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thierry.goudon@inria.fr

STELLA KRELL

ANDRA DRD/EAP & Project-team SIMPAF, Inria Lille-Nord Europe, France
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We consider the homogenization of a coupled system of PDEs describing flows in het-
erogeneous porous media. Due to the coupling, the effective coefficients always depend

on the slow variable, even in the simple case when the porosity is periodic. Therefore

the most important part of the computational time for the numerical simulation of such
flows is dedicated to the determination of these coefficients. We propose a new numerical

algorithm based on Reduced Basis techniques, which significantly improves the compu-

tational performances.
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1. Introduction

This work is concerned with the numerical treatment of a nonlinearly coupled

elliptic-parabolic system of equations whose coefficients vary on a small scale. Re-

solving the finest scales induces a prohibitive numerical cost, both in terms of com-

putational time and memory storage. Our goal consists in finding relevant “aver-

aged” models, combined with efficient numerical methods. It turns out that the

main part of the computational effort is precisely devoted to the evaluation of the
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coefficients of the effective equations which are obtained by homogenization. We

shall propose methods which lead to a considerable speed-up of this crucial step.

A strong motivation comes from the modeling of radionuclide transport in nu-

clear waste storage devices. This yields a nonlinear system of parabolic equations,

coupling the time-evolution of the radionuclide concentration C(t, x) (for the sake of

simplicity we consider only one single species of radionuclides) to the velocity field

U(t, x) of the water flow. The flow takes place in a complex porous medium made

of clay, limestone and marl — so that the physical properties vary a lot from place

to place. The modeling of radionuclide transport in disposal facilities of radioactive

waste therefore requires to deal with PDEs whose coefficients are heterogeneous

at small scales. The realization of routine simulations should however rely on fast

computations, which excludes to resolve the finest scales. Homogenization is the

natural tool to derive effective models, which hopefully smooth out in a consistent

way the small scale features of the problem. In the case of the nonlinearly coupled

system treated here, (periodic) homogenization alone is not enough to drastically

reduce the computational cost, since a so-called cell-problem (which is itself an

elliptic PDE) has to be solved at each Gauss point of the computational domain

— this could surprise the expert: although diffusion coefficients are assumed to be

periodic, and the equations are linear, the nonlinear coupling condition makes the

homogenized diffusion matrix depend on the space variable. This is where the re-

duced basis (RB) method comes into the picture: these cell-problems can be viewed

as a d-parameter (d being the space dimension) family of elliptic equations, which

is an ideal setting for the RB method. A further practical issue is related to the

dependence of the elliptic operator upon the parameters, which is not affine (ac-

cording to the terminology of the RB approach) and therefore requires a specific

treatment.

The model under investigation here has been derived for the benchmark COU-

PLEX, see 4. This benchmark is based on a set of simplified but realistic models

for the transport of radionuclides around a nuclear waste repository. It allows one

to evaluate the pros and cons of several numerical strategies that can be used in

this context. We wish to complete the benchmark by considering the corresponding

homogenization problem. Let us recall the model. We are interested in the evolu-

tion in time and space of the concentration C of a species (pollutant, nuclear waste,

etc.) in a saturated porous medium Ω, which is driven by reaction, transport and

diffusion:

Rφ∂tC −∇ · (D(U)∇C − UC) +RφλC = S. (1.1)

This equation involves the following quantities: the fluid velocity U , a nonlinear

diffusion matrix field D(U), the porosity φ > 0, the species-dependent latency

retardation factor R > 0 and degradation coefficient λ = ln(2)
T (where T is the half–

time of the species), and a source term S. The system is completed by initial and
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boundary conditions, which can be of Dirichlet, Neumann, or mixed type. Both the

diffusion coefficients D(U) and transport term U · ∇C depend on the fluid velocity,

which is itself related to the hydrodynamic load (or piezoelectric height) Θ = p
ρg +z

(z = xd ∈ R being the height coordinate), through the formula

U = −K∇Θ, (1.2)

where K is the heterogeneous permeability tensor of the porous medium. In this

work, we focus on the simplest situation possible where the hydraulic regime is

established and governed by a mere diffusion equation relating the charge to the

stationary source flow q:

∇ · U = q. (1.3)

The diffusion coefficients satisfy D(U) = D0 +D(U), where D0 is a diffusion matrix

field and D(U) is given by

D(U) = α|U |I + β
U ⊗ U
|U |

, (1.4)

for some α, β ≥ 0. We shall write the COUPLEX system (1.1)–(1.4) in dimension-

less form, and identify a small parameter 0 < ε� 1, which is the ratio between the

typical period of the heterogeneities and the characteristic length scale of Ω. The

rescaled system has the same form as (1.1)–(1.4), with however a permeability ma-

trix of the form K(x/ε) for some periodic function K. We may consider oscillating

source terms q, S and diffusion coefficient D0 as well.

This work addresses the following questions:

(1) prove existence and uniqueness of suitable weak solutions to COUPLEX system

(1.1)–(1.4),

(2) find effective equations for this model of transport of radionuclides in porous

media describing he regime 0 < ε� 1,

(3) design numerical methods to compute efficiently the coefficients of the effective

models, without using the brutal and prohibitive method consisting of solving

independently the cell-problems and computing the suitable averages at each

Gauss point of the computational domain.

The first two points are considered as a preliminary to the design of a numerical

solution method. Note that the COUPLEX system can be embedded into a much

more general family of systems, which has been widely studied in the literature.

The main difference with the existing literature is the coupling condition: in the

COUPLEX system (1.1)–(1.4), C depends on Θ but Θ does not depend on C; this

a weak coupling. In more general models, Θ depends in on C through an additional

viscosity term in the Darcy equation (1.3); this is a strong coupling. In the latter

case, existence results have been obtained in 16, 17, and 10. Uniqueness of weak

solutions has not been proved in general. This is a specific feature of the COUPLEX
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system, which we shall address in Section 2. The problem is not trivial since the

coefficients D(U) are unbounded unless ∇Θ is bounded (which does not hold in

general). The system with strong coupling has been homogenized by Choquet and

Sili in 11. We provide a much simpler proof in the case of weak coupling, which

includes in addition the uniqueness property. As will be shown in Section 2, the

effective model in the regime ε→ 0 has the form{
∇ · U∗ = q∗,

∂tC
∗ −∇ · (D∗∇C∗ − U∗C∗) + λC∗ = S∗.

(1.5)

where the coefficients S∗, q∗ are determined by suitable “averages” of the oscillating

coefficients S, q, while the velocity field U∗ and the diffusion coefficient D∗ are given

by relations of the form

U∗ = U(K, q), D∗ = D(D0, U
∗), (1.6)

for some nonlinear maps U and D. The core of this article is the numerical ap-

proximation of this homogenized system in Section 3. We shall see that the direct

approach for the computation of the effective coefficients, which consists in solving

corrector equations at each Gauss point of Ω, remains prohibitive in terms of com-

putational cost. We then propose a numerical strategy based on the RB method

(see 21 and the references therein for elliptic equations, and 5 for an application to

homogenization). The guideline of the RB approach is the construction of a suitable

Galerkin basis “adapted” to the parametrized set of equations. We present in detail

the application of the RB method to the COUPLEX system (1.1)–(1.4). Again, the

fact that the diffusion coefficients are unbounded raises some interesting questions,

this time not only for the analysis but also for the practical implementation of the

RB method, and more specifically for the choice of the estimator. Numerical results

demonstrate the ability of the method to provide accurate results with a substantial

speed-up.

We shall make use of the following notation:

• R+ = [0,+∞);

• 0 < T <∞ is a final time;

• d ≥ 1 denotes the space dimension;

• Md(R) is the set of d× d real matrices, I is the identity matrix;

• Ω is an open bounded Lipschitz domain of Rd;
• For all p ∈ [1,∞] and s ∈ N, Lp(Ω) denotes the space of p-integrable functions

on Ω, W s,p(Ω) denotes the Sobolev space of p-integrable functions whose s-first

distributional derivatives are p-integrable, W 1,p
0 (Ω) the closure in W 1,p(Ω) of

the space C∞0 (Ω) of smooth functions compactly supported in Ω;

• For p = 2, we denote the Hilbert spaces W 1,2(Ω) and W 1,2
0 (Ω) by H1(Ω) and

H1
0 (Ω), respectively.

• Y = (0, 1)d is the periodic cell, and H1
#(Y) denotes the closure of the subspace

of C∞(Rd) made of Y-periodic functions with vanishing mean.
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2. Well-posedness and homogenization

2.1. Main results

We consider the following weakly coupled system of PDEs:
U = −K∇Θ in Ω,

∇ · U = q in Ω,

∂tC −∇ · (D(U)∇C − UC) + λC = S in ]0, T [×Ω.

(2.1)

Let λ > 0, q ∈ L∞(Ω), and S ∈ L2(0, T ;H−1(Ω)). The weak coupling condition

reads

D(U)(x) := D0 (x) + α|U(x)|I + β
U (x)⊗ U (x)

|U (x) |
, (2.2)

for a. e. x ∈ Ω, where α > 0, β ≥ 0. The functions x 7→ K(x) and x 7→ D0(x) are

matrix-valued; they both satisfy uniform bounds and strong ellipticity conditions:

there exists Λ > 0 such that for a. e. x ∈ Ω and all ξ ∈ Rd

|K(x)ξ| ≤ Λ|ξ|, ξ ·K(x)ξ ≥ Λ−1|ξ|2,
|D0(x)ξ| ≤ Λ|ξ|, ξ ·D0(x)ξ ≥ Λ−1|ξ|2.

The system (2.1) is completed by boundary conditions and an initial condition. For

the mathematical analysis of the problem, we restrict ourselves to homogeneous

Dirichlet boundary conditions; namely, we set
Θ = 0 on ∂Ω,

C (0, ·) = Cinit in Ω,

C = 0 on ]0, T [×∂Ω,

(2.3)

for some Cinit ∈ L2(Ω). The adaptation to more general (time-independent) bound-

ary conditions, as treated in the numerical tests later on, could be considered with-

out further difficulty.

We are interested in the case when K is an ε-periodic matrix, and ε→ 0. Before

we turn to this problem, we first define a notion of weak solution for the coupled

system (2.1)–(2.3), and give an existence and uniqueness result.

Definition 1. A weak solution of (2.1)–(2.3) is a pair (Θ, C) ∈ H1
0 (Ω) ×

L2(0, T ;H1
0 (Ω)) ∩ C0(0, T ;L2(Ω)) such that ∂tC ∈ L2(0, T ;H−1(Ω)),

∫ T
0

∫
Ω
∇C ·

D(U)∇C < ∞ with U = −K∇Θ, and which satisfies (2.1)–(2.3) in the following

sense:

• Θ is a weak solution in H1
0 (Ω) to (2.1)1,2 & (2.3)1;

• For all v ∈ L2(0, T ;H1
0 (Ω))∩L2(0, T ;L∞(Ω)) such that

∫ T
0

∫
Ω
∇v ·D(U)∇v <

∞, we have∫ T

0

〈∂tC, v〉H−1,H1
0

+

∫ T

0

∫
Ω

∇v ·D(U)∇C +

∫ T

0

∫
Ω

vU · ∇C

+

∫ T

0

∫
Ω

Cv(q + λ) =

∫ T

0

〈S, v〉H−1,H1
0
.
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The following theorem states the existence and uniqueness of such weak solutions.

Theorem 1. For all q ∈ L∞(Ω), S ∈ L2(0, T ;H−1(Ω)), and Cinit ∈ L2(Ω), there

exists a unique weak solution to (2.1)–(2.3) in the sense of Definition 1.

We now turn to the periodic homogenization of (2.1)–(2.3). Let K be a Y =

(0, 1)d-periodic matrix. For all ε > 0, we consider the coupled system

Uε = −Kε∇Θε in Ω,

∇ · Uε = q in Ω,

∂tCε −∇ · (D(Uε)∇Cε − UεCε) + λCε = S in ]0, T [×Ω,

Θε = 0 on ∂Ω,

Cε (0, ·) = Cinit in Ω,

Cε = 0 on ]0, T [×∂Ω,

(2.4)

where q, S, Cinit and the function D are as above, and Kε is defined by Kε(x) :=

K(x/ε) on Ω. Theorem 1 ensures the existence and uniqueness of a weak solution

(Θε, Cε) of (2.4) for all ε > 0. In order to characterize the asymptotic behavior

of (Θε, Cε) as ε → 0 we need to introduce a few auxiliary quantities. For all i ∈
{1, . . . , d}, we let ϕi denote the unique periodic weak solution in H1

#(Y) to the

following elliptic equation

−∇ ·K(ei +∇ϕi) = 0. (2.5)

We define the matrix K∗ by: for all i, j ∈ {1, . . . , d},

ej ·K∗ei =

∫
Y

(ej +∇ϕj) ·K(ei +∇ϕi). (2.6)

The matrix K∗ defined this way is strongly elliptic. This allows one to define the

unique weak solution Θ0 ∈ H1
0 (Ω) to the elliptic equation

−∇ ·K∗∇Θ0 = q. (2.7)

The homogenized drift is then given by

U0 = −K∗∇Θ0. (2.8)

Next we have to consider two-scale functions Ũ , D̃ defined on Ω× Y by

Ũ(x, y) = −K(y)(I +∇ϕ(y))∇Θ0(x), (2.9)

D̃(x, y) = D0(x) + α|Ũ(x, y)|I + β
Ũ(x, y)⊗ Ũ(x, y)

|Ũ(x, y)|
= D0(x) + D(Ũ(x, y)),(2.10)

where ϕ = (ϕ1, . . . , ϕd). For all i ∈ {1, . . . , d} and a. e. x ∈ Ω, we let Φi(x, ·) denote

the unique periodic weak solution in H1
#(Y) to the elliptic equation parametrized

by x:

−∇y · D̃(x, y)(ei +∇yΦi(x, y)) = 0.

ha
l-0

06
74

51
9,

 v
er

si
on

 2
 - 



January 30, 2013 14:37 WSPC/INSTRUCTION FILE GGK

7

We finally define a homogenized matrix field D∗ by: for all x ∈ Ω and all i, j ∈
{1, . . . , d},

ej ·D∗(x)ei =

∫
Y
(ej +∇yΦj(x, y)) · D̃(x, y)(ei +∇yΦi(x, y)) dy. (2.11)

We point out that, while K∗ is a constant matrix, D∗ is not a constant matrix field,

since ∇Θ0 is in general not constant on Ω. We are now in position to describe the

asymptotic behavior.

Theorem 2. Let q ∈ L∞(Ω), S ∈ L2(0, T ;H−1(Ω)), Cinit ∈ L2(Ω), D be as in

(2.2), and let K be a Y-periodic bounded and strongly elliptic matrix. For all ε > 0,

we set Kε := K(·/ε). We let K∗, Θ0, U0, and D∗ be as in (2.6), (2.7), (2.8), and

(2.11), respectively. Then there exists a unique weak solution C0 to
∂tC0 −∇ · (D∗∇C0 − U0C0) + λC0 = S in ]0, T [×Ω,

C0 (0, ·) = Cinit in Ω,

C0 = 0 on ]0, T [×∂Ω,

(2.12)

in the sense of Definition 1 (with D∗ in place of D(U)), and the unique weak solution

(Θε, Cε) to (2.4) converges to (Θ0, C0) strongly in L2(Ω) and L2((0, T ) × Ω), and

weakly in H1(Ω) and L2(0, T ;H1(Ω)); in addition Cε converges in C0([0, T ], L2(Ω)−
weak) to C0.

Although the diffusion D∗ is not of the form (2.2), for all x ∈ Ω, D∗(x) only

depends on ∇Θ0(x), and D∗ ∈ L2(Ω). Hence existence and uniqueness of weak

solutions for the homogenized system can be proved the same way as for Theo-

rem 1, and we leave the details to the reader. From the homogenization point of

view, Theorem 2 is a rather direct application of two-scale convergence and Theo-

rem 1. Although D(U) is unbounded, it is square-integrable and the homogenized

system remains elliptic-parabolic (for the homogenization of elliptic equations with

unbounded coefficients which are not equi-integrable, nonlocal effects may appear,

and we refer the reader to 2 and 6). In the case of strong coupling (that is when the

equation for U depends on C through a nonscontant viscosity term), homogeniza-

tion has been proved in 11. Yet 11 is an overkill for the problem under consideration

(uniqueness is not discussed in 11 though), and we display the main arguments of

a simpler proof in Appendix Appendix A.

Remark 1. In this statement we have considered only the case of a periodic os-

cillating matrix K. Note that, even in this simple case, the matrix D̃ depends on

both the slow variable x ∈ Ω and the fast variable y ∈ Y. The result generalizes

readily to the case of a locally periodic fields of the form K(x, x/ε). Similarly, oscil-

lating source terms and diffusion coefficients D0, depending on x and x/ε, can be

considered.

Since the specific feature of the coupled model under investigation is the unique-

ness of weak solutions, we prove Theorem 1 in detail in the following subsection.
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2.2. Proof of Theorem 1

The difference with respect to previous contributions on the strongly coupled system

is the fact that weak solutions can be proved to be unique for the weakly coupled

system. The only subtle feature of the system is the integrability condition on D

and U , which are square-integrable but not necessarily essentially bounded. The

proof is based on standard regularization and compactness arguments. We shall

only prove the uniqueness of weak solutions in detail.

For the reader convenience we quickly sketch the proof of existence of weak

solutions as well. We divide the proof into six steps, and proceed by regularization.

In the first step we recall a classical result essentially due to J.-L. Lions. In the

second step we introduce the regularizations for U and D(U). In the third step we

apply Step 1 and derive a priori estimates. In Step 4 we deduce from these a priori

estimates, by compactness and Aubin-Simon’s arguments, that the weakly coupled

system admits a distributional solution. We then show in Step 5 that this solution

satisfies a weak formulation of the equation. We prove uniqueness of weak solutions

in Step 6.

Step 1. Case of bounded coefficients and drifts.

Let D : Ω → Md(R) be uniformly bounded and strongly elliptic, and U ∈
L∞(Ω,Rd). We consider the equation

∂tC −∇ · (D∇C − UC) + λC = S in ]0, T [×Ω,

C (0, ·) = Cinit in Ω,

C = 0 on ]0, T [×∂Ω.

(2.13)

Then for all S ∈ L2(0, T ;H−1(Ω)) and Cinit ∈ L2(Ω) there exists a unique function

C ∈ L2(0, T ;H1
0 (Ω)) ∩ C0(0, T ;L2(Ω)) such that ∂tC ∈ L2(0, T ;H−1(Ω)), which

satisfies the weak form of (2.13): for all v ∈ L2(0, T ;H1
0 (Ω)) and all T > 0,∫ T

0

〈∂tC, v〉H−1,H1
0

+

∫ T

0

∫
Ω

∇v ·D∇C −
∫ T

0

∫
Ω

CU · ∇v

+ λ

∫ T

0

∫
Ω

Cv =

∫ T

0

〈S, v〉H−1,H1
0
.

Note that by an exponential change of time, one may assume λ to be as large

as desired (which then ensures the coercivity of the bilinear form). We refer the

reader to 23 for details. In the sequel we shall use the following equivalent weak

formulation: for all v ∈ L2(0, T ;H1
0 (Ω)) and all t > 0,∫ t

0

〈∂tC, v〉H−1,H1
0

+

∫ t

0

∫
Ω

∇v ·D∇C +

∫ t

0

∫
Ω

∇C · Uv

+

∫ t

0

∫
Ω

(q + λ)Cv =

∫ t

0

〈S, v〉H−1,H1
0
, (2.14)

which we obtain by using the divergence theorem and the identity ∇ · U = q.
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Step 2. Regularizations.

First note that the elliptic part of the system
U = −K∇Θ in Ω,

∇ · U = q in Ω,

Θ = 0 on ∂Ω,

(2.15)

admits a unique weak solution Θ ∈ H1
0 (Ω). The associated drift U = −K∇Θ is

not essentially bounded, but square-integrable. Likewise the associated diffusion

coefficients D(U) are not essentially bounded, but square-integrable. In particular,

the advection-diffusion equation
∂tC −∇ · (D(U)∇C − UC) + λC = S in ]0, T [×Ω,

C (0, ·) = Cinit in Ω,

C = 0 on ]0, T [×∂Ω,

(2.16)

does not satisfy the assumptions of Step 1. We regularize D(U) and U , and begin

with the diffusion coefficients. Since D(U) is a symmetric matrix, for a. e. x ∈ Ω

there exist α1(x), . . . , αd(x) ≥ 0, and a unitary matrix P (x) such that D(U)(x) =

PT (x)diag(α1(x), . . . , αd(x))P (x). For all M > 0 and a. e. x ∈ Ω, we define DM (x)

as follows:

DM (x) := PT (x)diag(min{α1(x),M}, . . . ,min{αd(x),M})P (x).

In particular, DM converges monotonically to D(U) in L2(Ω) as M →∞. For the

regularization of U , we prefer to regularize the defining equation ∇ · U = q rather

than using truncations. We consider KM and qM two sequences of smooth functions

such that KM and qM converge to K and q in Lr(Ω) for all r < ∞, respectively.

We define ΘM as the unique weak solution in H1
0 (Ω) to

−∇ ·
(
KM∇ΘM

)
= qM ,

and set UM := −KM∇ΘM . By elliptic regularity, UM belongs to L∞(Ω). Further-

more, UM converges to U in L2(Ω) (the argument relies on Meyers’ estimate, which

implies that ∇ΘM converges to ∇Θ in Lp(Ω) for some p > 2 depending only on the

constant Λ, whereas KM converges in Lp
′
(Ω) to K, with 1/p+ 1/p′ = 1).

Hence, for all M > 0, Step 1 implies there exists a unique weak solution

CM ∈ L2(0, T ;H1
0 (Ω)) ∩ C0(0, T ;L2(Ω)) such that ∂tC

M ∈ L2(0, T ;H−1(Ω)) to

the regularized equation
∂tC

M −∇ ·
(
DM∇CM − UMCM

)
+ λCM = S in ]0, T [×Ω,

CM (0, ·) = Cinit in Ω,

CM = 0 on ]0, T [×∂Ω.

(2.17)

It remains to pass to the limit as M →∞.

Step 3. A priori estimates.
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The weak form of (2.17) with test-function CM itself yields for all 0 < t ≤ T ,∫ t

0

〈
∂tC

M , CM
〉
H−1,H1

0
+

∫ t

0

∫
Ω

∇CM ·DM∇CM −
∫ t

0

∫
Ω

CMUM · ∇CM

+ λ

∫ t

0

∫
Ω

(CM )2 =

∫ t

0

〈
S,CM

〉
H−1,H1

0
.

Since ∇ · UM = qM , we have by the divergence theorem

−
∫ t

0

∫
Ω

CMUM · ∇CM = −1

2

∫ t

0

∫
Ω

UM · ∇(CM )2 =
1

2

∫ t

0

∫
Ω

q(CM )2

so that the weak form turns into

1

2

∫
Ω

(CM (·, t))2 +

∫ t

0

∫
Ω

∇CM ·DM∇CM

+

∫ t

0

∫
Ω

(CM )2

(
1

2
qM + λ

)
=

1

2

∫
Ω

C2
init +

∫ t

0

〈
S,CM

〉
H−1,H1

0
.

Recalling that one may take λ such that 1
2 inf qM + λ ≥ 1

2 inf q + λ = λ∗ > 0, we

finally deduce by coercivity of DM (and arbitrariness of t):

1

2
sup

0<t≤T

∫
Ω

(CM (·, t))2 + Λ−1‖∇CM‖2L2(0,T ;L2(Ω)) + λ∗‖CM‖2L2(0,T ;L2(Ω))

≤ ‖S‖L2(0,T ;H−1(Ω))‖CM‖L2(0,T ;H1
0 (Ω)) +

1

2
‖Cinit‖2L2(Ω).

Using this estimate and the equation again, we finally obtain that CM is bounded in

L2(0, T ;H1
0 (Ω))∩L∞(0, T ;L2(Ω)) and that ∂tC

M is bounded in L2(0, T ;H−1(Ω)),

uniformly in M .

Step 4. Compactness and existence of distributional solutions.

By weak compactness and Aubin-Simon’s theorem (see 25), there exists a function

C ∈ L2(0, T ;H1
0 (Ω)) ∩C0(0, T ;L2(Ω)) with ∂tC ∈ L2(0, T ;H−1(Ω)) such that CM

converges weakly to C in L2(0, T ;H1
0 (Ω)), strongly in L2(0, T ;L2(Ω)), and such

that ∂tC
M converges weakly to ∂tC in L2(0, T ;H−1(Ω)).

It is easy matter to check that C solves (2.16) in the sense of distributions,

and satisfies the initial condition as a continuous function in time taking values in

L2(Ω).

Step 5. Weak formulation of the system.

In this step, we shall prove that (Θ, C) is a weak solution of (2.1)–(2.3) in the sense

of Definition 1. We start by showing that
∫ T

0

∫
Ω
∇C ·D(U)∇C < ∞, which is not

obvious a priori since ∇C ∈ L2(Ω) and D(U) ∈ L2(Ω). Let M ′ > 0 be fixed. By

weak lower-semicontinuity, since ∇CM converges weakly to ∇C in L2(0, T ;L2(Ω)),∫ T

0

∫
Ω

∇C ·DM ′∇C ≤ lim inf
M→∞

∫ T

0

∫
Ω

∇CM ·DM ′∇CM .
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Since M 7→ DM is an increasing function in the sense of symmetric matrices, the a

priori estimate of Step 3 implies for all M ≥M ′,∫ T

0

∫
Ω

∇CM ·DM ′∇CM ≤
∫ T

0

∫
Ω

∇CM ·DM∇CM ≤ ‖Cinit‖2L2(Ω)+‖S‖
2
L2(0,T ;H−1(Ω)).

Hence, ∫ T

0

∫
Ω

∇C ·DM ′∇C ≤ ‖Cinit‖2L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω)),

and the desired estimate∫ T

0

∫
Ω

∇C ·D(U)∇C ≤ ‖Cinit‖2L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω))

follows from the monotone convergence theorem as M ′ →∞, using again the mono-

tonicity of M 7→ DM .

Let v ∈ L2(0, T ;H1
0 (Ω))∩L2(0, T ;L∞(Ω)) be such that

∫ T
0

∫
Ω
∇v·D(U)∇v <∞.

In order to prove that C is a weak solution, we need to pass to the limit as M →∞
in the weak formulation (2.14) for CM , that is,∫ t

0

〈
∂tC

M , v
〉
H−1,H1

0
+

∫ t

0

∫
Ω

∇v ·DM∇CM +

∫ t

0

∫
Ω

∇CM · UMv

+

∫ t

0

∫
Ω

(q + λ)CMv =

∫ t

0

〈S, v〉H−1,H1
0
.

In view of the regularity of v, the convergence of UM to U in L2(Ω), and the weak

compactness of CM obtained in Step 4, the only nontrivial term to treat is the

second-order term, and we shall prove that

lim
M→∞

∫ T

0

∫
Ω

∇v ·DM∇CM =

∫ T

0

∫
Ω

∇v ·D(U)∇C.

Let M ′ > 0 be fixed. We rewrite the above term as∫ T

0

∫
Ω

∇v ·DM∇CM =

∫ T

0

∫
Ω

∇v · (DM −DM ′)∇CM +

∫ T

0

∫
Ω

∇v ·DM ′∇CM .

(2.18)

We focus on the second term of the r. h. s. and first take the limit as M → ∞.

Since DM ′ is bounded, this yields

lim
M→∞

∫ T

0

∫
Ω

∇v ·DM ′∇CM =

∫ T

0

∫
Ω

∇v ·DM ′∇C.

We conclude by the dominated convergence theorem that

lim
M ′→∞

lim
M→∞

∫ T

0

∫
Ω

∇v ·DM ′∇CM =

∫ T

0

∫
Ω

∇v ·D(U)∇C

since by Young’s inequality and monotonicity of M 7→ DM ,

|∇v ·DM ′∇C| ≤ 1

2
(∇v ·D(U)∇v +∇C ·D(U)∇C),
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which is integrable.

It remains to prove that the first term of the r. h. s. of (2.18) vanishes as M ′ and

M go to infinity. By Cauchy-Schwarz inequality and monotonicity of M 7→ DM , we

have∣∣∣∣∣
∫ T

0

∫
Ω

∇v · (DM −DM ′)∇CM
∣∣∣∣∣

≤

(∫ T

0

∫
Ω

∇v · (D −DM ′)∇v

)1/2(∫ T

0

∫
Ω

∇CM ·DM∇CM
)1/2

.

The second factor of the r. h. s. is bounded by Step 3 uniformly in M . We therefore

focus on the first factor. Since D − DM ′ ≤ D in the sense of symmetric matrices

and ∇v ·D∇v ∈ L1(Ω), the dominated convergence theorem yields

lim
M ′→∞

∫ T

0

∫
Ω

∇v · (D −DM ′)∇v = 0,

and therefore

lim
M ′→∞

lim sup
M→∞

∣∣∣∣∣
∫ T

0

∫
Ω

∇v · (DM −DM ′)∇CM
∣∣∣∣∣ = 0,

which concludes the proof of this step.

Step 6. Uniqueness of weak solutions.

Since equation (2.16) is linear with respect to C, uniqueness follows formally from

the weak formulation tested with the solution C itself. However, we cannot directly

proceed this way since C /∈ L2(0, T ;L∞(Ω)) a priori and it is not clear whether it

can be used as an admissible test function. Instead we use a standard truncation

argument: for all N > 0 we define a function ϕN : R→ R as

ϕN (x) :=


−N for x < −N,
x for |x| ≤ N,
N for x > N,

and we test the weak formulation of (2.16) with CN := ϕN (C) ∈ L2(0, T ;H1
0 (Ω))∩

L∞((0, T )× Ω). This yields∫ T

0

〈∂tC,CN 〉H−1,H1
0

+

∫ T

0

∫
Ω

∇CN ·D(U)∇C +

∫ T

0

∫
Ω

CNU · ∇C

+

∫ T

0

∫
Ω

CCN (q + λ) =

∫ T

0

〈S,CN 〉H−1,H1
0
. (2.19)

It is easy to prove that CN → C in L2(0, T ;H1(Ω)) as N →∞ so that we can pass

to the limit in the first and last terms of the l. h. s. and in the r. h. s. of (2.19). It

remains to treat the last two terms. We begin with the Dirichlet form. By definition

of ϕN and CN ,

∇CN ·D(U)∇C = ∇C ·D(U)∇C 1|C|≤N ≤ ∇C ·D(U)∇C.
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Hence, the dominated convergence theorem yields

lim
N→∞

∫ T

0

∫
Ω

∇CN ·D(U)∇C =

∫ T

0

∫
Ω

∇C ·D(U)∇C.

We now turn to the third term of the l. h. s. of (2.19), which we treat together with

the term involving q. In particular since ∇ · U = q, the divergence theorem yields∫ T

0

∫
Ω

CNU · ∇C +

∫ T

0

∫
Ω

CCNq = −
∫ T

0

∫
Ω

CU · ∇CN .

Note that by definition of ϕN and CN we can rewrite this identity as∫ T

0

∫
Ω

CNU · ∇C +

∫ T

0

∫
Ω

CCNq = −
∫ T

0

∫
Ω

CNU · ∇CN .

Using that ∇ · U = q and the divergence theorem again, this turns into∫ T

0

∫
Ω

CNU · ∇C +

∫ T

0

∫
Ω

CCNq = −
∫ T

0

∫
Ω

CNU · ∇CN

= −1

2

∫ T

0

∫
Ω

U · ∇C2
N

=
1

2

∫ T

0

∫
Ω

qC2
N .

Passing to the limit in the last identity yields

lim
N→∞

(∫ T

0

∫
Ω

CNU · ∇C +

∫ T

0

∫
Ω

CCNq

)
=

1

2

∫ T

0

∫
Ω

qC2.

Gathering the results of this step, we obtain the following identity:

1

2

∫
Ω

C2(T, ·) +

∫ T

0

∫
Ω

∇C ·D(U)∇C

+

∫ T

0

∫
Ω

C2
(1

2
q + λ

)
=

∫ T

0

〈S,C〉H−1,H1
0

+
1

2

∫
Ω

C2
init,

since
∫ T

0
〈∂tC,C〉H−1,H1

0
= 1

2

∫
Ω
C2(T, ·)− 1

2

∫
Ω
C2(0, ·). This implies uniqueness of

weak solutions, and concludes the proof of Theorem 1.

3. Numerical approximation of the homogenized system

In this section we propose a numerical strategy to approximate the weak solution

to the homogenized system (2.7)–(2.12). There are essentially three steps to solve

(2.7)–(2.12):

(1) the computation of K∗ and the approximation of Θ0. The latter is solution of

a standard elliptic equation once K∗ is known, see (2.7).

(2) the approximation of D∗(x) at every Gauss point x of Ω. This requires to solve

a family of elliptic equations on the periodic cell Y, parametrized by the Gauss

points x via ∇Θ0(x).
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(3) the numerical solution of the advection-diffusion equation (2.12).

As we shall see, the bottleneck of the numerical approximation of (2.7)–(2.12) in

terms of computational cost is the approximation of D∗ in the second step. A

large part of this section is dedicated to this problem, and we shall use a reduced

basis approach to drastically reduce this computational cost. We have chosen not

to focus on the numerical strategy to solve the advection-diffusion equation (2.12)

since the equation is rather “standard” once D∗ is known. In particular, for the

numerical tests of the coupled system we use a naive P1-finite element method in

space combined with the implicit Euler method in time. For more efficient and

modern methods, we refer the reader to 24,14,15,26,27,8,9. The main contribution of

this section (a numerical method for the computation ofD∗) can indeed be combined

with any strategy to solve the advection-diffusion equation (2.12).

In the first subsection we present a direct approach to solve (2.7)–(2.12), and

complement the homogenization result of Theorem 2 by numerical tests showing the

rate of convergence of (Θε, Cε) towards (Θ0, C0). As expected, the computational

time to approximate D∗ becomes rapidly prohibitive as the number of discretization

points increases. In the second subsection we turn to the RB method. We first

quickly recall the rationale of the approach, and discuss what can be expected in

terms of convergence. We then turn to the practical implementation of the method,

propose an a posteriori estimator adapted to homogenization problems (but not

limited to the specific one treated here), and present an original and effective way

of fast-assembling of the RB matrix, which is the major difficulty encountered in

the RB method when the dependence of the diffusion matrix upon the parameter

is not affine — as it is the case here.

Before we turn to the core of this section let us point out that, as the attentive

reader may have already noticed, it is not clear a priori that the finite element

method converges since the diffusion matrix in (2.12) is unbounded. The method

does indeed converge to the expected solution. This property can be proved along

the lines of the existence-uniqueness theory developed in Section 2.

3.1. Direct approach

3.1.1. Space and time discretizations

We discretize the homogenized problem (2.7)–(2.12) with a finite element method in

space and the implicit Euler scheme in time. Let TΩ,h0 and TY,h1 ,TY,h1
be regular

tessellations of Ω and of Y, respectively, into d-simplices of meshsizes h0, h1, h1 > 0.

We denote by VkΩ,h0
the space of Pk finite elements associated with TΩ,h0

for k = 0

and 1 (for k = 1, we only consider functions which vanish on the boundary), and by

V1
Y,h1

,V1
Y,h1

(resp. V0
Y,h1

) the subspaces of H1
#(Y) (resp. L2(Y)) made of P1-periodic

(resp. P0) finite elements associated with TY,h1 ,TY,h1
. As quickly mentioned above,

a natural strategy to solve (2.7)–(2.12) is as follows:
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Algorithm 1.

(1) Numerical approximation K∗
h1

of K∗: compute for all k ∈ {1, . . . , d} Galerkin

approximations ϕh1

k of ϕk in V1
Y,h1

defined by: For all ψ ∈ V1
Y,h1∫

Y
∇ψ ·K(ek +∇ϕh1

k ) = 0. (3.1)

Define then for all k, l ∈ {1, . . . , d},

el ·K∗h1
ek =

∫
Y

(el +∇ϕh1

l ) ·K(ek +∇ϕh1

k ).

For future reference, we set ϕh1 = (ϕh1
1 , . . . , ϕ

h1

d ) ∈ H1
#(Y,Rd).

(2) Compute the Galerkin approximation Θh0
0 ∈ V1

Ω,h0
of the solution to (2.7) with

K∗
h1

in place of K∗, unique solution in V1
Ω,h0

to: for all w ∈ V1
Ω,h0

,∫
Ω

∇w ·K∗
h1
∇Θh0

0 =

∫
Ω

qw.

It defines Uh0
0 = −K∗

h1
∇Θh0

0 , too.

(3) Approximation D∗h0
∈ V0

Ω,h0
(each entry of the matrix is piecewise constant on

TΩ,h0
) of the homogenized diffusion D∗. Let ΠV0

Ω,h0
denote the L2-projection

onto V0
Ω,h0

. For every element T of the tessellation TΩ,h0
, ∇Θh0

0 |T is constant,

and we define D∗h0
|T as follows: for all k, l ∈ {1, . . . , d},

el ·D∗h0
|Tek =

∫
Y

(el +∇Φh1

l |T ) · D̃h1 |T (ek +∇Φh1

k |T ),

where

D̃h1 |T (y) := ΠV0
Ω,h0

D0|T + D(Ũh1 |T (y)),

Ũh1 |T (y) := −K(y)(I +∇ϕh1(y))∇Θh0
0 |T ,

and Φh1

k |T ∈ V1
Y,h1

is the unique periodic weak solution to: for all Ψ ∈ V1
Y,h1

,∫
Y
∇Ψ · D̃h1 |T (ek +∇Φh1

k |T ) = 0. (3.2)

(4) Approximation of C0. Let N ∈ N∗. The time interval [0, T ] is uniformly dis-

cretized with a fixed time step ∆t = T
N . For all n ∈ {0, · · · , N}, we set tn = n∆t,

and define the approximation Ch0,n
0 ∈ V1

Ω,h0
of C0(tn, ·) by induction as the

unique solution to: for all v ∈ V1
Ω,h0

,∫
Ω

Ch0,n+1
0 − Ch0,n

0

∆t
+

∫
Ω

∇v·(D∗h0
∇Ch0,n+1

0 −Uh0
0 Ch0,n+1

0 )+

∫
Ω

λCh0,n+1
0 v =

∫
Ω

Sn+1v.

Since we use an implicit time discretization, there is no CFL condition — note

that we could have used a semi-implicit scheme as well (see for instance 23).

ha
l-0

06
74

51
9,

 v
er

si
on

 2
 - 



January 30, 2013 14:37 WSPC/INSTRUCTION FILE GGK

16

Fig. 1. Laminate structure

In this algorithm we have used two different discretizations V1
Y,h1

and V1
Y,h1

of

H1
#(Y). Indeed, equation (3.2) is an elliptic equation whose diffusion coefficients

vary a priori at scale h1, and it is reasonable to approximate its solutions with a

finer discretization parameter h1 ≤ h1.

3.1.2. Numerical tests

To illustrate Theorem 2 when the homogenized system is solved using the direct

approach of Algorithm 1, we consider a numerical test suggested by ANDRAa. We

take d = 2 and let Ω =]0, 2[2 be a square domain, and [0, T ] be the time interval

with T = 1. The permeability is defined on the domain Y =]0, 1[2 by:

∀y = (y1, y2) ∈ Y, ∀y1 ∈]0, 1[, K(y1, y2) =

{
4.94064, if y2 ≥ 0.5,

0.57816, if y2 < 0.5.

It has a laminate structure (see Figure 1). We consider boundary conditions which

are slightly different than in Theorem 2 and Algorithm 1 — note that the adapta-

tions are straightforward in both cases — :

Dirichlet boundary conditions: Let x = (x1, x2) ∈ ∂Ω

For x1 ∈ (0, 2), h0(x1, x2) =


5

3
, if x2 = 2,

5

3
+ 0.5, if x2 = 0,

For x2 ∈ (0, 2), C0(x1, x2) =

{
1, if x1 = 0,

0, if x1 = 2.

Homogeneous Neumann boundary conditions elsewhere.

(3.3)

The parameters used in the numerical tests are gathered in Table 1. As a conse-

quence of the laminate structure, the correctors ϕ1 and ϕ2, and Φ1 and Φ2 belong

aAgence nationale pour la gestion des déchets radioactifs — http://www.andra.fr
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T = 1 D0 = 4.38 I α = 2
10 β = 2

100 λ = ln(2)
1.57 ∆t = 10−3

Table 1. Parameters

to the finite element space V1
Y,h1

provided the geometry of TY,h1 matches the lami-

nate structure of Figure 1. In this case, one can therefore take h1 = h1. In Table 2

we compare the approximations (Θεh1
ε , Cεh1

ε ) of the solutions to the heterogeneous

system (2.4) to the approximation (Θh0
0 , C

h0
0 ) of the solution to the homogenized

system (2.7)–(2.12), for several values of ε (the discretization parameters h1 and

h0 being fixed). The periodic cell Y is discretized with 8 elements per dimension,

and the macroscopic domain Ω is discretized using 2× 8/ε elements per dimension

to compute (Θεh1
ε , Cεh1

ε ). For the approximation of (Θh0
0 , C

h0
0 ), we take h0 = 1/100.

This yields

• V1
Y,h1

has dimension 81;

• V1
Ω,h0

has dimension ∼ 40000;

• V1
Ω,h0,ε

has dimension ∼ 256ε−2.

We display in Table 2 the L2(Ω) norm of the error Θh0
0 −Θεh1

ε and the L2(Ω×]0, T [)-

norm of the error Ch0
0 − Ch1

ε for ε ∈ {0.2, 0.1, 0.05, 0.025}, that is, we compare

solutions to the homogenized problems to approximations of the solution resolving

the ε-scale (the case ε = 0.025 is already borderline in terms of computational cost).

These results have been obtained using FreeFem++ (see 19). The linear systems are

solved with a direct solver. We obtain a first order of convergence for both errors.

ε
‖hh0

0 −h
εh1
ε ‖L2

‖hh0
0 ‖L2

Rate
‖Ch0

0 −C
εh1
ε ‖L2(L2)

‖Ch0
0 ‖L2(L2)

Rate

0.2 1.667e-3 - 5.528e-4 -

0.1 8.095e-4 1.04 2.525e-4 1.13

0.05 3.992e-4 1.02 1.270e-4 0.99

0.025 1.983e-4 1.01 6.704e-5 0.92

Table 2. Error in function of ε

As can be seen on Table 2 the apparent convergence rates are of order 1, which

is consistent with a formal two-scale expansion, and shows the interest of replacing

(Θε, Cε) by its homogenized counterpart (h0, C0). Although the computational time

for the approximation of (Θ0, C0) is much smaller than the computational time

for the approximation of (Θε, Cε) when ε is small, this method rapidly becomes
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prohibitive when the tessellation of Y gets finer since the approximation of D∗ then

becomes quite expensive.

The last part of this article is devoted to the speed up of the approximation of

D∗, with a numerical cost which should ideally be independent of the meshsize h1

of TY,h1 . From now on we assume D̃ in (2.10) to be a symmetric matrix (that is,

we assume D0 to be symmetric).

3.2. Reduced basis method for homogenization problems

In this section we describe how to apply the reduced basis method to the homog-

enized problem under consideration, assuming in addition that D0 in (2.2) is a

constant matrix.

3.2.1. General presentation

The reduced basis method was introduced for the accurate online evaluation of

(outputs of) solutions to a parameter-dependent family of elliptic PDEs. The basis

of the method and further references can be found in 21. The application to the ho-

mogenization of elliptic equations is discussed in 5. Abstractly, it can be viewed as a

method to determine a “good” N -dimensional space SN to be used in approximat-

ing the elements of a set F =
{(

Φ1(ξ), ...,Φd(ξ)
)
, ξ ∈P

}
of parametrized elements

lying in a Hilbert space S, the parameter ξ ranging a certain subset P ⊂ Rn.

Let us describe how the computation of the effective coefficients we are concerned

with belongs to such a framework. First of all, the auxiliary function Θ0 is simply

determined by solving the problem (2.7), with effective coefficients obtained by

solving the cell equations (2.5). There is no difficulty in this step and ∇xΘ0 can be

considered as given in this discussion. Then, we write the effective coefficient (2.10)

for the concentration equation (2.12) as follows

D̃(x, y) = D̂(∇xΘ0(x))(y)

where ξ ∈ Rd 7→ D̂(ξ) ∈ L∞(Y,Md(R)) is defined by

D̂(ξ)(y) = D0 + α|M(y)ξ|I + β
M(y)ξ ⊗M(y)ξ

|M(y)ξ|
= D0 + D(M(y)ξ),

M(y) = K(y)(I +∇ϕ(y)),

ϕ = (ϕ1, . . . , ϕd) solutions of (2.5).

(3.4)

We recall that α, β ≥ 0, and D0 is a positive-definite symmetric matrix while

M : Y →Md(R) is a square-integrable function. We are interested in the solution

Φk(ξ) ∈ H1
#(Y) to the problem: for all Ψ ∈ H1

#(Y),∫
Y
∇Ψ(y) · D̂(ξ)(y)(ek +∇Φk(ξ)(y)) dy = 0.
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In the present context, S = H∞# (Y) and we wish to find a convenient finite dimen-

sional approximation space SN which allows to describe the set F of solutions. In the

rest of this paragraph we particularize the standard RB method to homogenization

problems, by choosing a specific error estimator and orthogonalization procedure.

To avoid further heavy notation, we do not display the variable y in what follows.

Let n ≥ 1 and let D : Rn → L∞(Y,Md(R)) be a function taking values in a set

of (y ∈ Y)-dependent d×d symmetric real matrices, satisfying uniform bounds and

elliptic estimates. We suppose that D(ξ) depends continuously on the parameter

ξ ∈ Rn. Given a compact subset K of Rn, we set FK = {(Φ1(ξ), . . . ,Φd(ξ)), ξ ∈ K},
where Φk(ξ) ∈ H1

#(Y) denotes the unique periodic weak solution to the problem:

for all Ψ ∈ H1
#(Y), and for all k ∈ {1, . . . , d},∫

Y
∇Ψ(ξ) ·D(ξ)(ek +∇Φk(ξ)) = 0.

The set FK is therefore compact in H1
#(Y).

To construct the N -finite dimensional space SN intended to approximate FK,

we proceed by induction using a greedy algorithm. To this aim we need a reliable

estimator which measures the error between Φk(ξ) for some ξ ∈ K and its approx-

imation Φ
j

k(ξ) in Sj for 0 ≤ j ≤ N , which is defined as the unique weak solution

Φ
j

k(ξ) ∈ Sj to: for all Ψ
j ∈ Sj ,∫
Y
∇Ψ

j
(ξ) ·D(ξ)(ek +∇Φ

j

k(ξ)) = 0. (3.5)

Recalling that we are dealing with a homogenization problem, the quantity of in-

terest is the symmetric homogenized matrix D
∗
(ξ) defined for all k, l ∈ {1, . . . , d}

by (see (2.11))

el ·D
∗
(ξ)ek =

∫
Y

(el +∇Φl(ξ)) ·D(ξ)(ek +∇Φk(ξ)).

We denote by D
∗,j

(ξ) the approximation of D
∗
(ξ) using Sj , that is for all k, l ∈

{1, . . . , d}

el ·D
∗,j

(ξ)ek =

∫
Y

(el +∇Φ
j

l (ξ)) ·D(ξ)(ek +∇Φ
j

k(ξ)).

A standard calculation using (3.5) and the symmetry of D yields

el · (D
∗
(ξ)−D∗,j(ξ))ek =

∫
Y

(∇Φl(ξ)−∇Φ
j

l (ξ)) ·D(ξ)(∇Φk(ξ)−∇Φ
j

k(ξ)).

This shows that the error on the homogenized matrix is a suitable estimator of the

error at the level of the Φk. We thus define the estimator E
j

: K×{1, . . . , d} → R+

by

E
j
(ξ, k) =

√√√√ |ek · (D∗(ξ)−D∗,j(ξ))ek|
ek ·D

∗
(ξ)ek

.
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So defined, and recalling that D is assumed to take values in the set of uniformly

elliptic symmetric matrices (say with ellipticity constants 0 < ν ≤ ν < ∞), the

estimator is such that there exist C1, C2 > 0 verifying for all suitable j, k, ξ the

inequality

C1E
j
(ξ, k) ≤ ‖∇Φk(ξ)−∇Φ

j

k(ξ)‖L2(Y) ≤ C2E
j
(ξ, k). (3.6)

The induction procedure is then as follows. For all j ∈ {0, ..., N−1}, choose ξj+1 ∈ K
and kj+1 ∈ {1, . . . , d} such that

(ξj+1, kj+1) = argmax
K,{1,...,d}

E
j
,

define

Ψj+1 =
Φkj+1

(ξj+1)− Φ
j

kj+1
(ξj+1)

‖∇Φkj+1
(ξj+1)−∇Φ

j

kj+1
(ξj+1)‖L2(Y)

and set

Sj+1 := span {Ψ1, . . . ,Ψj+1}.

By induction, for all j ∈ {0, ..., N}, dimSj+1 = j+1, since by construction Ψj+1

is orthogonal to Sj for the following scalar product of H1
#(Y)

(Ψ1,Ψ2) 7→
∫
Y
∇Ψ1 ·D(ξj+1)∇Ψ2. (3.7)

Note that usually, in the RB literature, the vectors Ψj are orthogonalized using

the same scalar product for all j (whereas here, the scalar product depends on j).

The choice made here makes the computation of the reduced basis simpler (and

the generated space Sj+1 is the same). The influence of this choice in practice is

investigated numerically in Paragraph 3.3.3.

What convergence rate can be expected in terms of N ? In the case when n = 1

and D has a dependence of the form D(ξ) = D0 + ξD1 (that is D is an affine

function on the real line, and K is just a segment), the combination of results from
21 (see also the more general case treated in 12) and 3 (see also 7) shows that there

exist c, C > 0 such that for all N ≥ 1,

sup
K,{1,...,d}

E
N ≤ C exp(−cN).

The convergence being exponential in N , the reduced basis method is expected to

yield accurate results for moderate N (say for N which is much smaller than the

dimension of the finite element space V1
Y,h1

for instance). Note that this yields a

complete control of the error on the homogenized coefficients since for all k, l ∈
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{1, . . . , d} by Cauchy-Schwarz’ inequality and definition of the estimator,

|el · (D
∗
(ξ)−D∗,N (ξ))ek| =

∣∣∣∣∫
Y

(∇Φl(ξ)−∇Φ
N

l (ξ)) ·D(ξ)(∇Φk(ξ)−∇Φ
N

k (ξ))

∣∣∣∣
≤
√

(el ·D
∗
(ξ)el)(ek ·D

∗
(ξ)ek)E

N
(ξ, k)E

N
(ξ, l)

≤ C̃ exp(−2cN)

for some constant C̃ depending only on C and d, ν, ν.

In the case under consideration here, D is replaced by D̂ defined in (3.4). Things

are more complex than in 21 and 3 for the following three reasons:

• the parameter ξ is in Rd (that is n = d > 1 in the case of interest);

• a priori K = Rd, which is not a compact set;

• the function ξ 7→ D̂(ξ) is nonlinear.

More generally, our working plan faces the following technical difficulties:

• the parameter ξ ranges over the whole Rd while the method is designed to deal

with parameters lying in a compact set.

• the method simplifies significantly when the dependence of D upon ξ is affine.

In such a case it is described and analyzed in full details, whereas here the

dependence with respect to the parameter is more intricate. The implementation

of the method will require additional devices.

• the matrix M arising in the definition (3.4) of D̂ is not essentially bounded as

a function of y ∈ Y, but square-integrable only. Therefore the available results

that could be used to analyze the method simply do not apply.

The algorithm described in this paragraph is not of any practical use yet since

in order to choose ξj+1 and kj+1, one needs to know E
j
(ξ, k) for all ξ and k. In the

following paragraph we describe the standard way to proceed in practice.

3.2.2. Practical reduced basis method

In practice we do not have access to {Ej(ξ, k), ξ ∈ K, k ∈ {1, . . . , k}} since:

• the corrector Φk(ξ) has to be approximated in a finite-dimensional subspace V
of H1

#(Y), so that E
j

is approximated by some Ej .

• the space K has to be replaced by some finite set K.

The construction of the reduced basis is then as follows.

Algorithm 2. Let N ∈ N, p ≥ N , K =
{
ξm, m ∈ {1, ..., p}

}
be a finite subset of K,

and V be a finite-dimensional subspace of H1
#(Y).

(1) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, let Φk(ξm) ∈ V be an approximation

of the corrector Φk(ξm) in V, that is the unique element of V such that for all
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Ψ ∈ V ∫
Y
∇Ψ ·D(ξm)(ek +∇Φk(ξm)) = 0,

and let D∗kk(ξm) be the approximation of ek ·D
∗
(ξm)ek given by

D∗kk(ξm) =

∫
Y
(ek +∇Φk(ξm)) ·D(ξm)(ek +∇Φk(ξm)).

(2) Set V0 = {0}.
(3) While 0 ≤ j < N

(a) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, let Φjk(ξm) ∈ V be an approximation

of the corrector Φk(ξm) in Vj , that is the unique element of Vj such that for

all Ψj ∈ Vj ∫
Y
∇Ψj ·D(ξm)(ek +∇Φjk(ξm)) = 0,

and let D∗,jkk (ξm) be the approximation of D∗kk(ξm) given by

D∗,jkk (ξm) =

∫
Y

(ek +∇Φjk(ξm)) ·D(ξm)(ek +∇Φjk(ξm)).

(b) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, define the estimator Ej(m, k) as

Ej(m, k) =

√
|ek ·D∗(ξm)ek −D∗,jkk (ξm))|

ek ·D∗(ξm)ek
,

and set

(mj , kj) = argmax
K,{1,...,d}

Ej(m, k).

(c) Define

Ψj+1 :=
Φkj (ξm)− Φjkj (ξm)

‖∇Φkj (ξm)−∇Φjkj (ξm)‖L2(Y)

,

and set

Vj+1 = span {Ψi, 1 ≤ i ≤ j + 1}.

(d) j = j + 1.

Provided p is chosen large enough and V has dimension larger than N , one has

as in the previous paragraph dimVN = N .

What convergence rate can be expected in terms of N ? Going back to the

example mentioned in the previous paragraph, that is for D(ξ) = D0 + ξD1 and K
a segment, the answer is given in 3. In particular it is proved that the exponential

estimate is stable in the sense that if the reduced basis VN is constructed starting
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from approximations of the correctors {Φk(ξ), ξ ∈ K, k ∈ {1, . . . , d}} within an error

e, then the error estimate is of the form

sup
K,{1,...,d}

E
N ≤ C exp(−cN) + Ce.

In Algorithm 2 there are two origins for the error e:

• The fact that H1
#(Y) is replaced by a finite-dimensional space V, so that for all

ξ ∈ K and k ∈ {1, . . . , d}, Φk(ξ) is a finite-dimensional approximation of Φk;

• The fact that for the greedy algorithm, the argmax of the estimator is taken in

K and not in K.

The first source of error is standard and can be controlled by a priori or a posteriori

estimates. In the affine case above, the second source of error can also be estimated.

Indeed, as proved in 13, the maps Φk : K → H1
#(Y), ξ 7→ Φk(ξ) are analytic for all

k ∈ {1, . . . , d}. In particular, if K is a sampling of K with “meshsize” h, for all ξ ∈ K,

Φk(ξ) can be approximated by interpolation in
{

Φk(ξm), m ∈ {1, ..., p}
}

within an

error of order hq for any q ∈ N. Hence the practical reduced basis method remains

efficient in this specific case. However, this analysis is restricted to the affine case

and it does not apply in our context.

3.2.3. Fast-assemby of the matrix

Let K, K, and N ∈ N and VN be as in Algorithm 2. For all ξ ∈ K and k ∈ {1, . . . , d},
the approximation of Φk(ξ) in the reduced basis VN is given by the unique function

ΦNk (ξ) ∈ VN such that for all ΨN ∈ VN ,∫
Y
∇ΨN ·D(ξ)(ek +∇ΦNk (ξ)) = 0. (3.8)

Expanding ΦNk (ξ) in the basis VN as ΦNk (ξ) =
∑N
j=1 uj(ξ)Ψj , the above equation

is equivalent to the linear system

M(ξ)U = B(ξ, k),

where for all j ∈ {1, ..., N}, Uj = uj(ξ) and B(ξ, k)j = −
∫
Y∇Ψj ·D(ξ)ek, and the

N × N matrix M(ξ) is given by its entries M(ξ)j1j2 =
∫
Y∇Ψj1 · D(ξ)∇Ψj2 for all

1 ≤ j1, j2 ≤ N . In particular, in order to compute ΦNk (ξ), one needs to solve (3.8),

and therefore construct the matrix M(ξ) and the r. h. s. B(ξ, k).

Without further assumption on the function ξ 7→ D(ξ), the exact calculation of

M(ξ) and B(ξ, k) requires:

• the storage of the coordinates of each vector Ψj of the reduced basis VN in the

finite dimensional space V,

• the computation of integrals over Y.
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Both the information to be stored and the computational cost to construct M(ξ)

and B(ξ, k) scale like the dimension dim(V) of the finite-dimensional space V (which

can be prohibitively large). Yet, if ξ 7→ D(ξ) has specific structural properties, the

information to be stored and the computational cost can be drastically reduced.

This is the case when ξ 7→ D(ξ) is affine. Let us go back to the example of D(ξ) =

D0 + ξD1. Then, the entries of the matrix M(ξ) and of the r. h. s. B(ξ, j) take the

form: for all 1 ≤ j, j1, j2 ≤ N ,

M(ξ)j1j2 =

∫
Y
∇Ψj1 ·D0∇Ψj2 + ξ

∫
Y
∇Ψj1 ·D1∇Ψj2 ,

B(ξ, k)j =

∫
Y
∇Ψj ·D0ek + ξ

∫
Y
∇Ψj ·D1ek.

In particular, provided we store the following two N ×N matrices M1 and M2, and

the following two d × N matrices B1 and B2 defined by: for all 1 ≤ j, j1, j2 ≤ N

and k ∈ {1, . . . , d},

(M1)j1j2 =
∫
Y∇Ψj1 ·D0∇Ψj2 , (M2)j1j2 =

∫
Y
∇Ψj1 ·D1∇Ψj2 ,

(B1)kj =
∫
Y∇Ψj ·D0ek, (B2)kj =

∫
Y
∇Ψj ·D1ek,

one may reconstruct M(ξ) and B(ξ, k) by the simple formulae

M(ξ) = M1 + ξM2, B(ξ, k) = (B1)k + ξ(B2)k,

where (B1)k and (B2)k are the k-th column of B1 and B2, respectively.

The gain is twofold:

• the dimension of the information to store is 2N2 + 2dN , which is independent

of dim(V),

• the computation of M(ξ) and B(ξ, k) only requires N2 +N multiplications and

N2 + N additions, and not the computation of N2 + N integrals on Y (using

an integration rule which should be exact for functions of V).

The same strategy allows one to easily compute the approximation D∗,N (ξ) of the

homogenized matrix D
∗
(ξ), via the formula: for all k, l ∈ {1, . . . , d},

ek ·D∗,N (ξ)el =

∫
Y

(ek +∇ΦNk (ξ)) ·D(ξ)(el +∇ΦNl (ξ))

= ek

(∫
Y
D0 + ξ

∫
Y
D1

)
el

+

N∑
j=1

uj(ξ)ek ·
(∫

Y
D0∇Ψj + ξ

∫
Y
D1∇Ψj

)
,

so that one has to store 2d2+2dN real numbers only, to compute the approximation

of the homogenized matrix.

This fast-assembly method is very convenient and efficient, but requires the

diffusion matrix D(ξ) to be affine with respect to ξ.
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3.3. Application of the reduced basis method to the homogenized

system

As said above, the evaluation of the effective coefficients for the homogenized prob-

lem involves the parametrized matrices D̂ defined in (3.4) where the parameter

ξ ranges the unbounded set Rd. In the following paragraph we shall rewrite the

problem in an equivalent form which allows one to work with a compact set of pa-

rameters. We address the issue of fast assembly in the second paragraph, bearing in

mind that the dependence with respect to the parameter is not affine. We provide

with a numerical study of the method in the last paragraph.

3.3.1. Rewriting of the problem

The starting point to rewrite the problem is the following observation: for all ξ ∈ Rd
and all k ∈ {1, . . . , d}, the corrector Φk(ξ) ∈ H1

#(Y) is solution to

−∇ · D̂(ξ)

1 + |ξ|
(ek +∇Φk(ξ)) = 0. (3.9)

Let Sd−1 denote the unit hypersphere in dimension d. Define

D : [0, 1]× Sd−1 −→ L2(Y,Md(R))

(ρ,X) 7−→ D(ρ,X)

by

D(ρ,X) : y 7→ (1− ρ)D0 + ρ

(
α|M(y)X|I + β

M(y)X ⊗M(y)X

|M(y)X|

)
, (3.10)

For all (ρ,X) ∈ [0, 1]×Sd−1 and k ∈ {1, . . . , d}, we let Φk(ρ,X) be the unique weak

solution in H1
#(Y) to

−∇ ·D(ρ,X)(ek +∇Φk(ρ,X)) = 0. (3.11)

Let ξ ∈ Rd, and set

ρ =
|ξ|

1 + |ξ|
, X =

ξ

|ξ|
so that

D̂(ξ)

1 + |ξ|
= D(ρ,X);

the identities (3.9) and (3.11) imply that

Φk(ξ) ≡ Φk(ρ,X)

by uniqueness of correctors. In particular, this shows that{
Φk(ξ), ξ ∈ Rd, k ∈ {1, . . . , d}

}
=
{

Φk(ρ,X), (ρ,X) ∈ [0, 1)×Sd−1, k ∈ {1, . . . , d}
}
.
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What we gain by applying the reduced basis method on this new formulation is

that the parameters now belong to closed unit ball [0, 1]× Sd−1.

To complete the description of the RB method, we need to choose an estimator.

We shall make use of the estimator defined in the previous subsection. Let j ∈ N
and let Vj be a subspace of H1

#(Y) of dimension j. Set for all (ρ,X) ∈ [0, 1]×Sd−1

and k ∈ {1, . . . , d},

E
j
(ρ,X, k) =

√√√√ |ek · (D∗(ρ,X)−D∗,j(ρ,X))ek|
ek ·D

∗
(ρ,X)ek

, (3.12)

where, denoting by Φ
j

k(ρ,X) the approximation of Φk(ρ,X) in Vj , we have

ek ·D
∗
(ρ,X)ek =

∫
Y

(ek +∇Φk(ρ,X)) ·D(ρ,X)(ek +∇Φk(ρ,X)), (3.13)

ek ·D
∗,j

(ρ,X)ek =

∫
Y

(ek +∇Φ
j

k(ρ,X)) ·D(ρ,X)(ek +∇Φ
j

k(ρ,X)).

Note that this estimator is consistent with the estimator associated with D̂ since

we have for all ξ ∈ Rd,

Ê
j

(ξ, k) = E
j
(ρ,X, k)

for ρ = |ξ|
1+|ξ| and X = ξ

|ξ| , the estimator Ê
j

(ξ, k) (and the matrices D̂
∗
(ξ), D̂

∗,j
(ξ))

being defined with the matrix D̂(ξ). Since we also have for all ξ ∈ Rd

D
∗
(ρ,X) =

1

1 + |ξ|
D̂
∗
(ξ),

D
∗,j

(ρ,X) =
1

1 + |ξ|
D̂
∗,j

(ξ),

for ρ = |ξ|
1+|ξ| and X = ξ

|ξ| , it is equivalent to approximate D
∗

and D̂
∗
. We will focus

on the former in what follows.

Before we turn to fast-assembly, let us make a comment of the RB method used

here. The estimator (3.12) satisfies the second inequality of (3.6), namely there

exists C2 > 0 such that for all j ∈ N, (ρ,X) ∈ [0, 1]× Sd−1, and k ∈ {1, . . . , d},

‖∇Φk(ρ,X)−∇Φ
j

k(ρ,X)‖L2(Y) ≤ C2E
j
(ρ,X, k).

Yet the converse inequality only holds in a weaker sense. In particular, using that

D
∗
(ρ,X) and D

∗,j
(ρ,X) can be defined as

ek ·D
∗
(ρ,X)ek =

∫
Y

ek ·D(ρ,X)(ek +∇Φk(ρ,X)),

ek ·D
∗,j

(ρ,X)ek =

∫
Y

ek ·D(ρ,X)(ek +∇Φ
j

k(ρ,X)),
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if M ∈ L2(Y,Md(R)) is square-integrable but not essentially bounded, we end up

with

C1E
j
(ρ,X, k) ≤ ‖∇Φk(ρ,X)−∇Φ

j

k(ρ,X)‖1/2L2(Y),

for some C1 > 0, a weaker estimate than the first inequality of (3.6). As a conse-

quence, the convergence of the RB method and of the greedy algorithm in this case

does not follow from 7,12,13,3. Filling the gap in the analysis for such unbounded

coefficients is beyond the scope of the present work. Nevertheless, the numerical

experiments show the efficiency of the algorithm to treat this case.

3.3.2. Fast-assembly procedure

In this section, we restrict our discussion to d = 2 for notational convenience.

The case d > 2 can be treated similarly. In dimension 2, the unit sphere S1 is

parametrized by [0, 2π], so that from now on, we write the element of S1 as

X = e(θ) = cos(θ)e1 + sin(θ)e2, (3.14)

and consider D as a function of ρ and θ (instead of ρ and X). The diffusion matrix

D : [0, 1]× [0, 2π]→ L2(Y,Md(R)) given by (3.10), that is

D(ρ, θ) : y 7→ (1− ρ)D0 + ρ

(
α|M(y)e(θ)|I + β

M(y)e(θ)⊗M(y)e(θ)

|M(y)e(θ)|

)
,

is affine with respect to ρ, but not with respect to θ ∈ [0, 2π]. The empirical in-

terpolation technique has been successfully developed to deal with such problems,

see for instance 20. It amounts to constructing iteratively and adaptively a basis

and interpolation points (called magic points) using a greedy algorithm. Yet the

efficiency of this method heavily rests on the regularity of the coefficients with re-

spect to both the space variable and the parameter. In the case under investigation

here, the coefficients are not smooth in space, not even continuous (the coefficients

are piecewise constant). As a direct consequence, the number of magic points to

be considered grows at least linearly with the number of elements where the co-

efficients are constant. This is not a desired scaling property since its cost would

increase with mesh refinement. This is observed in practice, even on an elementary

one-dimensional example.

To circumvent this difficulty we use a partial Fourier series expansion in the

θ-variable, and write:

D(ρ, θ)(y) = (1− ρ)D0 + ρ

(
a0(y)

2
+

∞∑
n=1

(an(y) cos(nθ) + bn(y) sin(nθ))

)
,

where the functions y 7→ an(y) and y 7→ bn(y) are matrix fields which depend only

on y 7→M(y).
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Given a finite-dimensional space VN = span {Ψ1, . . . ,ΨN} of dimension N ≥
1, and some parameters (ρ, θ) ∈ [0, 1] × [0, 2π] and k ∈ {1, . . . , d}, in order to

approximate the corrector Φk in VN , it is enough to solve the linear system

M(ρ, θ)U = B(ρ, θ, k),

where U is the vector of coordinates of Φk in VN , M(ρ, θ) is the N×N -matrix given

for all 1 ≤ j1, j2 ≤ N by

M(ρ, θ)j1j2 = (1− ρ)

∫
Y
∇Ψj1 ·D0∇Ψj2 + ρ

∫
Y
∇Ψj1 ·

a0

2
∇Ψj2

+

∞∑
n=1

ρ cos(nθ)

∫
Y
∇Ψj1 · an∇Ψj2 +

∞∑
n=1

ρ sin(nθ)

∫
Y
∇Ψj1 · bn∇Ψj2 ,

and the r. h. s. is the N -vector given for all 1 ≤ j ≤ N by

B(ρ, θ, k)j = −(1− ρ)

∫
Y
∇Ψj ·D0ek − ρ

∫
Y
∇Ψj ·

a0

2
ek

−
∞∑
n=1

ρ cos(nθ)

∫
Y
∇Ψj · anek −

∞∑
n=1

ρ sin(nθ)

∫
Y
∇Ψj · bnek.

In particular, provided we truncate the Fourier series expansion up to some order

L ∈ N, a fast assembly procedure can be devised if the 2(L+ 1) following matrices

of order N and 2Lk(L+ 1) following vectors of order N are stored:(∫
Y
∇Ψj1 ·D0∇Ψj2

)
j1,j2

,

(∫
Y
∇Ψj1 ·

a0

2
∇Ψj2

)
j1,j2

,(∫
Y
∇Ψj1 · an∇Ψj2

)
j1,j2

,

(∫
Y
∇Ψj1 · bn∇Ψj2

)
j1,j2

for n ∈ {1, . . . , L}, (3.15)

and for k ∈ {1, . . . , d},(∫
Y
∇Ψj ·D0ek

)
j

,

(∫
Y
∇Ψj ·

a0

2
ek

)
j

,(∫
Y
∇Ψj · anek

)
j

,

(∫
Y
∇Ψj · bnek

)
j

for n ∈ {1, . . . , L}. (3.16)

Note that the number of real numbers to be stored for the fast-assembly only

depends on L and N . In particular, if the reduced basis vectors Ψj are approximated

in a finite-dimensional subspace of H1
#(Y), this number is independent of the size

of that subspace, as desired.

In practice, once we are given the reduced basis {Ψ1, . . . ,ΨN}, the matrices

(3.15) and vectors (3.16) can be obtained by performing a fast Fourier transform of

θ 7→ α|M(y)e(θ)|I + β
M(y)e(θ)⊗M(y)e(θ)

|M(y)e(θ)|
at each Gauss point y ∈ Y to evaluate the values of an(y) and bn(y).
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Fig. 2. Checkerboard structure

3.3.3. Numerical results

Let d = 2, TY,h1 ,TY,h1
be regular tessellations of Y of meshsize h1, h1 > 0, and

V1
Y,h1

,V1
Y,h1

be the subspaces of H1
#(Y) made of P1-periodic finite elements associ-

ated with TY,h1
and TY,h1

, respectively. The diffusion matrix M ∈ L2(Y,Md(R))

is defined by

M(y) = K(y)(I +∇ϕh1(y)),

where K is a standard checkerboard: for all y = (y1, y2) ∈ Y,

K(y1, y2) =

{
4.94064, if {y1 ≥ 0.5, y2 ≥ 0.5} or {y1 < 0.5, y2 < 0.5},
0.57816, elsewhere,

see Figure 2, and ϕh1 = (ϕh1
1 , . . . , ϕ

h1

d ) is defined as in (3.1). In this case, the correc-

tors do not belong to finite element spaces, and shall take h1 ≤ h1. In the compu-

tations, we take h1 ∈ {1/10, 1/20, 1/40} so that νh1
:= dimV1

Y,h1
∼ 100, 400, 1600.

The other parameters are the same as in Table 1. In the rest of this paragraph, we

assume that the corrector equations (3.2) are solved in V1
Y,h1

, so that the reduced

basis will be a subspace of V1
Y,h1

as well.

For the reduced basis method we replace the compact space P = [0, 1]× [0, 2π]

by the finite set Pp :=
{

(ρi, θj), (i, j) ∈ {1, . . . , p} × {1, . . . , p − 1}
}

, with p ≥ 2,

θj = (j−1) 2π
p−1 , and ρi = (i−1) 1

p−1 , whose cardinal is denoted by N . Let us denote

by DL the diffusion matrix obtained by a truncation of the Fourier series expansion

of D at order L, and let D
∗

denote the homogenized coefficients defined in (3.13)

(where the correctors Φk(ρ,X) is in fact approximated in V1
Y,h1

, and with X related

to θ through (3.14)), and let D
∗
L be defined by

ek ·D
∗
L(ρ, θ)ek =

∫
Y

(ek +∇Φk(ρ, θ)) ·DL(ρ, θ)(ek +∇Φk(ρ, θ)).

We choose L such that

sup
i,j∈{1,...,p}

|D∗(ρi, θj)−D
∗
L(ρi, θj)|

|D∗(ρi, θj)|
≤ 10−6.
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Fig. 3.

plot of the error due to the Fourier series expansion: L 7→ supi,j∈{1,...,p}
|D∗(ρi,θj)−D

∗
L(ρi,θj)|

|D∗(ρi,θj)|
(slope of linear fitting: -3).

Note that in order to reduce the effect of the aliasing phenomena in the fast Fourier

transform, we compute in practice twice as many coefficients as needed (that is,

up to 2L for an effective truncation of order L). Numerical tests show that the

convergence rate is 3, as can be seen on Figure 3, and that L depends both on the

dimension νh1
of V1

Y,h1
and on the number N of samples, but not on the dimension

of V1
Y,h1

(associated with the discretization parameter h1). As can be expected,

the smaller h1, the finer the approximation ϕh1 of the correctors ϕ of the Darcy

equation, the more complex D (it should however stabilize as h1 → 0). We display

the results of the numerical tests on L in Table 3.

For all N ≤ N = p(p− 1), we denote by VN the RB space of dimension N . We

then choose N such that

sup
Pp

(
ENL (ρ, θ)

)2 ≤ 10−6,

where ENL is the estimator associated with DL and the space VN , when the equations

are solved in V1
Y,h1

. As expected, N depends both on the dimension νh1
of V1

Y,h1
and

on the number N of samples, but not on the dimension of V1
Y,h1

(associated with

the discretization parameter h1 ∈ {1/10, 1/20, 1/40, 1/80, 1/160, 1/320}), which is

the desired scaling property. The dimension N of the reduced basis in fonction of

νh1
and N is displayed in Table 4. A more standard plot represents the RB error in

function of the RB size. For completeness we have plotted such a graph on Figure 4,

for p = 10, L = 40, h1 = 1/20, and h1 = 1/40. As in simpler cases, the convergence
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aaaaaaa
N

νh1 100 400 1600

110 41 61 61

420 41 61 61

1640 49 95 175

Table 3. Dependence of the order L of the Fourier series expansion for an error less than 10−6 in
function of the dimension νh1

of V1
Y,h1

and of the cardinal N of P.

aaaaaaa
N

νh1 100 400 1600

110 21 25 25

420 23 38 44

1640 24 47 60

Table 4. Dependence of the size N of the reduced basis for an error less than 10−6 in function of

the dimension νh1
of V1

Y,h1
and of the cardinal N of P.

0 5 10 15 20 25 30 35 40 45 50
10

−10
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10
0

 

 

Fig. 4. RB basis error supPp

(
ENL (ρ, θ)

)2
for N = 110 in function of the size N of the reduced

basis, exponential convergence.

is exponential (10−9 is the machine precision).

In order to check a posteriori the efficiency of the method (both in terms of L and
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aaaaaaa
N

νh1 100 400 1600

110 1.2e-04 9.0e-04 1.6e-03

420 3.4e-05 1.8e-04 2.6e-04

1640 7.4e-06 3.5e-05 2.0e-04

Table 5. Dependence of the RB error u in function of the dimension νh1
of V1

Y,h1
and of the cardinal

N of P, on a random sampling of 100 points

N), we have picked at random a set P̃ of 100 pairs of parameters (ρ, θ) ∈ [0, 1] ×
[0, 2π], computed the corresponding approximations D

∗
(ρ, θ) of the homogenized

coefficients in V1
Y,h1

, and compared them to the approximations D
∗,N
L (ρ, θ) using

the reduced basis method of order N and a Fourier series expansion of D truncated

at order L. The numerical tests show that this error

sup
P̃

|D∗(ρ, θ)−D∗,NL (ρ, θ)|
|D∗(ρ, θ)|

does depend on the dimension νh1
of V1

Y,h1
and on the number N of samples, but

not on the dimension of V1
Y,h1

(associated with the discretization parameter h1). We

have chosen p ∈ {11, 21, 41} so that the sample sets are included in one another,

which ensures that the error due to the RB method decreases as p (andN = p(p−1))

increases, as can be checked on Table 5. Note also that the error increases as h1 → 0

(that is νh1
→∞).

A last comment is in order. For N = 1640 and νh1
= 1600, the error is not

reduced much with respect to N = 420 in Table 5. On Figure 5 the points chosen

by the greedy algorithm are plotted for N = 1640 and νh1
= 1600 (circles denote

points for the corrector in the direction e1 and crosses denote points for the corrector

in the direction e2). This figure shows that most of the information for the RB lies

in the region ρ close to 1 and θ in [0, π] (this latter fact is indeed a consequence

of the identity D(ρ, θ) = D(ρ, π − θ)). This motivates us to put more points in

this region rather than in the rest of P, and allows us to focus on the right region

of the parameters. Taking for instance 5 × 168 points in the region [0.9, 1] × [0, π]

and 10 × 30 in [0, 1] × [0, π], that is a total of 1140 points (to be compared to the

1640 uniformly chosen points in P), the reduced basis has dimension N = 68 for

νh1
= 1600, L = 177, and the error on the 100 random points of P̃ is reduced to

4.1e− 05 (instead of 2.0e− 04).

For completeness we have also tested the influence of the choice of the scalar

product (3.7) to orthogonalize the reduced basis vectors, compared to the canonical

L2(Ω)-scalar product. In practice this choice can only influence the conditioning

of the linear system to be solved to approximate solutions in the reduced basis.
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Fig. 5. Points chosen by the greedy algorithm for N = 1640 and νh1
= 1600 (all the points chosen

in [0, 1]× [0, 2π] lie in [0.5, 1]× [0, π]).

N L2(Ω) scalar product (min. / max.) scalar product (3.7) (min. / max.)

21 2.13 / 14.06 4.38 / 9.72

25 2.48 / 35.18 6.08 / 22.69

38 6.96 / 39.50 14.69 / 31.52

44 7.11 / 73.38 16.99 / 51.61

Table 6. Condition numbers (min and max) in function of the reduced basis dimension N , depend-
ing on the scalar product used.

We have compared the condition number of those matrices constructed with the

scalar product (3.7) to the condition number of those matrices constructed with the

canonical scalar product of L2(Ω) on the 100 random pairs of parameters (ρ, θ) ∈
[0, 1] × [0, 2π], as a function of the dimension of the reduced basis. The minimum

and the maximum of the condition numbers are reported on Table 6. As can be

seen the condition numbers are of the same orders, although they seem to depend

less on the parameters for the scalar product (3.7).

In conclusion, these tests widely confirm the efficiency of the method. We do

not observe any difficulty that could be due to the specific form of the coefficients.

In particular the convergence properties that we observe seem not to be altered by

the fact that the coefficients are unbounded. Note also that the numerical difficulty

of the computation of the effective coefficients in itself would not be simplified by
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considering bounded coefficients.

Remark 2. As in Remark 1, we could also consider locally periodic coefficients

depending on both the slow and the fast variables, provided the dependence with

respect to the slow variable is smooth enough. Of course the price to be paid is to

increase the size of the set of parameters P accordingly.

4. Conclusion

We have considered a simple model of radionuclide transport in porous media:

the radionuclide concentration satisfies a convection–diffusion equation where the

coefficients are determined through the Darcy law by solving a non-homogeneous

elliptic equation. A remarkable feature of the model relies on the fact that the

diffusion coefficients depend non linearly on the velocity and do not satisfy a uniform

L∞-estimate.

Nevertheless, existence-uniqueness results can be established for this model. Al-

though we can also perform the homogenization analysis, the effective coefficients

remain non homogeneous due to the nonlinear coupling, even in the simple case of

periodic oscillations. It impacts strongly the computational cost when using direct

evaluations of the coefficients. We propose an algorithm based on the Reduced Basis

method in order to speed up these computations. The method relies on a suitable

parametrization of the problem, which in particular allows us to make use of the

Fast Fourier Transform to construct efficiently stiffness matrices. Working with un-

bounded coefficients is clearly identified as a difficulty for analyzing the convergence

properties of the method, but simulations demonstrate the efficiency of the scheme

which is a valuable tool for the computation of such complex flows.

Appendix A. Proof of Theorem 2

We decompose the proof into two steps and homogenize the Darcy equation and

the advection-diffusion equation separately.

Step 1. Homogenization of the Darcy equation, and two-scale convergence of Uε and

D(Uε).

By standard two-scale convergence arguments (see 1 , and see also 22), the func-

tion Θε two-scale converges to Θ0 and ∇Θε two-scale converges to the function

(x, y) ∈ Ω × Y 7→ (I + ∇ϕ(y))∇Θ0(x). Likewise the flux Kε∇Θε two-scale con-

verges to (x, y) 7→ K(y)(I + ∇ϕ(y))∇Θ0(x) = −Ũ(x, y). In order to homogenize

the advection-diffusion equation, we need the function Kε∇Θε to be an admissible

test-function for two-scale convergence, see 1 . It is enough to prove that Kε∇Θε

strongly two-scale converges to −Ũ , that is, in addition of two-scale convergence,

to prove that we have

lim
ε→0

∫
Ω

|Kε(x)∇Θε(x)|2 dx =

∫
Ω

∫
Y
|Ũ(x, y)|2 dydx. (A.1)
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This is essentially a consequence of the following convergence of the energy:

lim
ε→0

∫
Ω

∇Θε(x) ·Kε(x)∇Θε dx

=

∫
Ω

∫
Y
(∇Θ0(x) +∇yΘ1(x, y)) ·K(y)(∇Θ0(x) +∇yΘ1(x, y)) dydx,

where Θ1(x, y) =
∑d
i=1∇iΘ0(x)ϕi(y). In particular, since K is positive-definite, we

may rewrite this identity as

lim
ε→0

∫
Ω

|Kε(x)1/2∇Θε(x)|2 dx =

∫
Ω

∫
Y
|K(y)1/2(∇Θ0(x) +∇yΘ1(x, y))|2 dydx,

which upgrades the two-scale convergence of K
1/2
ε ∇Θε to (x, y) 7→

K(y)1/2(∇Θ0(x) + ∇yΘ1(x, y)) into strong two-scale convergence. We now con-

sider a sequence vε : Ω → Rd which two-scale converges to (x, y) 7→ v0(x, y). The

sequence Vε := K
1/2
ε vε then two-scale converges to (x, y) 7→ K(y)1/2v0(x, y). Since

we have proved that K
1/2
ε ∇Θε is an admissible test-function for the two-scale con-

vergence, we have

lim
ε→0

∫
Ω

Kε(x)1/2∇Θε(x) · Vε(x) dx

=

∫
Ω

∫
Y
K(y)1/2(∇Θ0(x) +∇yΘ1(x, y)) ·K(y)1/2v0(x, y) dydx.

Taking vε = Kε∇Θε then proves (A.1).

We conclude this step by the proof of the strong two-scale convergence of D(Uε)

to (x, y) 7→ D̃(x, y). This is a direct consequence of 18 since (x, U) 7→ D(U)(x) is

a Lipschitz function with respect to U uniformly in x, and Uε strongly two-scale

converges to Ũ .

Step 2. Homogenization of the advection-diffusion equation.

In view of the results of Step 1, this is now standard matter to prove the two-scale

convergence of Cε to C0. The proof of Theorem 1 provides uniform bounds on Cε
which gives weak compactness. Hence, up to extraction, Cε two-scale converges

to some C0, and ∇Cε to some (x, y) 7→ ∇C0(x) + ∇yC1(x, y) (time is treated

as a parameter). Since D(Uε) and Uε strongly two-scale converge to D̃ and Ũ ,

respectively, there is no difficulty to pass at the two-scale limit in the equation

for Cε tested with functions (t, x) 7→ ψ(t)φ(x, x/ε) and φ ∈ C∞(Ω, C∞per(Y)) and

ψ ∈ C∞(0, T ).

It remains to note that following the arguments of Step 5 in the proof of Theo-

rem 1, we obtain∫ T

0

∫
Ω

∇C0·D∗∇C0 =

∫
Ω

∫
Y
(∇C0(x)+∇yC1(x, y))·D̃(x, y)(∇C0(x)+∇yC1(x, y)) dydx

≤ ‖Cinit‖2L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω)),

ha
l-0

06
74

51
9,

 v
er

si
on

 2
 - 



January 30, 2013 14:37 WSPC/INSTRUCTION FILE GGK

36

so that (Θ0, C0) is the unique weak solution of the homogenized system, and the

whole sequence Cε converges.
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