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Abstract 

Some authors have suggested that gravitational interactions become large at an invariant distance 
of order 1 from the black hole horizon. We show that due to the "atmosphere" of high angular 
particles near the horizon strong gravitational interactions already occur at an invariant distance 
of the order of  ~/M. The implications of these results for the origin of black hole radiation, the 
meaning of  black hole entropy and the information puzzle are discussed. 

PACS: 04.70.Dy 
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1. Introduction 

There are at least three related unsolved problems concerning quantum black hole 
physics: (i) the origin of the Hawking radiation [ 1 ] ; (ii) the meaning of the black hole 
entropy [2-4] ; (iii) the information loss puzzle [5]. 

All of these issues are connected to the large red shift near the horizon which entails 
the appearance in the free field theory of transplanckian frequencies [6-8]. 
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On the one hand it has been argued that the transplanckian frequencies are only a 
coordinate artefact and that the field state is regular at the horizon in a global coordinate 
system. This is the basis of  Hawking's conclusion that black hole evaporation is a 
non-unitary process [5]. 

On the other hand, the appearance of transplanckian frequencies has led several authors 
l to suggest that even though the Riemann tensor near the horizon is small, Rhor ~ ~-r << 

l ,  6 there are strong interactions near the horizon [9]. As originally stressed by 't Hooft 

this puts into question Hawking's original derivation of black hole radiance and suggests 

the possibility that the spectrum of emitted particles could differ from the exact thermal 

spectrum. This in turn could imply that the information is encoded in the correlations 
between Hawking quanta [9]. Another possibility is that the information is encoded 

in the correlations between Hawking radiation and a remnant [ 10]. Furthermore, the 

transplanckian frequencies are also related to the divergence of the field entropy near the 

horizon [ 11 ]. The strong interactions near the horizon suggest that there is a dynamical 

cutoff near the horizon [ 12]. A concrete realization of this idea is the concept of the 

stretched horizon [ 13] which is a very hot membrane, just outside the event horizon, 
that can absorb, thermalize, and emit information. 

Several arguments suggest that the strong gravitational interactions occur at an invari- 
ant distance of the order of 1 (by invariant distance we mean the distance on constant 

t surfaces p = ffMds ~ ~ /8M(r-  2M)) :  
(1) In various works not directly related to black hole physics, it was claimed that 

the minimal scale in quantum gravity is 1 [ 14]. If  so then it is meaningless to 

describe the region near the horizon with accuracy larger than 1. 
± so for p = 1 the temperature is planckian for (2) The local temperature is TIoc = p, 

which the conventional description of physics is probably incorrect. 
(3) The mean time between successive emissions of Hawking quanta is M and the 

energy of the emitted particle is 1 ~ .  This means that as a quantum mechanical 
system the black hole has a width ~ .  The invariant distance between R = 2 ( M - ~ )  

and R = 2M in the gravitational background of a black hole with mass M - 1 

is 1. 
(4) The number of high angular momentum particles between p and r -~ 3M is 

N(p) ~_ M2/p 2 thus for p = 1 the entropy of these particles is of the order of the 

Bekenstein-Hawking entropy [ 11 ]. 
However, several authors have suggested, using different approaches, that the grav- 

itational interactions become strong at invariant distances p much larger than 1: York 
considered quantum fluctuations of the gravitational normal modes [ 15], Jacobson's 
arguments were based on thermodynamic analogies [ 8], Sorkin considered the vacuum 
fluctuations of a scalar field [ 16], and Englert argued that gravitational effects which 
would tame the transplanckian fluctuations had to occur at a distance much larger than 
p = 1: they would simultaneously invalidate the conventional mechanism of Hawking 
emission and prevent, at least in the reconstructed history available to the external ob- 

6 In un i t s  w h e r e  G = c = h = 1. 
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server, the collapse of the star [ 17]. However, all of these arguments are based on some 
questionable assumptions which have not been widely accepted. 

The aim of this article is to address the above debate. Our analysis is based on the 
properties of the atmosphere of high angular momentum particles which surround the 
horizon. Let us recall that this atmosphere arises in the re-expression of the Unruh vac- 
uum state (the state of the field after the radiation has settled into its steady state [ 18] ) 
as a thermal density matrix of Schwarzschild quanta: 

(e-Sr°~Uat ht  [0u) = I I  e x p -  \ w,l,m~,~o,l,m] 10B), (l) 
w,l,m 

where [0v) is the Unruh vacuum and [0~) is the Boulware vacuum. The operator t a o) ,l,m 
creates an outgoing Schwarzschild quantum of energy w and angular momentum l, m; 

bt, o,t,m creates the partner of this Schwarzschild quantum and lives beyond the horizon. 
Upon tracing over these partners one obtains that Unruh vacuum is a thermal density 
matrix for the Schwarzschild quanta, with temperature (8zrM)-l .  

We present three complementary arguments which show that due to the presence of 
this atmosphere gravitational interactions become large at p _~ x~'--M. Therefore, at this 
scale Hawking's assumptions of a free field propagating on a given classical background 
breaks down. In particular the decomposition (1) which results from these hypothesis 
will no longer be valid for p < ~'-M. 

Our first argument is thermodynamic in character and relies only on the thermal energy 
fluctuations in the atmosphere and on the gravitational analogue of Gauss's law. The 
second argument is based on the gravitational interactions between an incoming particle 
and the atmosphere, and shows that these interactions can no longer be neglected for 
p < ,Y-M. The third argument is concerned with the unitarity problem. We show that the 
information carried by an incoming particle gets encoded in the state of the atmosphere 
at p _~ ,Y--M. These arguments all lead to the same minimal distance p = x~/-M. 

The appearance of strong fluctuations at scales much larger than p = 1 has important 
implications for the origin of the Hawking radiation, the interpretation of the black hole 
entropy and the unitary problem. These aspects are discussed in the last section of the 
paper. 

2. Horizon fluctuations 

We first review the properties of the high angular momentum particles which make 
up the atmosphere. To this end we recall the wave equation for a scalar field in the 
Schwarzschild metric, 

O~. ~b+ 1 -  - -~ -+  r----5--~ ~b=0,  (2) 

where r* = r + 2Mln(r-2M~ The centrifugal barrier is attractive for r < 3M. This 
means that particles with high angular momentum can be trapped in the region between 
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the horizon and r < 3M. The tunneling through the angular momentum barrier may be 

neglected for all but the lowest angular momentum modes [ 19]. From Eq. (2) we see 
that a particle can reach a radius r only if 

- - ~ - +  r-------~ , (3) 

where ~o is the Schwarzschild energy, i.e. the eigenvalue of iOt. For Hawking radiation 
the typical energy is o~ ~_ ~ .  This implies 

M 2 
12 < - -  (4) 

~ p 2  ' 

where p is the invariant distance from the horizon in Schwarzschild coordinate, namely, 

R R 

l l c ' r , I  p =  d s =  ~ 8 M ( R -  2M)  . (5) 

V/7 2M 2M 2M r 

Since the degeneracy for each l is 21 + 1, the number of modes that can reach p is 

M 2 
N ( p )  ~ p2 . (6) 

As mentioned in Section 1, all of these particles are in a thermal distribution at the 

global Hawking temperature 1 /8~M.  The average number of particles in the thermal 
atmosphere is estimated by noting that the emission rate for each mode is 1/M and the 

time it takes for a photon which passes p to fall back to p after being reflected by the 

centrifugal barrier is O(Mln  M).  Thus the average number of particles above a given 

p is, up to a logarithmic factor which we neglect, N ( p ) .  

Using the above estimate, the average energy and entropy of the thermal atmosphere 

situated above a given p are 

1 M 
(E) ~-- N(p)---~ ~-- --p~ , 

M 2 
S~- N ( p )  ~ - ~ .  (7) 

These qualitative results as well as the fluctuation of the energy estimated below have 
been obtained in quantitative detail using the brick wall model, i.e. evaluating the 
partition function of the Schwarzschild modes in the WKB approximation [ 11 ]. 

The entropy of the atmosphere diverges as p ~ 0. This led ' t  Hooft to suggest that 
there is a cutoff at p = 1 so that the entropy of the atmosphere would coincide with the 
Bekenstein-Hawking entropy. 

The average energy (E) also diverges as p tends to zero. This is intimately related 
to the renormalization of the energy momentum in Schwarzschild background. Indeed 
one can show [20] that the renormalized energy density, as seen in the frame of an 
infalling observer, is finite in the Unruh vacuum. This is because the divergence of 
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(E) in Eq. (7) is compensated by the negative and divergent mean energy density in 

the Boulware vacuum (the state containing no Schwarzschild particles). Thus, after 
renormalization, (E ten) is finite and of the order of the Hawking flux 1 / M .  Note that the 
finiteness of  (E ven ) depends on the fact that each particle in the thermal bath is correlated 

to a partner as in Eq. (1),  i.e. it depends on the state of the field on both sides of the 
horizon. We shall assume in this paper that, as predicted by the semiclassical theory, 
(U en) is indeed finite. 

On the other hand, the thermal energy fluctuations of the atmosphere are not affected 

by the renormalization since they are associated with the decomposition of the Unruh 
vacuum as a thermal density matrix of Schwarzschild quanta and each term in this 

decomposition has physical significance. These thermal fluctuations are proportional 

to the square root of  the number of particles in the thermal atmosphere as for any 

thermodynamic system. Therefore, the uncertainty of the Schwarzschild energy in the 
region between p and R _~ 3M is 

v fN(  1 (8) 
A M  "~ p )  ~- P 

Since the total energy of the black hole is fixed to be M, the uncertainty of the 

I Note that this uncertainty is Schwarzschild energy between r 0 and p is also p 

dynamical. Indeed since N ( p )  particles cross the surface p in a time A t  = M ,  the time 
scale over which the mass fluctuates is also At = M .  

This uncertainty is much larger than (U  en} and is much larger than the uncertainty 

due to the emission of s-waves (see point (3) in Section 1). It implies the existence 

of strong gravitational interactions at p = ,~/--M. To see this let us first estimate how the 
fluctuating mass gives rise to uncertainty in the location of the horizon. A point r0 is 
outside the horizon if 

6 ( r o )  = ro - 2M(r0) > 0 ,  (9) 

where M ( r o )  is the Schwarzschild energy between r = 0 and r = r0. From Eq. (8) we 
find that 

2 2 
A S ( r o )  = 2 A M  ~-- - - -  • (10) 

P ~ / 8 M 6  

Clearly, if A 6 ( r o )  > 6 ( r o )  then the point r0 is in a superposition of being inside and 
outside the horizon. From Eqs. (10), (5),  (9) this implies that the minimal p for which 
it is certain that the point is outside the horizon is 

Pmin '~ v/-M. (11) 

The quantum fluctuations smear the horizon on an invariant distance of the order of 
which is much larger than 1. 

This suggests that the gravitational interactions with the atmosphere become large 
at p = ~ and that the assumptions of a free field propagating on a given classical 
background breaks down at this scale. We illustrate this by inserting the mass fluctuation 
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AM into the Schwarzschild metric. Near the horizon one then obtains an equation of 
the form 

0 2 - ( 1  4-'--AM "~ 02 (1 
r - 2 M  I r.+ 

The perturbation is negligible as long as 

AM M 
r _  2M = ~-~ > 1 ,  

2___AM ~ ( r - 2 M  1 1)  
r - 2 M J  2M ) ( l(l+ )+M 2 = 0 .  

(12) 

(13) 

which yield p > ~ as above. For smaller p the perturbation cannot be neglected. 
Furthermore, since AM varies over time scales of the order of the inverse particle 
energy, the solution of Eq. (12) will contain both positive and negative frequencies 
below p = ~ so the number operator ata has uncertainty of order one. 

The analysis in this section was based on the thermodynamics of the fluctuating 
atmosphere. Gauss's law then implied that gravitational interactions occur on scales 
p = ,~/-M. The main drawback of these arguments is that they treat AM as a classical 
source in Einstein's equation rather than quantum fluctuation. However, in the next 
section we shall recover this characteristic length p = ~ using a completely different 
approach. 

3. The gravitational interactions 

In this section we shall show that strong gravitational interaction occurs at p = 
by studying the gravitational interaction between an infalling particle and the 

thermal atmosphere. Although the interaction between each particle is small, there are 
approximately N(p) such interactions which sum up incoherently. Therefore, the total 
probability of scattering is proportional to ff-ff(-p). The final result is that at p = 
the total scattering probability is of order 1. However, due to technical difficulties, at 
the present time we have only investigated in detail the interaction between an infalling 
s-wave and the high angular momentum particles of the atmosphere. Similar results may 
hold for the interaction among the high angular momentum particles themselves. 

The detailed calculation is carried out in Appendix A. Here we summarize the results. 
As shown in Refs. [21,22], the semi-classical gravitational effects of a massless particle 
can be obtained using the gravitational shock wave (the corresponding scattering am- 
plitude coincides up to a phase with one graviton exchange [23] ). We have considered 
the shock wave of an infalling particle with energy E and its effect on the high angular 
momentum particles which constitute the atmosphere. The probability that one particle 
of the atmosphere be in the same state after crossing the shock wave is 

M2A 2 
P~ ~ 1 - - - ,  (14) p4 
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where a is the energy of the infalling particle. Note that this result is only valid when 
the gravitational interaction is weak, otherwise the shock wave interaction breaks down. 
From Eq. (14), the interactions are weak when A < p2/M. This condition can also be 
understood by noting that an infalling particle of energy a causes a shift in the horizon 
radius 6rH = A, which corresponds to an invariant distance p = hv/-~--M. 

The number of particles which are affected by the shock wave of the ingoing particles 
when it reaches p is given by N(p) ,  so the probability for the "atmosphere" above p 
to be in the same state is 

M2"~2~ u(t') ~- e -M4a2/p6 (15) p to t=pN<p)= 1 -~ j 

this means that for 

p < A1/3M 2/3 (16) 

the probability for the "atmosphere" to remain in the same state decreases exponentially. 
In Appendix A we also show that the probability for the angular momentum of one 

particle of the atmosphere not to have changed coincides with P1, i.e. 

A2M 2 
Pal---O --~ I - - -  = P1. (17) p4 

Hence proceeding as from Eq. (14) to Eq. (16), the angular momentum of the atmo- 
sphere is modified by one unit when the particle reaches p ~_ hU3M 2/3. 

Note that at p = AU3M 213 (Eq. (16) ), the probability that any individual high angular 
momentum particle be scattered is (see Eq. (14)) 

1 --191 ~ (A/M)2/3<< 1. (18) 

The weakness of the gravitational interaction justifies the semi-classical treatment of the 
gravitational interaction. 

The minimal a one can consider is 1 since otherwise the wavelength of the ingoing 
particle is larger than the radius of the black hole. Therefore, at p = ~ all ingoing 
particles have interacted strongly with the atmosphere and have acquired one unit of 
angular momentum. Although we have not been able to show it rigorously at this 
stage, we expect that the ingoing particle will also be scattered by the atmosphere (the 
principle of action and reaction) and that the high angular momentum particles that 
make up the atmosphere will be strongly self-interacting at ~M.  This was indicated by 
the analysis of the end of Section 2 wherein we naively plugged the fluctuating mass 
into the Klein-Gordon equation and estimated its effect on the propagation of a mode. 

4. The information problem 

In this section we consider the implications of our results for the S-matrix ansatz 
proposed by 't Hooft. Since the interactions are strong at p = ~ this distance should 
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play a crucial role in the information problem. Indeed, we shall show that the information 

of  an ingoing massless charge-less spin-less particle is encoded in the state of  the 
atmosphere when the particle reaches p = x~/-M. 7 

Such a particle is characterized by its energy and angular momentum. We first con- 

sider how the information about its energy is transmitted and then turn to the angular 

information. Consider an incoming particle in an s-wave gr whose energy is A with 

uncertainty AA. This wave packet is spread out over an interval At ~_ 1/AA. From 

the previous section we know that the incoming particle will start interacting with the 

particles in the atmosphere at p = ,~1/3M2/3. The particles in the atmosphere fall back 

towards the horizon after a time interval At ,,~ M.  Hence the interaction of  the incom- 

ing particle with any individual particle in the atmosphere lasts a time At ~- M.  One 

should therefore decompose ~ into a complete orthogonal set of  wave packets whose 

uncertainty in energy is AA = 1 / M  and that are spread out over a time At _~ M. We 

study how the information about the energy of  two such wave packets is encoded in the 

atmosphere. 

Consider two particles whose wave packets have mean energy )tl and A2 and energy 

spread AAI --~ AA2 ~-- 1 /M.  Since these particles are orthogonal we also have ,~2 - ,tl > 

1 /M.  We want to determine at what p the state of  the atmosphere when the energy of  

the ingoing particle is ,~1 is orthogonal to the state of  the atmosphere when the energy 

of  the ingoing particle is A2. To find this p we recall that the effect of  the shock wave 

of  an incoming particle on a given particle in the atmosphere is a discontinuity in the v 

direction. Using Eqs. (A.4) and (A.15),  we get 

Av ~_ log , (19) 
P 

where :~ is the transverse distance between the ingoing particle and a particle in the 

atmosphere (see Appendix A) .  Except when treating problems that explicitly involve the 

angular momentum of  the scattered particles, one can drop the logarithmic dependence 

of  Eq. (19).  Then the difference in the discontinuity is only due to ,~l 4: ,~2: 

(,~1 - , ~ 2 ) M  
AVl -- Av2 "~ (20) 

t9 

From Eq. (A.19) one obtains that the probability that the scattered state of  the particle 

in the atmosphere is the same (i.e. does not depend on whether the energy of  the ingoing 
particle is A1 or ,~2) is 

M2AA 2 
P~ ~ 1 - - ,  (21) 

/04 

7 We do not consider in this paper how the information about the internal degrees of freedom of the particle, 
i.e. its species, its spin state, etc., are transmitted to the atmosphere. The answer to this question is not clear 
at the moment since the information is transmitted via gravitational interaction (all other interactions are too 
small) and the internal degrees of freedom couple weakly to gravity. 
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where AA = Al -- A2. The number of particles which are affected by the shock wave is 

N '~ M 2 / p  2 (Eq. (6 ) )  so the probability that the scattered state of  the whole atmosphere 

is the same is 

P = P1 u~p) ~-- e -M%'~2/p6 . (22) 

Since AA > 1/M we obtain that when the ingoing particle crosses p = ~ the prob- 

ability that the scattered state of the atmosphere is the same is exponentially small. 
Therefore, the information on the energy of the ingoing particle is encoded in the 

atmosphere at p = x~/--M. 
Of course this is not all the information since there are orthogonal states of the ingoing 

particle with the same energy but different angular location/momentum. We will prove 

now that at p = , ~  the angular information of the ingoing particle is also encoded in 

the atmosphere. 
Consider a particle which fails radially into a black hole along the direction/21 with 

energy A. Imagine now that the particle falls into the black hole with the same energy 

but along another direction /22 with /22 sufficiently different from /2~ so that the two 
initial states are orthogonal. This orthogonality condition implies that A/2 > l / A M ,  

where/t /2 is the angle between the two directions/21 and/22. We want to know at what 

p the state of the atmosphere when/2  =/21 is orthogonal to the state of the atmosphere 

when/2 =/22, i.e. at what p the information about the angular direction/2 gets encoded 

in the state of the atmosphere. Obviously, the most difficult case to distinguish is when 
/t/2 takes its minimal value 

1 
/t/2 = a M '  (23) 

so we will consider that case. Since the energy in both cases is the same, A, the difference 
in the shift of the i particle in the atmosphere is 

A V l  - -  A v 2  ,-~ __AM In __Yqi , (24) 
P -~2i 

where .~li and ~2i is the transverse distance between the infalling particle (at/21 and/22) 
and the particle i. From Eq. (A.19) one obtains that the probability that the scattered 
state of particle i is the same in case 1 and 2 is 

MzAz xli 
Pi ~- 1 t° 4 In x2i " (25) 

The probability that the scattered state of all the atmosphere is the same is 

P = ]'-I P;" (26) 
i 

To evaluate the product we need to estimate ln(Ycli/Y¢2i). There is a lower bound on ~, 
which is the size 1/A of the wave packet of the incoming particle, and an upper bound, 
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which is the size of the horizon M. From Eqs. (22) it is clear that Xli/X2i differs from 
1 by an appreciable amount only if Yqi, -~2i < AgIM. Thus 

( M2A2"~ 
P ~ I I  1 (27) 

i such that Yqi,~<AgIM p4 J ' 

where we have neglected the log factor which is legitimate since .~i is bounded from 
below. Since the total number of particles in the atmosphere is N(p),  the number of 
particles such that 21i, ~2i < /tOM is/tg22N(p) and one obtains 

M2~ 2 ~ 4a2N(a) 
P ~ 1 ~ f ~ e -M2/p6 . (28) 

The condition of validity of Eq. (28) is that their are many particles which intervene 
in the product Eq. (27). This implies that A ~< Tjoc = lip. At p = ~ this is exactly 
the same condition on A as that derived after Eq. (14) (A < p2/M). 

Remarkably both Eq. (22) and (28) are independent of the initial energy a of the 
infalling particle. Thus, provided that h <~ M -U3' the information about the energy and 

angular position of an infalling particle gets encoded in the state of the atmosphere at 
p = ,~'-M. For h > M -1/3 our analysis based on the gravitational shock wave is no 

longer valid and we cannot reach any definitive conclusion. 

5. Conclusion 

The existence of a thermal atmosphere above a black hole is well known. We have 
shown that this atmosphere plays an essential role in the gravitational back reaction to 
Hawking radiation. Indeed it implies the existence of strong gravitational interactions at 
p = ~ and not at p = I as would be naively expected. This was shown by analyzing 

the gravitational effects of the atmosphere. 
In the first approach we estimated the thermal energy fluctuations of the atmosphere. 

To estimate their effects, we then inserted these fluctuations as a classical source in 
Einstein's equations. This shows that the horizon seems to be fluctuating on scales 
p = ~M.  We do not know if these effects would survive in a more careful treatment of 
the gravitational interaction, but in any case it indicates that the propagation of particles 
can no longer be described by a linear quantum field for p < ~/--M. In particular the 
decomposition of the Unruh vacuum as a thermal density matrix of non-interacting 
particles is incorrect for p < ~/~.  

In a second approach we calculated how the presence of an incoming particle modifies 
the state of the atmosphere due to the gravitational interaction. We find that the atmo- 
sphere gets scattered to an orthogonal state before the particle reaches p = ,~'--M. Once 
more this shows that the atmosphere cannot be described as a gas of non-interacting parti- 
cles. However, the full implications of this result cannot be understood at present because 
we have not been able to estimate how the infalling particle is scattered by the atmo- 
sphere and how the particles which constitute the atmosphere interact among themselves. 
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We then further investigated the interaction of an infalling particle with the atmosphere 
and showed that the information carried by the infalling particle can get encoded in the 

atmosphere at p = xY-M. This confirms the critical role of p = ,~/-M. 

The main criticism that one can make of our approach is that we have treated the 

constituents of  the atmosphere as on-shell particles rather than vacuum fluctuations. 

Indeed we have first traced over the partners before evaluating the gravitational response. 
This may not be legitimate if the horizon is a regular region of space time as advocated 

by Hawking. It is however expected to be a valid approximation if the S-matrix ansatz of 

't Hooft is correct, a fact which appears to be corroborated by the analysis of Section 4, 
Thus our analysis implicitly implies a restriction to the region outside the horizon. The 

question then arises of whether an infalling observer can cross the horizon and fall 
into the singularity as predicted by the semiclassical theory. This question should be 

addressed by using a global coordinate system rather than the Schwarzshild coordinates 
used in this paper. In answering it the existence of partners beyond the horizon will play 

a crucial role. Indeed it can be shown that in certain physical processes the presence of 

the partners is essential in ensuring insensitivity to the transplanckian frequencies which 
occur in Hawking radiation [24]. 8 

Nevertheless if one restricts oneself to the region outside the horizon our analysis 
strongly suggests that there is a new phase at p = ~ where gravity becomes strongly 

coupled to the thermal atmosphere. Thus, whereas the Hawking radiation is ignited as 
in the conventional free field theory, the source of the thermal radiation progressively 
shifts to the new phase at p = , ~ .  This new phase can capture information of infalling 

matter and this is in line with the idea that the black hole evaporation is unitary and that 

the black hole entropy is stored in the thermal atmosphere outside the classical horizon. 

It remains however to be seen whether the information about the star that collapsed to 

form the black hole also gets encoded in the atmosphere. Possible consistency could 

be achieved if the star itself does not collapse but becomes a source of the burning 
atmosphere [ 17 ]. 

Whatever the details of the physics near the horizon, the essential result of our 
paper is that strong gravitational interactions already occur at p = ~ where the local 

temperature Tbc = 1/,~/'M is small. This may have important implications for several 
proposed scenarios of black hole evaporation that appeal to strong interactions at much 
smaller distances. Indeed the S-matrix proposed by 't Hooft neglects the high angular 
momentum particles and relies on gravitational interactions, which are strong only at 

the Planck scale [9],  and Susskind's picture of stringy horizons makes appeal to non- 
perturbative effects which should arise at the Hagedorn temperature [25]. It is still 

too early to understand the connection with the recent advances in the string theoretic 
description of black holes [26,27]. 

8 It is also interesting to note that since the analysis of Appendix A was carried out in the Rindler approxi- 
mation, Rindler horizons defined over a transverse distance L x L are probably fluctuating on distances ~'-L. 
But in the Rindler case it is obviously possible to cross the horizon. 
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Appendix A 

In this section we derive Eq. (14). First let us briefly summarize the effect of the 

shock wave (the full details are in Ref. [22]) .  The gravitational field of  a massless 

point-like particle in Minkowski space is described by the line element [ 21 ] 

ds2 = - d u  dv + 2pV ln - - ~  8(u  - uo)du + dx2 + dy  2, (A.1) 

where 2 2 = x 2 + y2, u = T + z and v = T - z. The massless particle moves in the v 

direction with constant u0 and momentum pV. 

In Minkowski space there is an arbitrariness in the length scale appearing in the log 

which can be modified using the coordinate change v ~ v + O(u  - uo)c. Since we are 
using Minkowski and Rindler coordinates to approximate the Schwarzschild metric near 
the horizon, the curvature of the Schwarzschild metric fixes the length scale in the log 

to be of order M. None of our results depend on the exact value of this length scale. 

The effects of  such a shock wave on other particles are most easily analyzed in the 

action formalism. The solution of the Hamilton-Jacobi equation for a massless particle 

of initial momentum k~ and propagating in the metric (A. 1) is 

S = S 0 + 2 p V l n  ~ k v O ( u - u o ) + O ( ( u - u o ) O ( u - u o ) ) ,  (A.2) 

where So is the solution in the absence of shock wave 

+ 
So = kxx  + kyy + kvv + ~ u .  (A.3) 

The effect of  the shock wave is therefore a discontinuity in the v direction at u = u0: 

v 0 -  a k v -  4k~ + v + 2 p V l n  ~ O ( u - u o ) + O ( ( u - u o ) O ( u - u o ) ) ,  

(A.4) 

and a refraction in the transverse direction: 

OS 4p v 
k x ( u )  = ~x = kx + --z-4-xkvO(u - uo) + O( (u - uo)O(u - uo) ) , 

x ~ 
(A.5) 

and similarly for ky (u ) .  
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One further verifies that the solution of the Klein-Gordon equation in the presence 

of the shock wave is given by ~O = eiS[1 + O ( ( u -  u o ) O ( u -  Uo))]. Thus the WKB 
approximation correctly describes the effect of the shock wave. 

Let us now use these results to describe how a high angular momentum particle 
is affected by an incoming particle. First let us recall that near the horizon and for 
transverse distances smaller than M the Schwarzschild metric takes the approximate 

form 

p2 
d s  2 = - ( 4 M ) 2 d t  2 + d p  2 + d x  2 + d y  2 (A.6) 

which is simply Minkowski space 

d s  2 = - d u d v  + d x  2 + d y  2 (A.7) 

in Rindler coordinates 

u = T  + z = p e  t/4M , (A.8) 

v = T - Z = - - p e - t / 4 M .  

Particles in the atmosphere are massless and follow geodesics 

X ~ = X ~  + AV~  (A.9) 

with V0 2 = 0. A boost in the T, z plane corresponds to a translation in Schwarzschild 
time. By such a translation in t and a rotation and translation in the x, y plane we can 
bring the trajectory to the following form (see Fig. A.1 ): 

X U ( k ) = ( T = - p o + A ,  y = 0 ,  x = - / 9 0 + a ,  z = p 0 ) ,  0 < a < 2 p o ,  

(A.10) 

Po is the maximal p the particle can reach, so it is related to the angular momentum by 

Po = -~ (see Eq. (4) ) .  
The ingoing particle is moving along the line u = uo. It is easy to see that the high 

angular Hawking quanta will cross the shock wave of the ingoing particle at 

p2 = 2pou  - u 2 . ( A .  11 ) 

Most of the particles that reach the point p0 will reach a maximal p of the order of p0. 
Therefore we are interested in 

u ~- Po ~-- Pc .  (A.12) 

In order to be able to use Eqs. (A.4), (A.5) we need to relate Schwarzschild energies 
to Minkowski energies. Denoting Schwarzschild energy by A we obtain 

p2 
~. = - - P t  = - g t ~ P  ~ = (4~i) 2 p t ' w l  (A.13) 
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)article in the amlosphere 

p "  ' article 

Fig. A. 1. The effect of  the shock wave of the ingoing particle on Hawking particle with high angular momenta 
is a discontinuity in v. The picture represents the trajectories projected onto the u, v plane. 

Since t = 2 M l n ( u / v )  we get 

u u 
Pt = "~-~Pu - - ~ P v  . ( a .14 )  

For the incoming particle pv = 0, so 

1 4MA MA 
- p u  = z p  ~ - . . . .  _ , (A.15) 

z u P0 

where we have used Eq. (A.12).  For the high angular momentum particle following the 

trajectory Eq. (A.10),  kv = k , ,  so Eq. (A.14) implies 

o)M 1 
- k u  = - k v  "~ ~_ - - ,  (A.16) 

po Po 

where we have used the fact that the Schwarzschild energy of  particles in the atmosphere 

is o~ '-~ 1/M. 
The wave packet that describes such a high angular momentum Hawking particle is 

14'} = N f dk  f ( k )  e ik(x-r) , (A.17) 
d 
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± and N is a normalization factor. where f ( k )  is a function such that Ak = k = p0 
Eq. (A.4) implies that after the wave packet crosses the shock wave there is a disconti- 
nuity d T =  pV. Neglecting logarithmic factors we find that after crossing the shock wave 
the state of the Hawking particle is 

~-- N / d k f ( k )  e i k ( x - T + p ' )  . (A.18) t4*)' 

Therefore, the probability to be in the same state after crossing the shock wave is 

f M2~ 2 P = I(~b'l~b)l 2 "~ N 2 d k l f ( k ) ] 2 ( 1  - k2p v2) = 1 - p V 2 A k  2 ~_ 1 pg , (A.19) 

where we have used Eq. (A.15). 
In addition to the shift in the longitudinal direction, the angular momentum of the 

particles which constitute the atmosphere also changes. In the classical trajectories this 
appears as the refraction Eq. (A.5) 

4pVkvx ,~ pVkv ~ ,~ 
dpx  - ycz --  M - p~ ' (A.20) 

where we replaced 2 and x by their typical value M and used the estimates of p~' and 
k~, obtained above. The relation between Px and the angular momentum l is Px = l / M ,  

hence Eq. (A.20) corresponds to mean change of angular momentum Al ~_ ~ << 1. 
Because of the smallness of Al, the corresponding change in the wave function is 

t ~ M [ l  I I = 1 0 ) - - - * l l = 1 0 ) + ' - -  = 1 0 ± l )  (a .21)  p2 

Therefore, the probability for one particle in the atmosphere to have changed angular 
momentum is 

~2M2 
Pal÷0= p4 ' (A.22) 

which coincides with Eq. (A.19). 
Note that Eq. (A.21) can also be obtained by noting that Eq (A.18) neglects the 

logarithmic dependence of S and that the scattered modes are in fact e i k ( x - T + f f ' l n y ¢ 2 )  . 

The ~ dependence of the log can be shown to imply Eq. (A.21). 

Thus we have shown how an s-wave interacts with the atmosphere. At present we 
cannot show how the high angular momentum particles which constitute the atmosphere 
interact among each other. The reason is that in order to do so one must know how to 
describe the gravitational interaction between two Hawking particles with high angular 
momentum and how to describe the gravitational effect of the Hawking particle with high 
angular momentum on an outgoing particle. But, unlike the ingoing particle, the high 
angular momenta are just vacuum fluctuations in Minkowski space. They correspond to 
short lines (compared to M) in Minkowski space (see Fig. A.1), and therefore their 
gravitational effect cannot be approximated by the shock wave. 
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