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ABSTRACT: The iodous acid disproportionation is autocatalytic, and it is not easy to measure
the rate constant of the step 2IO2H → IO3

− + IOH + H+ separately. Hg(II) was used previously
to suppress the autocatalytic pathway, but this method presents difficulties discussed in this
work. A more effective method is the use of crotonic acid, an effective IOH scavenger. It
suppresses side reactions, and a purely second-order rate law is obtained. The rate constant
decreases from 5 to 0.2 M−1 s−1 when the sulfuric acid concentration increases from 0.08
to 0.60 M. The observed decrease could be explained if IO2

− reacts faster than IO2H. This
may have consequences for the mechanism of the oscillating Bray–Liebhafsky reaction. C© 2013
Wiley Periodicals, Inc. Int J Chem Kinet 45: 525–530, 2013

INTRODUCTION

The iodous acid disproportionation in sulfuric acid so-
lutions is autocatalytic [1,2]. This was explained by the
mechanism (R1)–(R4):

2IO2H → IO3
− + IOH + H+ (R1)

IOH + IO2H → IO3
− + I− + 2H+ (R2)

IO2H + I− + H+ � 2IOH (R3)

IOH + I− + H+ � I2 + H2O (R4)

The sum of reactions (R2) and (R3) gives the same
stoichiometric result as reaction (R1) with a rate pro-
portional to [IOH][IO2H], and the rate constants are
such that this pathway becomes faster than reaction
(R1) once a small amount of IOH has formed. An ex-
ample of autocatalytic behavior is shown in Fig. 1 and
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compared with curves calculated as explained in the
section Numerical Integrations.

To isolate reaction (R1), one of us [2] has used two
methods, one with Hg(II) and the other with crotonic
acid. Hg(II) reacts very quickly with iodide ions ac-
cording to reaction (R5):

Hg(II) + I− � HgI+ (R5)

When reaction (R5) is faster than reaction (R3), the
evolution of the system can be described by reactions
(R1), (R2), and (R5) with the stoichiometric result (S1).
The appearance of HgI+ near 274 nm can be used to
measure the rate of reaction (R1):

3IO2H + Hg(II) → 2IO−
3 + 3H+ + HgI+ (S1)

The second method uses crotonic acid
(CH3CH:CHCOOH, denoted as CA), which re-
acts very quickly with IOH producing iodohydrin
(CH3CH(OH)CHICOOH, denoted as CAIOH) [2,3].

CA + IOH → CAIOH (R6)
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Figure 1 [H2SO4] = 0.30 M, [I(+3)]o = 8.7 × 10−4 M,
[IO3

−]o = 5.9 × 10−4 M, [I(+1)]o = 8.8 × 10−6 M. Ex-
perimental values (◦) and values calculated with Matlab R©

(——), k1 = 0.70 M−1 s−1, other rate constants are given in
the text. The insert shows the calculated [IOH] values.

When reaction (R6) is faster than reaction (R2), the
evolution of the system can be described by reactions
(R1) and (R6) with the stoichiometric result (S2). The
appearance of CAIOH at 275 nm can be used to mea-
sure the rate of reaction (R1):

2IO2H + CA → IO−
3 + H+ + CAIOH (S2)

Marković et al. have published four papers [4–7],
the latest recently in this journal, using the Hg(II)
method. Because her results disagree with results ob-
tained formerly, we have analyzed these papers, found
several errors, and decided to perform a new study.
Assuming that the only net reaction is (S1), Marković
states that the rate constant of iodous acid dispropor-
tionation can be calculated by Eq. (1), obtained by
integration of the second-order rate law – d[IO2H]/dt
= kMark [IO2H]2.

kMark = 3

t

(
1

[HgI+]∞ − [HgI+] t

− 1

[HgI+]∞

)
(1)

In the Appendix, we show that the factor 3 in the
numerator of this equation should appear in the denom-
inator. Second, this equation assumes that [HgI+] = 0
at t = 0. However, as already mentioned by Noszticzius
et al. [1], the I(+3) solutions prepared in concentrated
sulfuric acid contain always a small amount of I(+1)
so that some HgI+ is quickly produced at the begin-
ning of the experiments by reactions (R2) and (R5).
This initial I(+1) concentration depends critically on
the concentration and purity of the sulfuric acid used to
prepare the initial I(+3) solution [8]. Third, kMark is not
equal to k1 because the global reaction (S1) consumes
3 moles of IO2H so that – d[IO2H]/dt = 3k1 [IO2H]2.
The distinction between the derivative of a concentra-

tion and a reaction rate [9] is essential as can be seen
comparing the two methods. Reaction (S2) consumes
only 2 mol of IO2H giving – d[IO2H]/dt = 2k1 [IO2H]2,
and the rate constants obtained by the two methods can
be compared only if we use a factor 2 instead of 3.
Finally, we will see that an integrated second-order
rate law is applicable only if the Hg(II) concentration
is sufficiently high and only at low conversions.

In the Appendix, we derive Eq. (2) by integration of
the second-order rate law, where s is the stoichiometric
factor 2 or 3.

1

A∞ − At

= 1 + sk1[IO2H]0t

A∞ − A0
(2)

When it can be used, this equation is more conve-
nient than numerical integrations. It is directly related
to experimental quantities and allows calculating k1

even if we do not know the contribution of each com-
pound to the absorbance. The only condition is that the
absorbance increases linearly with the extent of reac-
tion. A plot of 1/(A∞ – At) as a function of t should
give a straight line and one could estimate k1 from its
slope. However, this method gives a larger weight to the
points at longer times, which are probably less accu-
rate, and a strong dependence of k1 on the adopted value
for A∝. For this reason, we have used the alternative
form (3) and have adjusted k1 by a nonlinear method
minimizing �(At,calculated/At,experimental – 1)2. Examples
are given in the Supporting Information.

At, calculated = A∞ − A∞ − A0

1 + sk1[HIO2]0t
(3)

EXPERIMENTAL

I(+3) solutions were prepared by stirring weighed I2

and KIO3 in concentrated H2SO4 according to the pro-
cedure described by Noszticzius et al. [1]. The CA
or Hg(II) solutions were measured into separate con-
tainers and precooled such that, on mixing with the
H2SO4-I(+3) solution, the temperature would rise to
25◦C. The two solutions were mixed and added to the
spectrometer cell as soon as possible (∼20 s). The reac-
tion was sufficiently slow to allow extrapolation to zero
time. Spectrophotometric measurements were made on
a Shimadzu multispec model 1501 instrument with a
cell compartment thermostated at 25◦C. KIO3 (Baker
analyzed 99.5%), H2SO4 (reagent ACS; 95–98%), and
HgSO4 (Acros; 99+%) were used without further pu-
rification. CA was recrystallized three times from hot
water. CA solutions were prepared from weighed solid
just before use.
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Table I Kinetic Model

No. Reaction Rate Law

R1 2 IO2H → IO3
− + IOH + H+ r1 = k1[IO2H]2

R2 IOH + IO2 � IO−
3 + I− + 2H+ r2 = k2[IOH][IO2H] – k–2[IO3

−][I−][H+]2

R3 IO2H + I− + H+ � 2IOH r3 = k3[IO2H][I−][H+] – k–3[IOH]2

R4 IOH + I− + H+ � I2 + H2O r4 = k4 [IOH][I−] – k–4[I2]/[H+]
For the Hg(II) method
R5 Hg(II) + I− � HgI+ r5 = k5 [Hg(II)][I−] – k–5[HgI+]
For the CA method
R6 CA + IOH → CAIOH r6 = k6 [CA][IOH][H+]

NUMERICAL INTEGRATIONS

Most of the k1 values reported in this work were ob-
tained using Eq. (3), and it was necessary to verify
the conditions of validity of the second-order rate law.
With this aim, the kinetic equations, derived from the
model in Table I, were integrated using the routine
ode5s of the MATLAB R© package.

The preparation of I(+3) with solid I2 and excess
KIO3 led to a solution with all the I2 converted to
I(+3), excess I(+5), and a minor amount of I(+1).
With the crotonic acid runs, a small excess absorbance
was present at the beginning, attributable to fast forma-
tion of iodohydrin from I(+1). With both the crotonic
acid and the Hg(II) runs, the final absorbance was de-
pendent on the relative amounts of I(+1). For both sets
of runs, [I(+3)] was calculated from the weight of I2,
then initial I(+1) values of 0.5% to 3% of I(+3) were
applied, with corresponding lowering of initial [I(+3)],
to best reproduce experimental final absorbances.

The rate constants of reactions (R2)–(R4) are taken
from previous works [10,11]: k2 = 200 M−1 s−1, k–2 =
1300 M−3 s−1, k3 = 4 × 109 M−2 s−1, k–3 = 25 M−1

s−1, k4 = 1.8 × 109 M−1 s−1, and k–4 = 1.7 × 10−3

M s−1. Reaction (R1) is the sum of (R2) and (R3), so
that K1 = K2K3 and k–1/k1 = k–2k–3/k2k3 (see discus-
sion in the Supporting Information). Using this rela-
tion, we have verified that, under our conditions, the
reversibility of reaction (R1) can be neglected. The
backward rate of reaction (R2) is also very small, since
[I–] is extremely low, so that the iodate concentration
has no effect on the results. Our numerical simulations
suggest a very large k5 value, and we have adopted
k5 = 1010 M−1 s−1 for a diffusion-controlled reac-
tion. k–5 was calculated using log K5 = 12.9 [12] in
agreement with the accepted value �G◦

f (HgI+) = 39.7
kJ/mol [13] but very different from the negative value
that Marković claims to have deduced from her mea-
surements [7]. Note also that the value �G◦

f (IO2H)) =
–75 kJ/mol she used (with an error in the reference)
for the calculation of K1 is much too high and that

a more likely estimate is –96 kJ/mol [8]. The reac-
tion Hg(II) + I2 + H2O � HgI+ + IOH + H+ was in-
cluded in the model, but, even diffusion controlled, it
had no effect under our experimental conditions. The
rate constant k6 = 3640 M−2 s−1 was obtained by recal-
culation of previous results [3,14]. The concentrations
obtained by numerical integration were compared with
the experimental absorbance values using the follow-
ing coefficients obtained in this work: ε(HgI+) = 1920,
ε(IO2H) = 124, and ε(IO3

−) = 13 at 274 nm for the Hg
method and ε(CAIOH) = 399, ε(CA) = 6.0, ε(IO2H) =
120, and ε(IO3

−) = 11.3 at 275 nm for the CA method.

EXPERIMENTAL RESULTS

We have analyzed former experimental results [2],
obtained by the Hg(II) method, using the methods
described in this paper. The results are given in
the Supporting Information. The numerical simula-
tions show that the value of the ratio r+5/r+3 =
k5[Hg(II)]0/k3[H+][IO2H]0 is critical. If this ratio is
smaller than 1, the reaction is autocatalytic. If it is
larger than 1, but not large enough, the autocatalytic
shape disappears although the pathway (R2) + (R3)
is not suppressed completely. Under these conditions,
Eq. (2) seems to be verified but gives rate constants
larger than obtained with MATLAB. At low conver-
sions, the pathway (R2) + (R3) becomes negligible
only if the ratio r+5/r+3 is greater than about 10. At
high conversions, reaction (R5) approaches equilib-
rium, [I–] increases with [HgI+], and the second-order
rate law is never verified. It is also important to note
that, when r+5/r+3 is not large enough, the k1 values
obtained by numerical simulations depend on the val-
ues of the other parameters and, perhaps, on complica-
tions not included in the model. On the other hand, nu-
merical simulations of the experiments with CA show
that sufficiently high CA concentrations suppress reac-
tion (R2) very efficiently. [I−] remains extremely low,
and the second-order rate law is verified even at high
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Figure 2 Comparison of different sets of k1 values: this
work CA method (�), this work Hg(II) method (×),
Marković [6] (+), and Marković [7] (◦).

conversions. In conclusion, the CA method is superior
to the Hg(II) method.

The details of our results are given in the Supporting
Information, and different sets of k1 values are com-
pared in Fig. 2. The [H+] values were calculated using
the Pitzer model for H2SO4 solutions [15]. A small
amount of HClO4 was sometimes added and was in-
cluded in the calculations. The agreement between the
values obtained with the CA method and the Hg(II)
method with high [Hg(II)] values is good. Our results
agree also with the upper limits obtained by Noszticz-
ius et al. [1]: 5.4, 2.2, and 2.0 M−1 s−1 for [H2SO4] =
0.05, 0.10, and 0.15 M. On the other hand, Marković,
using the Hg(II) method, has obtained much lower val-
ues and her 2010 values [7] are very different from
her 2009 values [6]. The values presented in Fig. 2 are
kMark/3 because, as explained before, kMark = 3k1. The
activation energies reported in her papers are also very
different. These discrepancies probably arise from de-
viations to the second-order rate law revealed by our
numerical simulations and errors in analyzing the mea-
surements.

DISCUSSION AND CONCLUSION

The fast decrease of k1 when the acidity increases could
be explained assuming that IO2H is protonated accord-
ing to reaction (R7):

IO2H + H+ � IO2H+
2 (R7)

Noting [I(+3)] = [IO2H] + [IO2H2
+], we have

[IO2H] = [I(+3)]

1 + K7[H+]

If IO2H2
+ is much less reactive than IO2H, r1 is still

equal to k1 [IO2H]2 and the kinetic equation becomes

−d [I(+3)]

d t
= sr1 = s

k1

(1 + K7[H+])2
[I(+3)]2

The experimental k1 values obtained using the in-
tegrated equation 3 would actually be the values of
k1/(1 + K7[H+])2. However, the results presented in
Fig. 2 would imply a large value of K7 (about 12 M−1)
and this assumption is difficult to reconcile with the
results of other kinetic studies. One of them comes
from the kinetic study of reaction (R2) showing that
the rate r+2 is nearly independent of the H2SO4 con-
centration [2]. If IO2H was largely protonated, IO2H2

+

should be as reactive as IO2H in reaction (R2) and, un-
der the same conditions, much less reactive in reaction
(R1). A large value of K7 would have other unpleas-
ant consequences on the simulations of other systems
involving I(+3), and we prefer another explanation to
the results in Fig. 2.

The acidity constant of IO2H was never measured,
but its order of magnitude is probably Ka(IO2H �
IO−

2 + H+) = 10−5 to 10−6 M [8].
If we replace reaction (R1) with IO2H � IO−

2 +
H+ followed by (R′1), note that [IO2

−] << [IO2H]
and substitute [IO2

−] with Ka [IO2H]/[H+], the kinetic
equation becomes (4) and the experimental values of
k1 are actually those of k’1 Ka/[H+]:

IO2H + IO−
2 → IO−

3 + IOH (R′1)

− d [I(+3)]

dt
= sk′

1[IO2H][IO−
2 ]

= s
k′

1Ka

[H+]
[IO2H]2 (4)

We now discuss the consequences of this assump-
tion on the model of the Bray–Liebhafsky (BL) oscil-
lating reaction [10,11]. This model contains the fol-
lowing reactions:

2IO2H � I2O3 + H2O (R8a)

I2O3 + H2O2 → IO−
3 + H+ + IO2H (R8b)

I2O3 + H2O → IO−
3 + H++IOH (R8c)

Reactions (R8a) and (R8b) were introduced into the
BL model to explain the kinetics of the oxidation of
iodine by hydrogen peroxide. The sum of reactions
(R8a) and (R8c) gives reaction (R1) and, if (R1) is
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replaced with IO2H � IO2
− + H+ followed by (R′1),

these reactions must be modified as follows:

IO2H + IO−
2 � I2O4H− (R′8a)

I2O4H− + H2O2 → IO−
3 +IO2H + H2O (R′8b)

I2O4H− → IO−
3 +IOH (R′8c)

The structure of the intermediate I2O4H− could be

In this case, the rate of IO2H oxidation by hydrogen
peroxide should also decrease when [H+] increases.
We have verified that the model can still simulate the
effect of [H+] on the iodine oxidation by hydrogen
peroxide provided it is slightly modified (namely to
suppress the effect of [H+] on reaction noted (R6) in
the original BL model). We have also checked directly
that the rate of IO2H oxidation by hydrogen peroxide
actually decreases when [H+] increases. This is not
easy because the reaction is very fast, but preliminary
results show a strong correlation with the decrease of
the rate of IO2H disproportionation.

Models of complicated systems, like the BL and
Briggs–Rusher oscillating reactions, cannot rest only
on observations of the oscillations. The kinetic study
of several subsystems is essential to construct a more
or less correct picture of the reality. This study appends
an item to this construction.

APPENDIX: INTEGRATION OF THE
SECOND-ORDER RATE LAW

Marković has defined kMark by

−d[IO2H]

dt
=kMark[IO2H]2

or after integration

kMark=1

t

(
1

[IO2H]t
− 1

[IO2H]0

)

The stoichiometric equation (S1) gives

[IO2H]0 − [IO2H]t= 3([HgI+]t − [HgI+]0)

With [IO2H] = 0 at t = ∞, we get

[IO2H]0 = 3([HgI+]∞ − [HgI+]0)

[IO2H]t = 3([HgI+]∞ − [HgI+]t )

Consequently, the correct form of Marković’s
equation 1 is (A1):

kMark = 1

3t

(
1

[HgI+]∞ − [HgI+]t

− 1

[HgI+]∞ − [HgI+]0

)
(A1)

Using Eq. (A1) requires the calculation of [HgI+],
and this is not straightforward. It depends on ε(HgI+)
and the contribution of other compounds to the mea-
sured absorbance. A more convenient form of the inte-
grated second-order rate law can be derived as follows:
It is valid under the sole condition that the absorbance
varies linearly with the extent of reaction ξ :

A = a + bξ

where

ξ = [I(+3)]0 − [I(+3)]

s

s = 3 for reaction (S1) and s = 2 for reaction (S2).
At t = 0, ξ 0 = 0 gives a = A0 so that A – A0 = bξ .
At t = ∞, ξ∞ = [I(+3)]0/s gives

At − A0

A∞ − A0
= ξt

ξ∞
= [I(+3)]0 − [I(+3)]t

[I(+3)]0
(A2)

If the rate of reaction is given by

−d[I(+3)]

dt
= sk1 [I(+3)]2

we get after integration

sk1 t = 1

[I(+3)]t
− 1

[I(+3)]0

Elimination of [I(+3)]t between this equation and
Eq. (A2) gives Eq. (A3) where k1 is directly related to
experimental quantities:

1

A∞ − At

= 1 + s k1 [I(+3)]0t

A∞ − A0
(A3)
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SUPPORTING INFORMATION

The Supporting Information contains a discussion of
the equation k−1/k1 = k−2k−3/k2k3, the results pre-
sented in Fig. 2, and the details of three typical exper-
iments.
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7. Marković, S.; Petrović, B. Int J Chem Kinet 2010, 42,
687.

8. Schmitz, G. Int J Chem Kinet 2008, 40, 647.
9. Schmitz, G. J Chem Edu 2005, 82, 1091.

10. Schmitz, G. Phys Chem Chem Phys 2010, 12, 6605.
11. Schmitz, G. Phys Chem Chem Phys 2011, 13, 7102.
12. Sillen, L. G. Stability Constants of Metal-Ion Com-

plexes, The Chemical Society, Special Publication no.
25; The Chemical Society: London, 1971.

13. Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm,
R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall,
R. L. J Phys Chem Ref Data 1982, 11(Suppl. 2), 150.

14. Furrow, S. D.; Cervellati, E.; Amadori, G. J Phys Chem
A 2002, 106, 5841.

15. Clegg, S. L.; Rard, J. A.; Pitzer, K. S. J Chem Soc,
Faraday Trans 1994, 90, 1875.

International Journal of Chemical Kinetics DOI 10.1002/kin.20791


