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Abstract

The performance of classi�cation methods, such as Support Vector

Machines, depends heavily on the proper choice of the feature set used

to construct the classi�er. Feature selection is an NP-hard problem that

has been largely studied in the literature. Most strategies propose the

elimination of features independently of classi�er construction by exploit-

ing statistical properties of the variables, or via greedy search heuristics.

In this work we propose two di�erent Mixed Integer Linear Programming

formulations based on extensions of Support Vector Machines to overcome
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these shortcomings. The proposed approaches perform variable selection

simultaneously to classi�er construction using optimization models. We

run experiments on real-world benchmark datasets, including microarray

data, comparing our approach with well-known feature selection tech-

niques and obtaining better predictions with consistently fewer relevant

features.

Keywords: Feature selection, Support Vector Machines, Mixed Integer Pro-

gramming.

1 Introduction

Feature selection is one of the most important machine learning tasks. An ap-

propriate selection of the most relevant features reduces the risk of over�tting,

improving model generalization by decreasing the model's complexity (Guyon

et al., 2006). This is particularly important in small-sized high-dimensional

datasets, where the curse of dimensionality is present and a signi�cant gain in

terms of performance can be achieved with a small subset of features (Hassan

et al., 2011; Maldonado et al., 2011). Additionally, a low-dimensional represen-

tation allows a better interpretation of the classi�er. This is particularly impor-

tant in some application �elds like business analytics, since machine learning

approaches are considered as �black boxes� by practitioners, and therefore they

tend to be reticent to use these techniques (Carrizosa et al., 2011). The un-

derstanding of the process that generates the data is also of crucial importance

in life sciences, e.g., the relevant genes that lead to a better discrimination in

cancer prediction.

Support Vector Machines (SVMs) has shown to be a very powerful machine

learning method. Based on the structural risk minimization principle (Vapnik,

1998), this method attempts to �nd the separating hyperplane which has the
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largest distance to the nearest training data point of any class. SVM provides

several advantages such as adequate generalization to new objects, a �exible

non-linear decision boundary, absence of local minima, and representation that

depends on only a few parameters (Vapnik, 1998; Yu et al., 2012). In this work

we propose two novel SVM-based formulations for embedded feature selection,

which simultaneously select relevant features during classi�er construction by

introducing indicator variables and constraining their selection via a budget

constraint. The �rst approach studies an adaptation of the l1-SVM formulation

(Bradley and Mangasarian, 1998), while the second one extends the ideas of the

LP-SVM method (Zhou et al., 2002).

The paper is structured as follows. Section 2 introduces Support Vector

Machines for binary classi�cation, and its robust formulation with second-order

cones. Recent developments for feature selection using SVMs are reviewed in

Section 3. The proposed feature selection approaches are presented in Section 4.

Section 5 provides experimental results using real-world datasets. A summary

of this paper can be found in Section 6, where we provide its main conclusions

and address future developments.

2 Support Vector Classi�cation

In this section we describe the mathematical derivation of the standard l2-SVM

(Vapnik, 1998), the l1-SVM formulation (Bradley and Mangasarian, 1998), and

the LP-SVM method (Zhou et al., 2002). These linear classi�cation methods

constitute the basis for our proposed feature selection algorithms.

2.1 l2 Support Vector Machine

Considering training examples xi ∈ ℜn and their respective labels yi ∈ {−1,+1},

i = 1, . . . ,m, SVM determines an hyperplane f(x) = w⊤ · x + b to optimally
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separate the training examples. This hyperplane minimizes the classi�cation

errors and at the same time maximizes the margin, which is computed as the

sum of the distances to the closest positive and negative training examples. To

maximize this measure, we need to correctly classify the training vectors xi

into the two di�erent classes, using the smallest norm of coe�cients w (Vapnik,

1998). The primal SVM formulation balances the minimization of ∥w∥22 (struc-

tural risk) and of the misclassi�cation errors (empirical risk) by introducing an

additional set of slack variables ξi, i = 1, . . . ,m and a penalty parameter C that

controls the trade-o� between both objectives:

min
w,b,ξ

1

2
∥w∥22 + C

m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ 1− ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m.

(1)

2.2 l1 Support Vector Machine

In order to suppress features, i.e. components of the vector w, the l1-norm is

used as feature penalty. In Bradley and Mangasarian (1998), the lasso penalty

led to good feature selection and classi�cation results.

min
w,b,ξ

∥w∥1 + C
m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ 1− ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m.

(2)

which can be solved as a linear program, tackling the sums of absolute values

from vector w with the following formulation (l1-SVM):
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min
w,v,b,ξ

n∑
j=1

vj + C
m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ 1− ξi, i = 1, . . . ,m,

− vj ≤ wj ≤ vj , j = 1, . . . , n.

ξi ≥ 0, i = 1, . . . ,m.

(3)

2.3 Linear Programming Support Vector Machine

In linear programming SVMs, in order to improve training time, the bound of

the VC dimension is loosened properly (Zhou et al., 2002) using the l∞-norm,

resulting in a linear programming formulation that controls the margin max-

imization directly by considering a margin variable r. This variable is then

maximized while assuring - in the case of separable training examples - that

each observation is on the correct side of the hyperplane, and at least at a dis-

tance r from it. For the non-separable case, the empirical risk is simultaneously

minimized by penalizing a set of slack variables, similarly to standard SVM.

The LP-SVM (soft-margin) formulation follows.

min
w,r,b,ξ

− r + C

m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ r − ξi, i = 1, . . . ,m,

− 1 ≤ wj ≤ 1, j = 1, . . . , n.

ξi ≥ 0, i = 1, . . . ,m.

r ≥ 0,

(4)

where C is a positive parameter that can be calibrated using cross-validation.

The decision function of LP-SVM is also similar to standard SVM. The approach

5



was tested on simulated and real datasets in Zhou et al. (2002), leading to at least

an order of magnitude improvement in training speed, making it particularly

suitable for complex machine learning tasks, such as large scale problems or

feature selection. Even if the VC dimension of LP-SVM is larger than that of

l2-SVM, its generalization error as obtained by the authors was smaller than

for l2-SVM in most cases, concluding that the loss in terms of structural risk is

tolerable.

Formulation (4) presents some issues with noisy datasets. The following two

pitfalls were identi�ed.

• One possible solution of the optimization problem is that all variables

become zero. In that extreme case, all object labels will be predicted as

zero, resulting in an accuracy of 0%. High values of C in noisy data may

trigger that issue. In order to avoid it, a lower bound rlo > 0 for variable

r can be set.

• Another issue is that the variables r and ξi may grow unboundedly, given

their relationship in the objective function. When this happens, results

are very inaccurate. To avoid this situation, an upper bound on variable

r (rup) can be set, controlling also the growth of the variables ξi.

Both bounds will be introduced in our model presented in Section 4.2.

3 Related Work on Feature Selection for SVMs

Guyon et al. (2006) identi�ed three main categories of methods for feature selec-

tion: �lter, wrapper, and embedded methods. Filter methods eliminate poorly

informative features based on their statistical properties prior to applying any

classi�cation algorithm. A commonly used �lter method is Fisher Criterion

Score (F ), which computes each feature's importance independently of the other
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features by comparing that feature's correlation to the output labels (Guyon

et al., 2006):

F (j) =

∣∣∣∣∣ µ+
j − µ−

j

(σ+
j )

2 + (σ−
j )

2

∣∣∣∣∣ (5)

where µ+
j (µ−

j ) represents the j-th feature's mean for the positive (negative)

class and σ+
j (σ−

j ) is the respective standard deviation.

Wrapper methods interact with the respective classi�cation technique and

explore the entire set of variables to identify good feature subsets according to

their predictive power, which is computationally demanding, but often provides

better results than �lter methods. Common wrapper strategies are Sequential

Forward Selection (SFS) and Sequential Backward Elimination (SBE) (Kittler,

1978). In the �rst case, starting without any variable, the method tries out

the feature candidates one by one and includes the most relevant one at each

iteration. On the other hand, SBE starts with all candidate features and tests

them one by one for statistical signi�cance, deleting any variable that is not sig-

ni�cant. A combination of �lter methods and wrappers that focusses, however,

on fuzziness in the analyzed data has been presented by (Uncu and Türksen,

2007).

Techniques from the third category (embedded methods) select features and

construct simultaneously the respective classi�er, which can be seen as a search

in the combined space of feature subsets and hypotheses. Unlike wrapper meth-

ods, which depend on a given but separate classi�cation algorithm, in this cat-

egory it is just one technique that performs both tasks, feature selection as well

as classi�er construction. In general, embedded methods have the advantage

of being computationally less intensive than wrapper methods (Guyon et al.,

2006).

Recursive Feature Elimination (RFE-SVM) (Guyon et al., 2006) is one pop-
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ular embedded technique which tries to �nd a subset of size s among n variables

(s < n), eliminating those whose removal leads to the largest margin of class

separation. This can be achieved using a linear approach (Algorithm 1), based

on the value of the weight vector w.

Algorithm 1 Recursive Feature Elimination SVM - linear case

1. repeat

2. w← SVM Training (primal formulation).

3. Eliminate feature p with smallest value of |wp|.

4. until s variables remain.

While one could choose a single variable to remove at each iteration, this

would be ine�cient in many high-dimensional applications (e.g. microarray

data). Such datasets are often characterized by thousands of features, and the

respective authors usually remove half of the remaining variables in each step

(Guyon et al., 2006).

Embedded feature election can also be seen as an optimization problem.

This is generally done by enforcing feature selection into the model, considering

a sparsity term in the objective function. One example is the minimization of the

�zero norm�: Ω(w) = ∥w∥0 = | {i : wi ̸= 0} |. Note that ∥·∥0 is not a norm since

the triangle inequality does not hold (Bradley and Mangasarian, 1998). Weston

et al. (2003) proposed an approach for zero-�norm� minimization (l0-SVM) by

iteratively scaling the variables, multiplying them by the absolute value of the

weight vectorw, which is obtained from the SVM formulation, until convergence

is reached. Variables can be ranked by removing those features whose weights

become zero during the iterative algorithm and computing the order of removal.

This method considers the following approximation of the l0 norm.
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Ω(w) =
n∑

j=1

log(ϵ+ |wi|). (6)

A mixed-integer program (MIP) has been proposed to iteratively select fea-

tures for a non-linear SVM classi�er (Mangasarian and Wild, 2007). In this

approach any suitable kernel function can be used and the MIP is solved e�-

ciently by alternating between a linear program which determines the continuous

variables' values of the classi�er and successive updates of the binary variables

indicating presence or absence of the respective features.

In an early work (Iannarilli and Rubin, 2003) on �Feature Selection for Multi-

class Discrimination via Mixed-Integer Linear Programming� a MILP for feature

selection based on the assumption of feature independence has been introduced.

Later, an alternative mixed-integer programming approach has been proposed

for simultaneous feature selection and multi-class classi�cation (Carrizosa et al.,

2008). This method modi�es the l1 multi-class SVM formulation to include costs

on features, which has also been proposed for decision trees by Turney (1995). A

biobjective optimization scheme is considered to maximize �t while minimizing

the total feature costs simultaneously, leading to an approximation to the set of

Pareto-optimal classi�ers.

Our work di�ers from previous ones since we extend the idea of feature cost

minimization by considering a budget constraint and solving the mixed-integer

formulation directly, instead of a dealing with a multi-objective approach.

4 Proposed SVM-based MILP Formulations

In each one of the following two subsections we propose a model based on

previously introduced SVM formulations. In both cases, the main idea is to

perform feature selection by using a binary variable linked to each attribute,
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and to restrict the number of attributes used in the respective classi�er via a

budget constraint. We assume a cost vector c ∈ ℜn, where cj is the cost of

acquiring attribute j, j = 1, ..., n. If no such cost information is provided or

equal cost among attributes is desired, all parameters cj can be set to 1. Both

proposed models use a �xed �budget� B to limit the number of selected features.

The di�erence between them consists in the respective norm used for the SVM

formulation as will be shown next.

4.1 Proposed MILP Formulations based on l1 Support

Vector Machines

The following proposal emulates the l1-SVM formulation described in Section

2.2. Instead of minimizing the l1 norm of w, represented by
∑n

j=1 vj , we limit

the selected features using a budget constraint, and force each weight wj to

belong to a given interval [lj , uj ], if the attribute is selected (vj = 1).

min
w,v,b,ξ

m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ 1− ξi, i = 1, . . . ,m,

ljvj ≤ wj ≤ ujvj , j = 1, . . . , n.

n∑
j=1

cjvj ≤ B.

vj ∈ {0, 1}, j = 1, . . . , n.

ξi ≥ 0, i = 1, . . . ,m.

(7)

The previous formulation presents interesting properties. For instance, we

explicitly de�ne a budget B, which represents the number of features in the

classi�er when all cj are equal to 1. Additionally, the budget constraint allows
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to incorporate acquisition costs directly into the formulation, encouraging a

cheaper solution with an adequate level of accuracy.

The formulation, however, has a higher computational cost than linear or

quadratic programming approaches. An important issue is the appropriate

choice of the lower and upper bounds for the components of vector w, i.e. l

and u. Of course, we can always choose lower and upper bounds with arbitrar-

ily high values (positive or negative). However, the generic approach for solving

MILP formulations like (7) consists in a Branch-and-Cut method whose e�-

ciency greatly depends on the tightness of the model's LP-relaxation, i.e. how

close the optimal values of the MILP and its LP-relaxation are, which in turn

strongly depends on the tightness of the lower and upper bounds.

4.2 Proposed MILP Formulations based on LP-Support

Vector Machines

The second formulation we propose extends the ideas of LP-SVM (see 2.3) to

Mixed Integer Programming.

min
w,r,b,ξ

− r + C
m∑
i=1

ξi

s.t. yi · (w⊤ · xi + b) ≥ r − ξi, i = 1, . . . ,m,

− vj ≤ wj ≤ vj , j = 1, . . . , n.

n∑
j=1

cjvj ≤ B,

ξi ≥ 0, i = 1, . . . ,m.

vj ∈ {0, 1}, j = 1, . . . , n.

rlo ≤ r ≤ rup,

(8)
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This formulation does not require the determination of lower and upper

bounds (i.e. lj , uj) for the coe�cients wj which in model (8) only can take values

from the interval [−1, 1]. The desired �exibility for coe�cients wj is achieved

indirectly by using the non-negative variable r which explicitly considers the

structural risk minimization principle. As a consequence, model (8) requires

the additional regularization parameter C.

As we will show next, the �nal constraint in model (8) is required in order to

avoid that r becomes zero or diverges. Similar to model LP-SVM (see Section

2.3), for model (8) the solution with all variables equal to zero is feasible. As

has been mentioned already, this can be avoided by introducing a lower bound

for variable r. In our experiments we use the value rlo = 0.001.

On the other hand, we introduce an upper bound (rup) for variable r to

avoid divergence. Di�erent values for rup are studied using line search.

5 Experimental Results

In this section we apply the classi�cation models l2-Support Vector Machines

(Formulation (1)) and LP-Support Vector Machines (Formulation (4)) as well

as the feature selection approaches l1-Support Vector Machines (Formulation

(3)), l0-Support Vector Machines, and the two benchmark techniques for fea-

ture selection (Fischer+SVM and RFE-SVM) in comparison with the proposed

formulations for simultaneous feature selection and classi�cation via Mixed-

Integer Linear Programming (Eq. (7) -MILP1- and Eq. (8) -MILP2-) to dif-

ferent datasets. These datasets will be presented in Section 5.1. Then we will

describe our model selection procedure. Section 5.3 shows the results we ob-

tained. The di�erent parameters' in�uence on robustness and stability will be

studied in Section 5.4. Finally, we analyze running times for all methods used

in our experiments in Section 5.5.
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5.1 Datasets

We applied the proposed approaches on six well-known datasets from the UCI

Repository (Asuncion and Newman, 2007). These datasets have already been

used for benchmark studies regarding the performance of Support Vector Ma-

chines (see e.g. (Ali and Smith-Miles, 2006; Song et al., 2012)).

• Australian Credit (AUS): This dataset contains 690 granted loans; 383

good payers and 307 bad payers in terms of repayment, described by 14

variables.

• Wisconsin Breast Cancer (WBC): This dataset contains 569 obser-

vations from tissues (212 malignant and 357 benign tumors) described by

30 continuous features.

• Pima Indians Diabetes (PIMA): The Pima Indians Diabetes dataset

presents 8 features and 768 examples (500 tested negative for diabetes and

268 tested positive).

• German Credit (GC): This dataset presents 1,000 granted loans; 700

good payers and 300 bad payers in terms of repayment, described by 8

attributes.

• Ionosphere (IONO): This dataset presents 351 data points; 225 labeled

as good radar returns (evidence of some type of structure in the ionosphere)

and 126 labeled as bad radar returns (no evidence of structure), described

by 34 attributes.

• Splice: This dataset contains 1,000 randomly selected examples (from

the complete set of 3,190 splice junctions), where 517 are labeled as IE

borders and 483 as EI borders, described by 60 categorical variables (the

gene sequence). Given a DNA sequence, the problem posed in this dataset
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is to recognize the boundaries between exons and introns (the parts of

the sequence retained after splicing and the parts that are spliced out,

respectively).

Additionally, we analyzed a microarray dataset in order to study the perfor-

mance of the proposed methods under conditions of high dimensionality with a

small number of examples.

• Colorectal Microarray (CoMA) (Alon et al., 1999): This dataset contains

the expression of the 2,000 genes with highest minimal intensity across

62 samples (40 tumor and 22 normal). The following budget values were

studied:

B ∈ {10, 20, 50, 100, 250, 500, 1000, 2000}.

5.2 Model selection

The following model selection procedure was performed: training and test sub-

sets were constructed using 10-fold cross-validation and the average accuracy

(proportion of true results, Eq. (9)) and AUC were computed. For the mi-

croarray dataset we follow the procedure presented in (Victo Sudha George and

Cyril Raj, 2011): training and test subsets are obtained using a leave-one-out

procedure. Feature selection and classi�cation is then performed on the training

set and the classi�cation performance is �nally computed from test results.

For this work we studied the performance metrics �Accuracy� and �Area

Under the Curve (AUC)� de�ned by one run (Eq. (10)), namely AUC, which

is widely known as �Balanced Accuracy� (Sokolova et al., 2006). AUC can be

described as the tradeo� between the bene�ts (TPrate, or true positive rate)

and costs (FPrate, or false positive rate).

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)
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AUC =
sensitivity + specificity

2
(10)

where TP=true positives, TN= true negatives, FP=false positives, FN= false

negatives, sensitivity= TP
TP+FN and speci�city= TN

TN+FP . We performed a grid

search to study the in�uence of parameter C for soft-margin models, and other

model-speci�c parameters; see Section 5.4.

The intervals were further divided in homogenous values in order to char-

acterize the relevant area for this parameter (where maximum predictive per-

formance is reached). Additionally, the parameter B for the budget constraint

was varied along all possible number of attributes. The values of the feature

cost vector c are set to one. The optimization was performed using LIBSVM

in the case of l2-Support Vector Machines, LINPROG solver for Matlab in the

case of l1-Support Vector Machines (Formulation (3)), and CPLEX solver for

the approaches LP-Support Vector Machines, MILP1, and MILP2.

5.3 Results

Tables 1 to 3 summarize the predictive performance for all methods along all

datasets for the best combinations of parameters, and for the best subset of

features, in terms of AUC. Best results for each data set are presented in bold.

In case of identical AUC, the solution with less variables is considered the best.
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Aus. Credit W. Breast Cancer PIMA Diabetes
ACC AUC k ACC AUC k ACC AUC k

l2-SVM 85,7 86,3 14 97,9 97,3 34 77,9 73,3 8
LP-SVM 85,7 86,3 14 97,2 96,5 34 77,9 73,3 8
l1-SVM 85,5 86,2 12 97,5 97,2 10 77,9 73,3 8

Fisher+SVM 85,5 86,2 2 97,9 97,3 20 77,5 72,4 7
RFE-SVM 85,5 86,2 2 97,9 97,3 23 77,1 71,8 3
l0-SVM 85,5 86,2 2 97,9 97,3 16 77,0 71,8 5
MILP1 85,5 86,2 2 98,1 97,7 26 77,9 73,3 8
MILP2 85,7 86,3 10 97,9 97,3 17 78,0 73,4 8

Table 1: Best accuracy and AUC, in percentage, and number of selected features
(k) for AUS, WBC, and PIMA datasets.

German Credit Ionosphere Splice
ACC AUC k ACC AUC k ACC AUC k

l2-SVM 76,7 69,1 30 88,6 85,2 34 81,5 81,6 60
LP-SVM 77,1 69,4 30 87,2 84,1 34 80,6 80,7 60
l1-SVM 76,8 69,0 24 88,3 85,0 29 81,0 81,1 44

Fisher+SVM 77,3 69,5 22 87,7 84,3 30 81,4 81,5 43
RFE-SVM 77,5 69,8 22 88,3 84,7 8 81,1 81,2 16
l0-SVM 76,5 68,5 22 88,9 85,7 16 81,4 81,5 24
MILP1 77,5 69,8 20 88,6 86,0 19 80,9 81,0 18
MILP2 77,0 69,3 21 88,1 85,0 19 81,5 81,6 35

Table 2: Best accuracy and AUC, in percentage, and number of selected features
(k) for GC, IONO, and Splice datasets.

Colorectal Microarray
ACC AUC k

l2-SVM 83,9 83,4 2000
LP-SVM 87,1 86,9 2000
l1-SVM 87,1 85,9 217

Fisher+SVM 83,9 83,4 50
RFE-SVM 85,5 84,7 500
l0-SVM 83,9 82,4 100
MILP1 85,5 90,3 100
MILP2 90,3 89,4 50

Table 3: Best accuracy and AUC, in percentage, and number of selected features
(k) for Colorectal Microarray dataset.
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From previous tables we observe that best predictive performance is achieved

with the proposed models MILP1 and MILP2 in all seven cases. For Australian

Credit, best AUC is achieved using MILP2 using 10 attributes. A similar per-

formance results with standard SVM and LP-SVM using all variables, but in

this study a solution with fewer features is preferred in case of similar AUC.

However, the di�erence in terms of classi�cation performance between all ap-

proaches is not signi�cant. For the WBC dataset, best results are obtained

with MILP1 using 26 out of 30 attributes, representing a signi�cant improve-

ment compared to all other methods. For the PIMA dataset, similar results are

obtained with all approaches, and MILP2 performs slightly better with k = 8

(no feature selection). For the German Credit dataset, best performance is

achieved with RFE-SVM and MILP1, where MILP1 is preferred since the best

solution is obtained with fewer attributes. For the Ionosphere dataset, results

are better in terms of AUC with MILP1 considering 19 out of 34 variables.

MILP2 performed better for the Splice dataset (although not statistically sig-

ni�cant) using 35 out of 60 attributes. For Colorectal microarray data, both

proposed approaches achieved a remarkably better performance compared to

alternative feature selection approaches, and MILP1 achieved a slightly better

AUC.

In order to compare the predictive performance of feature selection ap-

proaches along di�erent subsets of attributes, a comparison in terms of AUC is

presented for all datasets in Figures 1 to 7. The proposed approaches MILP1

and MILP2 are presented, together with the best alternative approach in terms

of predictive AUC.

From Figure 1 we observe that, for Australian Credit data, all approaches

behave very similar along all di�erent subsets where the �rst attributes are the

only relevant ones in this case. MILP2 slightly better for k = 10 and k = 12,
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No. of Selected Features

C
V

 A
U

C

Fisher+SVM
MILP1
MILP280

85
90

2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. Aus. Credit dataset.

while MILP1 has a slightly worse behavior overall.

For the W. Breast Cancer dataset (Figure 2), the proposed approaches are

consistently better along all di�erent feature subsets, and best performance is

achieved using MILP1.

PIMA Diabetes dataset (Figure 3) has few attributes and experiments proved

that all of them seem to be relevant, and a slightly better performance is achieved

with MILP2 using all attributes. All feature selection methods behave relatively

similar.

For the German Credit dataset (Figure 4), best performance is obtained

with MILP1 and l0-SVM, and the gain of using fewer attributes is signi�cant

compared to the selection of all features.

For the Ionosphere dataset (Figure 5), best results are obtained with MILP1

using about half of the attributes, improving signi�cantly the solution obtained

with all features.
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No. of Selected Features

C
V

 A
U

C

l0−SVM
MILP1
MILP290

95
10

0

2 4 6 8 10 13 16 19 22 25 28

Figure 2: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. W. Breast Cancer dataset.

No. of Selected Features

C
V

 A
U

C

Fisher+SVM
MILP1
MILP2

65
70

75
80

2 3 4 5 6 7 8

Figure 3: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. PIMA Diabetes dataset.
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No. of Selected Features

C
V

 A
U

C

RFE−SVM
MILP1
MILP250

65
70

75

2 4 6 8 10 12 14 16 18 20 22 24

Figure 4: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. German Credit dataset.
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Figure 5: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. Ionosphere dataset.
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Figure 6: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. Splice dataset.

MILP2 obtained best results for SPLICE dataset (Figure 6), achieving sim-

ilar AUC compared to standard SVM but with about half of the features.

Finally, for Colorectal microarray dataset (Figure 7), results are remarkably

better using the proposed approaches with 50-100 variables instead of the entire

set of 2,000 attributes, performing also better than the alternative approaches

in this segment.

5.4 In�uence of parameters

The proposed approaches consider di�erent parameters that need to be studied

in order to understand the robustness and stability of the respective methods.

We vary parameter C and the upper bound for the margin variable r (rup)

for model MILP2 (Formulation (8)). For model MILP1 (Formulation (7)) we

analyze the weight vectors' bounds (lj and uj).
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Figure 7: AUC versus the number of ranked variables for di�erent feature se-
lection approaches. Colorectal Microarray dataset.

Assuming lj = −uj and uj = u, ∀j, we use the following set of values for

parameters u, C, and rup, respectively:

u ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}

C ∈ {2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27}

rup ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}

Tables 5 to 4 present the results of the mean cross-validation AUC per-

formance (leave-one-out AUC performance in the case of microarray datasets)

obtained by varying parameters u for MILP1 as well as C and rup for MILP2,

respectively.
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AUS WBC PIMA GC IONO SPLICE CoMA

1 85,9 95,4 65,9 69,2 81,3 80,3 82,6
2 85,7 97,7 72,4 69,1 82,5 79,8 85,7
4 85,7 96,7 73,3 69,1 83,5 79,8 76,1
8 85,7 96,6 73,3 69,1 84,2 79,8 70,6
16 85,7 95,9 73,3 69,1 84,3 79,8 67,3
32 85,7 95,6 73,3 69,1 83,9 79,8 62,3
64 85,7 95,1 73,3 69,1 83,9 79,8 70,3
128 85,7 94,5 73,3 69,1 83,9 79,8 68,3
256 85,7 94,6 73,3 69,1 83,9 79,8 75,1

Table 4: Predictive performance (AUC) obtained by varying parameter u.

AUS WBC PIMA GC IONO SPLICE CoMA

2−7 86,3 96,5 73,3 69,2 81,1 80,7 74,1
2−6 85,7 94,3 72,6 69,2 83,9 79,8 75,1
2−5 85,7 95,3 73 69,1 84,1 79,8 80,9
2−4 85,7 94,6 72,6 69,2 83,9 80,3 72,8
2−3 85,7 95,6 73 69,2 83,9 79,6 76,4
2−2 85,7 95,2 73,1 68,9 84,1 79,9 72,8
2−1 85,7 94,8 72,8 68,7 84,1 79,8 77,4
20 85,7 94,8 73,4 69,1 83,9 79,6 64,8
21 85,7 94,8 73,3 69,3 83,9 79,7 70,6
22 85,7 94,9 73,2 69 83,9 79,8 73,9
23 85,7 95,2 73,1 68,6 84,1 79,5 71,8
24 85,7 95,3 73,1 69,1 83,9 80,1 70,3
25 85,7 94,9 73,1 68,9 83,9 80 63,5
26 85,7 94,9 73,1 69,1 83,9 79,9 70,1
27 85,7 94,9 73,1 69,1 83,9 80 71,4

Table 5: Predictive performance (AUC) obtained by varying parameter C.
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AUS WBC PIMA GC IONO SPLICE CoMA

1 85,9 96,5 73,3 68,9 83,9 80,3 76,4
2 86,3 96,5 73,3 68,9 83,9 80,7 81,1
4 86,3 96,5 73,3 68,9 83,9 80,7 76,4
8 86,3 96,5 73,3 68,9 83,9 80,7 82,2
16 86,3 96,5 73,3 68,9 83,9 80,7 79,7
32 86,3 96,5 73,3 68,9 83,9 80,7 82,2
64 86,3 96,5 73,3 68,9 83,9 80,7 86,9
128 86,3 96,5 73,3 68,9 83,9 80,7 86,9
256 86,3 96,5 73,3 68,9 83,9 80,7 86,9

Table 6: Predictive performance (AUC) obtained by varying parameter rup.

From previous tables we observe that the proposed methods MILP1 and

MILP2 are very robust and stable along the di�erent values of the analyzed

parameters. Relevant di�erences arise only for microarray data. Parameters

should be tuned carefully in this type of datasets. All parameters have similar

in�uence on the methods' predictive performance.

5.5 Running times

The proposed approaches are based on Mixed-Integer Programming formula-

tions, which are known to be very time-consuming and therefore in general less

suitable for machine learning where huge datasets are to be analyzed. Table

7 provides a comparison for one run of the proposed method (one fold using

10-fold cross-validation or Leave-One-Out in the case of Microarray datasets).

The mean running time (in seconds) is obtained by averaging all running times

for di�erent folds (and for di�erent budgets for the proposed approaches).
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AUS WBC PIMA GC IONO SPLICE CoMA

l2-SVM 0,5 0,3 0,3 0,5 0,3 0,7 0,8
LP-SVM 0,2 0,1 0,1 0,3 0,1 0,4 0,4
l1-SVM 0,4 0,4 0,3 0,4 0,3 4,8 0,6

MILP1-NFS 0,2 0,2 0,2 0,4 0,2 0,7 0,4
MILP2-NFS 0,2 0,3 0,2 0,4 0,2 1,4 0,6
MILP1-FS 0,2 0,2 0,2 0,3 0,2 1,7 2,2
MILP2-FS 0,2 29,0 0,3 0,7 8,7 38,3 1,2

Table 7: Average running times, in seconds, for all datasets.

It is important to notice that all running times are tractable and reasonable.

There are some cases when the proposed approaches become very slow, a�ecting

the average times and as a consequence the comparison. In particular, when

the budget is about half of the number of original variables, running times

are usually higher, while the fastest experiments are obtained when the budget

constraint is not activated and all features are used. In this last case, average

running times are similar to those obtained by LP-SVM.

6 Conclusions

In this work we presented two embedded approaches for simultaneous feature

selection and classi�cation based on Mixed Integer Programming and Support

Vector Machines. The main idea is to perform attribute selection by intro-

ducing binary variables, obtaining a low-dimensional SVM classi�er. Two dif-

ferent SVM-based linear programming formulations, namely l1-SVM and LP-

SVM, were adapted to Mixed-Integer Programming formulations. A comparison

with other feature selection approaches for SVM in low- and high-dimensional

datasets showed the advantages of the proposed methods:

• They allow the construction of a classi�er for a desired number of at-

tributes without the need of two-step methodologies that perform feature

selection and classi�cation independently.
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• They outperform other feature ranking techniques in terms of predictive

performance for di�erent SVM-based feature selection techniques, based

on their ability to identify irrelevant attributes using the classi�er.

• They determine an optimal solution for the feature selection problem in

reasonable running times given a prede�ned number of features.

From the experimental section of this work, several conclusions can be drawn.

Predictive performance (in terms of AUC) can be improved with fewer variables,

demonstrating the relevance of feature selection. In our experiments, in all seven

datasets a gain in terms of performance was achieved using feature selection, or

at least performance is maintained.

In contrast, for microarray data, and in particular for colorectal microarray,

our approaches led to an important improvement in terms of performance (a gain

of almost 7% in terms of AUC using MILP1). In general, our models performed

consistently better than alternative feature selection approaches. Additionally,

the proposed models resulted to be robust and stable for di�erent values of

the parameters used for calibration. Finally, the algorithms' running times are

adequate for most machine learning tasks, such as classi�cation of microarray

data.

There are several opportunities for future work. First, the extension of

the proposed methods to kernel approaches may lead to better performance,

thanks to the ability of constructing non-linear classi�ers, while selecting the

relevant attributes in the original space. The main challenge is to incorporate

binary variables associated to the weight vector into a kernel-based formulation.

Secondly, although in this work all attributes are treated equally, the proposed

approach has the potential to incorporate di�erent costs of di�erent features in

the budget constraint. Credit scoring, fraud detection, and churn prediction are

some interesting application areas where the acquisition costs of each attribute
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may di�er, and those costs can be estimated in order to construct a classi�er

that constraints or minimizes acquisition costs while classifying adequately.
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