change the overall picture.

Furthermore, we emphasize that our determination of the
point of impact on the accretor’s surface based on the angle @
is rather crude. Sepinsky et al. (2010) calculated ballistic trajec-
tories in eccentric binaries for a single particle ejected at perias-
tron. They found that the particle may fall back onto the donor
star, as well as fall onto the accretor via a disc or direct impact.
However, as discussed below, mass transfer occurs over a sig-
nificant fraction of the orbital period, and not just at periastron.
Furthermore, their study neglects the contribution of the thermal
sound speed at the £; point to the ejected particle’s velocity. It
is unclear how these modifications would impact on the ballistic
trajectory and on the mass transfer.

If we take the effects of asynchronous rotation of the donor
(with f ~ 0.36) and the eccentricity of the orbit on the Roche
lobe radius into account, our donor never fills its Roche lobe,
even if the effect of tides, which act to increase the donor radius,
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are considered. This is in contrast to LS11, who find that mass
transfer lasts for approximately 25 per cent of the orbital period,
and peaks at periastron at a value of M; ~ 2 x 1073 My yr~!.
In their simulation, tidal and rotational forces increase the ra-
dius of their donor to a greater extent, to approximately 1.8 Rg,
so that the donor is sufficiently large to fill its Roche lobe near
periastron. As a check, we re-ran a simulation using a slightly
more evolved donor star with R = 1.8 Ry, again accounting for
the effects of asynchronism and eccentricity on the value of R, .
Now, we find that mass transfer lasts for about 30 per cent of the
orbital period, in good agreement with LS11, but our peak mass
transfer rate is approximately a factor of 35 larger than theirs.
This may arise from the uncertainty in R;, since LS11 cannot
provide a precise value. Even though this uncertainty is small, it
may greatly impact upon M; due to the sensitivity on the degree
of overflow (Egs. (7) and (12)).

The technique employed by LS11 to determine mass
transfer rates is obviously more physically realistic than the
1-dimensional analytical scheme used in the present study. The
assumptions underlying Eqs. (7) and (12) that the flow is lami-
nar, and that material moves along the equipotential surfaces is
not strictly valid. Instead, material flows upwards from within
the Roche lobe of the donor, rather than along its surface
(Eggleton 2006), which would have the effect of increasing the
mass transfer rate. On the other hand, the pressure gradients will
produce turbulence in the flow rather than bulk motion of the
material, and will contribute to reduce the mass transfer rate. Ge
et al. (2010), who use a similar formalism to Eq. (12), estimate
that the calculated mass transfer rate is accurate to within about
a factor of 2.

Despite the fact that LS11 distribute their SPH particles ac-
cording to density profiles calculated from their stellar evolution
code, they do not consider the transport of energy due to con-
vection and radiation, (similarly to SPH simulations by Regds
et al. 2005; and Church et al. 2009). Instead, LS11 apply a sim-
ple polytropic equation of state of the form

P =p(y = Du, (34)

where u is the specific internal energy of the stellar material,
and y = 5/3. While a value of y = 5/3 is a reasonable approx-
imation for the deep optically thick layers of the interior, it is
inadequate to treat the regions of partial ionization or small op-
tical thickness. Considering that the layers of the star in LS11
are adiabatic, their SPH simulations will over-estimate the pres-
sure and the temperature in these layers, yielding larger radii.
This ‘relaxed’ SPH stellar configuration will be able to expand
to a greater extent due to tidal and rotational deformation, and
impact on the mass transfer rate.

Even though our simulations are able to provide a more
realistic internal structure, the treatment of tides and rota-
tion outlined in Sect. 2.5 remains an approximation, since all
3-dimensional effects are folded into a 1-dimensional formalism
(see also Knigge et al. 2011, for a discussion of this matter). It
is therefore unclear whether the discrepancy in stellar radii, and
therefore the mass transfer rate, is due to the polytropic approxi-
mation used by LS11 or the subtleties of the KT70 method used
here.

For our distorted, super-synchronous model, which gives a
similar mass transfer rate at periastron as found by LS11, mass
transfer is non-conservative. Over one orbit, the total mass lost
by the donor is approximately 1 x 1077 My, while the total
accreted mass is about 8 x 1078 My, i.e. 20 per cent of the
transferred material is ejected by the accretor. However, in con-
trast to SPH simulations, we cannot follow the ultimate fate of
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this material. For their 1.50+1.40 M, system, 20 per cent of
the transferred material formed an envelope around the system,
while 5 per cent was ejected. On the other hand, since LS11 do
not model the thermal structure of the hot-spot, they may under-
estimate the fraction of material that is ejected from the system.

It is evident from Figs. 7 and 8 that the degree of asyn-
chronism of the donor star has a significant impact on both the
mass loss rate and the duration of mass transfer. It should be
pointed out that the mass transfer rates predicted by the stan-
dard Eggleton (1983) formalism (which assumes that the star
is rotating synchronously with the orbit at each location) and
the f = 1.00 case with non-zero eccentricity differ by approx-
imately a factor of about 5 for the non-distorted models. This
factor is further enhanced to about 60 due to tidal and rotational
effects on the donor star. Hence, it is imperative that the effect of
eccentricity and asynchronism on the Roche lobe geometry, and
the distortion of the donor star, be accounted for.

In the Sepinsky et al. (2007b, 2009) studies, the structure
and the response of the donor star were not taken into account,
and mass transfer was modelled as a delta function at periastron.
This is in contrast with Lajoie & Sills (2011a), LS11 and the
present work which show that the episode of mass exchange rep-
resents a non-negligible fraction of the orbital period. Allowing
for non-instantaneous mass transfer may impact on the evolu-
tion of the binary system in a way that is different to the delta
function model.

5. Summary

This study paves the first steps towards calculating mass trans-
fer rates for significantly eccentric binaries, taking the effects of
tides and rotation on the structures of the stellar components into
account, as well as the effects of eccentricity and asychronous
rotation of the donor on the Roche lobe radius. In this paper, we
have used a state-of-the-art binary evolution code BINSTAR to
calculate mass transfer rates for a 1.50+1.40 M main sequence
binary system, with an eccentricity of 0.25 and an orbital pe-
riod of Py ~ 0.7d and we compared our results with the SPH
calculations performed by LS11 for the same system.

The evolution of the mass transfer rate with time shows
Gaussian-like behaviour, with a maximum mass transfer rate oc-
curring at periastron, in qualitative agreement with LS11. The
accretion luminosity (which emanates from a hotspot for this
particular system) also varies in response to the changing mass
transfer rate. The duration of the mass transfer rate represents a
non-negligible fraction of the orbital period, particularly if the
donor star is rotating sufficiently rapidly. On the other hand,
mass transfer may not occur at all if the donor is rotating too
slowly.

During RLOF, the timescale over which the mass transfer
rate changes, T;; = |M/Mj] is so short that only the outer-most
stellar layers, consisting of the surface convection zone, can re-
store thermal equilibrium. Initially, the response of each star is
dictated by this convection zone. As mass transfer proceeds, a
larger fraction of the stars’ envelope, consisting of the radiative
layers, dictate the subsequent response of each star.

The evolution of the luminosity of the donor and accretor
over 30 orbits (Fig. 5) highlights the fact that the longer-term
evolution of the stellar structure is what we would expect for
stars with significantly radiative envelopes, as shown by studies
of such stars in circular orbits.

Finally, tidal and rotational forces increase the surface ra-
dius of the donor, enhancing mass transfer further by a factor of
about 10, potentially leading to non-conservative mass transfer.

In the future, we wish to follow the mass transfer rate as a
function of orbital phase over many orbits, and determine the
secular orbital evolution of eccentric binaries.
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Appendix A: Determining the Function F*(q, A)

In the following description, we use a coordinate system where
the origin lies at the centre of mass of the donor. The positive
x-axis points from the centre of mass of the donor to the centre
of mass of the accretor, while the z-axis is perpendicular to the
orbital plane, and is parallel to the donor’s spin angular velocity.
The y-axis lies on the orbital plane, and forms a right-handed set.

We start with Eq. (20) of Sepinsky et al. (2007a), which gives
the potential, W (normalized by the potential due to the accretor,

GM-
o)
1
¥ o= _ q _ |
[((x=1)?+y?+22]2

ey

- %ﬂ(l + (3 + ) + x, (A.1)
where all coordinates are given in units of the instantaneous
separation, D and A is given by Eq. (4). Following Meyer &
Meyer-Hofmeister (1983) and Ritter (1988), we can express the
change in the potential around the vicinity of the £; point, AY,
using a Taylor expansion to the second order, according to

AY ~ By’ + CZ, (A.2)
where
1(6*Y 1
p=_(2X) _2 _A— A.
> ( a7 )11 5l9(q) = A - qAl (A.3)

where the subscript £ indicates that the derivative is evaluated
at the inner-Lagrangian point, and g(g) is given by Eq. (10).
Similarly,
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“2\az ), 27

Recalling that the potential has been expressed in units of the
secondary’s gravitational potential, and that the distances are in
units of the separation, then converting back to ‘normal’ units
gives us for B and C, respectively,
GM,
2D3
GM,
= — - A-qA],
2D [9(q) qA]
GM,
2qD?

(A4)

B = lg(q) — A - qA]

(A.5)

C= 9(q). (A.6)

We can see from Eq. (A.2) that the equipotential surface in the
plane of the £; point is an ellipse with an area, S, given by

AY
VBC

=n (A7)
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Following Meyer & Meyer-Hofmeister (1983), the area of the
cross section of the flow, Q, is then

RT. 1 27RT e D? 1
gl = 1 29 g(q)lg(g) - A - g AN 7.

Uphi VBC  Hphi GM;
(A.8)
Defining
A Rll
==L A9
D (A.9)
then substituting Eq. (A.9) into (A.8) gives us
27RT, ff, R3 A~ 1
= g (g(glg(g) - A-gANE. (A10)
Hpn1  GM,

The mass transfer rate when the donor star exactly fills its Roche
lobe, My, is given by (Ritter 1988)

1

My = — vs O, A.11
0 N7 Oph,1 Vs O ( )
where
T .
o, = RLem (A.12)
Hph,1

is the sound velocity of the material in the location of the £;
point. Substituting Egs. (A.10) and (A.12) into (A.11) and com-
paring the result with Eq. (8) gives us

. 2r . _
My = —=qB* {9(@)lg(q) - Aq — Al'?
N
« R3Ll (RTeE,1)3/2p .
GMi \ pph,1 e
2r R3L (RTeff 1 )3/2
= —F*(A, ! - s A.13
Nz ( q)GM1 on Pph,1 ( )
where
F*(A,q) = g6 {9(@)lg(q) - Aq — Al (A.14)

as given by Eq. (13).
Finally, the pressure scale scale height at the location of the
L, point is calculated using
N Hp
P=——7»
¥(q)

where y(q) takes the non-spherical shape of the donor’s Roche
lobe into account, and is given by (Ritter 1988)

(A.15)

(¢) = {0:954+0.025 log g — 0.038(logg g7 if0.04<qg<1
Y9 =10.954+0.03910g10g — 0.114(log109)* if 1 < ¢ < 20.
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