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Abstract

In a recent and insightful paper, Echenique et al. [4] proposed the Money Pump Index
(MPI) as an intuitive measure to evaluate the severity of violations of consumer rationality
(defined in terms of revealed preference axioms). For practical applications, they suggest using
the Mean or Median MPI. In this note, we show that computing these Median and Mean MPI
is computationally hard, which makes them impractical in the case of large datasets (including
“scanner” datasets as the one used by Echenique et al.). To overcome this problem, we propose
Maximum and Minimum MPIs as easy-to-apply alternatives. These MPIs preserve the intuition
of the Median and Mean MPIs and can be computed efficiently (i.e. in polynomial time). We
also show the practical usefulness of the Maximum and Minimum MPI through an application
to the dataset of Echenique et al..

1 Introduction

Irrational behavior makes consumers vulnerable, as it allows arbitrageurs to “pump money” from
them. In particular, arbitrageurs can extract money from irrational consumers by following an oppo-
site purchasing strategy. In a recent and insightful contribution, Echenique et al. [4] operationalized
this idea by proposing the Money Pump Index (MPI). These authors presented an intuitive MPI
that is defined on the basis of revealed preference axioms characterizing rational consumer behavior
(such as the Generalized Axiom of Revealed Preference (GARP), which we consider below).

The MPI concept provides an attractive solution to a frequently cited problem of standard
revealed preference tests. For a given consumer, these tests are bound to produce a binary result:
if the dataset with the consumer’s purchase observations satisfies the revealed preference axioms,
then the consumer is said to act rational; alternatively, if the dataset violates the axioms, then the
consumer is classified as irrational. However, datasets that fail such a binary test may actually
be very close to consistency with rationality. It is therefore of interest to have information on
the severity of observed violations. Based on the above money pump idea, the MPI measures the
fraction of the budget that arbitrageurs can extract from an irrational consumer. An MPI value
that is further away from zero then indicates a more severe violation of rationality (i.e. greater
consumer vulnerability).!
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We note that Afriat [1] introduced the first index to quantify the severity of violations of revealed preference
axioms. This index was followed by a considerable number of other goodness-of-fit measures, with differing properties



This note is concerned with the practical computation of the MPI. As we will explain below, if a
consumer violates rationality, then typically there will be multiple purchase observations implying
such a violation. In principle, we can compute a money pump cost for each violation. This calls for
an aggregate MPI that summarizes these money pump costs into a single metric. In their original
contribution, Echenique et al. propose the mean and median money pump cost as such aggregate
MPIs. Obviously, these Mean and Median MPIs have an intuitive interpretation in terms of the
money lost by the consumer due to irrational behavior. A first contribution of this note is that we
show that computing the Mean and Median MPIs is an NP-hard problem.? This result provides a
formal statement of the fact that it is computationally challenging to compute these measures in
practice, in particular for datasets with large numbers of observations.

Notable examples of such large datasets are household-level “scanner” datasets, which Echenique
et al. [4] also considered in their empirical application. Scanner datasets contain information on
household-level purchases collected at checkout scanners in supermarkets. They typically consist of
multiple purchase observations for many households. Such large datasets are increasingly available,
and Echenique et al. provide a particularly convincing case on the usefulness of their MPI concept
in combination with scanner data. At this point, however, it is worth emphasizing that they also
extensively discussed the computational complexity of the MPI for their own scanner dataset (see
in particular their Remark 1 on p. 1207). To mitigate the computational burden, they therefore
suggested as a practical method to compute approximations of the Mean and Median MPIs. Es-
sentially, these approximations focus on violations of revealed preference axioms that involve only
a small number of observations (see Section 5 for more details).

Because of the computational difficulties associated with the Mean and Median MPIs, our second
contribution is that we propose the Maximum and Minimum MPIs as easy-to-apply alternatives.
The Maximum MPI gives the percentage of money lost in the most severe violation of rationality,
while the Minimum MPI does the same for the least severe violation. Clearly, these measures
preserve the intuition underlying the Mean and Median MPIs. In particular, they figure as natural
bounds on the amounts of money that an arbitrageur can extract from irrational consumers.

Importantly, our newly proposed Maximum and Minimum MPIs have clear practical usefulness.
We show that the Maximum and Minimum MPIs can be computed efficiently (i.e. in polynomial
time), which makes them easily applicable to large (e.g. scanner) datasets. We also indicate how
such computation can proceed in practice. Next, we use the dataset of Echenique et al. [4] to
demonstrate the application of the Maximum and Minimum MPIs. Here, our particular focus is on
assessing the performance of these measures relative to the Mean and Median MPIs. In addition,
we show that comparing the values of the Maximum and Minimum MPIs can reveal interesting
information to the empirical analyst. This makes us believe that our results may contribute to the
further dissemination of the intuitive MPI concept in empirical analyses of (ir)rational consumer
behavior.

The rest of this note unfolds as follows. Section 2 sets the stage by introducing the Generalized
Axiom of Revealed Preference (GARP), which forms the basis for the MPI. Section 3 then introduces
the MPI concept and the associated notions of Mean, Median, Maximum and Minimum MPIL.
Section 4 contains our core results and defines the computational complexity of the different MPIs
that we consider. Section 5 shows the practical usefulness of our results through an application to
the scanner dataset of Echenique et al.. Section 6, finally, concludes.

in regards to outliers, the number of violations, complexity of calculation, etc. See Echenique et al. [4] for a discussion
on the relation between these measures and the MPI.
2We refer to Garey and Johnson [5] for an introduction into the theory of NP-completeness.



2 Generalized Axiom of Revealed Preference

Suppose that we have a dataset, S = {(pi,¢;)| ¢ = 1,...,n}, of n observed purchases by a consumer.
That is, we observe N-dimensional vectors of prices p; € Rf o and quantities ¢; € Rf for every
observation i = 1,...,n.

To explain the concept of revealed preferences, we need to consider two observations 7 and j. If
DiGi > Piqj, then bundle g; is directly revealed preferred to bundle g;, since at prices p; both bundles
are available but ¢; is chosen. This is expressed by writing ¢;Rog;. The transitive closure of Ry
is denoted by R and is called the indirect revealed preference relation. If p;q; > p;q;, we say that
bundle g; is strictly directly revealed preferred to bundle ¢;, which is denoted by ¢; Pog;.

We can now define the Generalized Axiom of Revealed Preference (GARP).

Definition 1. (GARP): A data set S satisfies GARP if for each pair of bundles, ¢;,q;, (i,j =
1,...,n, with i # j), the following holds: if g;Rq; then it is not the case that q; Pog;.

In words, GARP states that it cannot be that bundle g; is preferred over bundle ¢; and that
at the same time bundle g; costs at prices p; strictly less than bundle ¢;. Intuitively this does not
comply with the basic notion of a rational consumer that maximizes his/her preferences given the
budget constraint. Varian [8] (based on Afriat [1]) formalized this result by showing that a dataset
S satisfies GARP if and only if it is “rationalizable” by a well-behaved utility function. This means
that each observed consumer purchase can be represented as maximizing this utility function subject
to the observed budget (which is assumed to be equal to the observed expenditures). Given this,
consistency with GARP provides a natural rationality condition for a consumer dataset; see, e.g.,
Varian [8] for more discussion. The money pump index is an example of a goodness-of-fit measure:
it gives an indication of the severity of the violation of GARP. Other goodness-of-fit measures
exist: we mention Afriat’s index, Varian’s index and an index proposed by Houtman and Maks, see
Smeulders et al. [7] for a discussion.

3 Money Pump Index

As explained by Echenique et al. [4], if GARP is violated, a money pump cost (MPC) can be
calculated for every violation. This MPC is the amount of money an arbitrageur could gain from
the consumer by following an appropriate buying strategy. More precisely, suppose that we have
two observations ¢ and j for which p;q; > piq; and pjq; > p;g;. This implies a violation of GARP
that involves the observations ¢ and j. Then, the arbitrageur can make money by buying bundle
¢; at prices p; and reselling it at p;, and by buying g; at prices p; and reselling it at p;. The total
profit following from these transactions gives the corresponding MPC, which equals

pi(¢ — aq5) + (g5 — ). (1)

Generalizing this argument, we can compute the MPC associated with a GARP violation involving
a sequence of observations i1,1s,...,1; as follows

k
MPC = Zp’ij (q’ij - Qij+1)7 (2)

j=1

with ¢, = ;.



To make meaningful comparisons between GARP violations involving different sequences, the
Money Pump Index (MPI) of a violation is calculated by dividing the associated MPC by the total
budget of the observations that are involved in the violation. That is

k
Zj:l Di; (qij — i, )
% ; (3)
Zj:l pij (Iij

MPI =

with again ¢;,_, = ¢;,.

If a dataset for a given consumer violates GARP, then there are typically several sequences of
observations that are involved in a violation. Therefore, Echenique et al. [4] introduce the Mean
and Median MPI of consumers as measures of consumer irrationality. More precisely, each violation
gives rise to an MPI value (as defined in (3)). The Mean MPI is then defined as the mean of these
MPI values, while the Median MPI equals the median of these values. These measures indeed have
an intuitive meaning as quantifying the severity of consumer irrationality.

4 Complexity results

In their original contribution, Echenique et al. already argued that computing the Mean and
Median MPI is a challenging task and, therefore, they propose to approximate these MPIs in
practical applications (see also Section 5). In what follows, we will formally state that computing
the Mean and Median MPI is indeed an NP-hard problem.

To demonstrate that the Mean and Median MPI are computationally hard, we derive a reduction
from the problem #Cycle. Arora and Barak [3] showed that a polynomial time algorithm for #Cycle
implies that P = NP. Thus, our reduction implies that computing the Mean and Median MPIs is
NP-hard, meaning that there cannot exists a polynomial time algorithm for computing them (unless
P=NP). The Appendix contains the proofs of our results.

Theorem 1. The Mean MPI and the Median MPI cannot be calculated in polynomial time, unless
P = NP.

We suggest using the Maximum and Minimum MPIs as easy-to-apply alternative measures of
irrationality. These measures are calculated as, respectively, the maximum and minimum MPI
values defined over all violations. Interestingly, we can prove that these Maximum and Minimum
MPIs can be computed in polynomial time, which makes them particularly attractive from an
empirical point of view.

Theorem 2. The Mazimum MPI and the Minimum MPI can be calculated in polynomial time.

We prove this theorem by reducing the problem of computing the Maximum and Minimum
MPIs to the Minimum Cycle Ratio problem (see the Appendix). Since Megiddo [6] showed that
one can compute the Minimum Cycle Ratio in polynomial time, this reduction proves our result.

5 Empirical application: deterministic test results

We next compute the newly proposed Maximum and Minimum MPIs for the dataset reported in
Echenique et al. [4]. This dataset contains 494 households (i.e. 494 consumers), with 26 purchase



Table 1: Descriptive statistics for alternative MPIs

Minimum MPI Maximum MPI Range | Approximated Approximated

Mean MPI Median MPI
Average 0.0341 0.0936 0.0595 0.0610 0.0591
Standard Deviation 0.0287 0.0616 0.0603 0.0359 0.0369

Number of zeros 0 0 74 0 0

Minimum 0.0002 0.0048 0.0000 0.0048 0.0048
First quartile 0.0154 0.0489 0.0115 0.0355 0.0322
Median 0.0268 0.0797 0.0443 0.0543 0.0497
Third quartile 0.0429 0.1274 0.0867 0.0809 0.0791
Maximum 0.2782 0.4010 0.3350 0.2782 0.2782

observations per household. Out of these 494 households, there are 396 that violate GARP. The
numbers reported in Table 1 pertain to this subset of households.

To compute our results for the Maximum and Minimum MPIs, we implemented an algorithm
described in Ahuja et al. [2] for solving the Minimum Cycle Ratio problem. This algorithm is very
quick in practice: we needed only a few seconds to compute the results for all 494 households.

Table 1 presents summary statistics on the different MPIs under consideration. Let us first
consider our findings for the maximum and minimum MPIs. As indicated in the Introduction,
we believe these results reveal interesting information, as they tell about maximum and minimum
amounts of money that an arbitrageur can extract from irrational consumers. We find that the
average Maximum MPI equals 9.35%, while the average Minimum MPI amounts to 3.41%. However,
the corresponding standard deviations also reveal that these numbers hide quite some variation
across households. Next, we observe that the range between the Maximum and Minimum MPIs
is on average 5.95%, and that this range also varies quite substantially across households. In this
respect, however, it is also worth noting that the range turns out to be zero for no less than 74
households, i.e. for about one-fifth of our total sample (with 396 households) we obtain that the
Maximum MPI exactly equals the Minimum MPI.

As a final base of comparison, we compare our results to the ones reported by Echenique et al..
As indicated above, these authors recognized the complex nature of the Mean and Median MPIs
and therefore resorted to computing approximations of these MPIs in their empirical application.
In particular, they approximated the Mean and Median MPIs by focusing on short violations only,
i.e. violations consisting of at most four observations. Table 1 reports the associated descriptive
statistics. When comparing Echenique et al.’s results for the Mean and Median MPIs to the ones
for our Maximum and Minimum MPIs, we conclude that, in many cases, these last two “extreme”
MPIs spread symmetrically around the first two “central” MPIs. This suggests that the average of
the Maximum and Minimum MPIs may actually provide relevant information. In particular, these
numbers can be used to obtain a good estimate of the Mean and Median MPIs.



6 Conclusion

We have shown that the Mean and Median MPIs originally proposed by Echenique et al. [4] are
generally difficult to compute, which makes them impractical in the case of large datasets (including
scanner datasets). As alternatives, we therefore proposed the Maximum and Minimum MPIs. These
MPIs can be computed efficiently (i.e. in polynomial time) and preserve the attractive interpretation
of the Mean and Medium MPI. We also demonstrated the practical usefulness of these Maximum
and Minimum MPIs through an application to the scanner dataset which Echenique et al. also
studied. We hope that our results will contribute to the further dissemination of the intuitive MPI
concept in empirical analyses of (ir)rational consumer behavior.

Appendix

Proof of Theorem 1

Proof for the Mean MPI. We first explain the concept of a so-called graph representation of a
dataset S, denoted by G(S). Given a dataset S, G(S) arises by having a node in G(S) for each
observation in S, and having an arc between nodes ¢ and j whenever p;q; > p;q;.

Consider an instance of the problem #Cycle, that is we have a directed graph G = (V, A), |[V| =n
with the question: how many directed cycles exist in G 7 We will answer the question by computing
the Mean MPI of two specially constructed sets of consumer data S; and S2. Both datasets consist
of n + 2 observations. In fact, observations 1,2,...,n are identical for S; and S5 and can be
described as follows.

For each vertex i € V, we construct a price vector p; with (p;); = € for i # j (e < 3) and
(pi)i = 1. For every vertex i we create a quantity vector ¢; with (¢;); = 1, (¢;); = 0 if there is
an arc from j to ¢ in G (for i # j), and qé = 2 if there is no arc (again for i # j). Observe that
an arc in G corresponds to an arc in the graph representation of the dataset consisting of these n
observations, and vica versa. We now finish the description of Si, by specifying observations n + 1
and n + 2 as follows. Let p,1 = (2,1,1,...,1), ppao = (1,2,1,...,1), gns1 = (3,2,2,...,2) and
Gnt2 = (2,3,2,...,2). Notice that no observation {1,2,...,n} is preferred over observation n + 1
and n 4+ 2. Further notice that observation n + 1 is preferred over n + 2, and vica versa. Hence,
the number of cycles in in G(S7) is 1+ the number of cycles in G, or 1+ #Cycle for short. In
particular, we can easily verify that the MPT (see(3)) of the additional cycle equals 2n2ﬁ' Let us
write M PI(C) for the value of the MPI corresponding to a cycle C' in the graph representation of
the dataset S. Then, the mean MPI of dataset S can be written as:

2
Yceas) MPI(C)  MPI— Yocec(,..n) MPI(C) + 507

MPI =
#Cycle + 1 #Cycle + 1

(4)

(Where G([1,2,...,n]) stands for the graph representation of dataset S, restricted to observa-
tions 1,2,...,n.)

Now, we finish the description of dataset Sy by specifying observations n+1 and n+2 as follows:
Pn+1 = (271717"'a1)a Pn+2 = (1a2a17"'a1)7 In+1 = (4a2a27"'ﬂ2) and Qn+2 = (274527"')2)' As
in dataset S; there is one additional cycle between nodes n + 1 and n + 2, which has MPI equal to

ﬁ. Thus, the mean MPI of dataset S5 can be written as.



Yceas,) MPI(C) VP — Y oec(pa...p MPI(C) + 525

MPI = =
#Cycle + 1 #Cycle + 1

(5)
Now suppose we have a polynomial time algorithm for finding the mean MPI of a dataset, then
we can find the mean MPI for S; and S5, compute the difference and with the knowledge that this

2 1
2n+4

difference is % find #Cycle. This implies that we would have a polynomial time algorithm

for solving #Cycle, which in turn implies P = NP.

Proof for the Median MPI. Consider an instance of the problem #Cycle. We will solve this problem
by computing the median MPI of a polynomial number (nlog(n)) of specially constructed sets of
consumer data. First, number the vertices of G from 1 to n. We will then construct a dataset D~
with n observations and n goods as follows. For every vertex i < n we construct a price vector p;
with (p;); = efor j #1i (e < #), (pi); = 1. For For every vertex i we create a quantity vector g¢;
with (¢;); = 1, (¢;); = 0 if there is an arc from j to ¢ in G (for i # j), and (g;); = 2 if there is no
arc (again for ¢ # j). It can be easily checked that the graph representation of D~ has the same
set of arcs as the original graph G. It follows that both have the same number of cycles. Given the

construction, it is easy to see that the upper bound on the budgets is 1 + % and 1 — % + # a

lower bound on p;q; — p;g; the arc (7,j) exists. It follows that Z;:E#B > 0.5 is a lower bound on
the minimum MPI of dataset D.

We now add 2 more observations and 2 goods to D™, creating D. For every observation
i <n+1 P)nr1 = Pi)nae = 2 and (¢i)n+r1 = (¢)nse = 0. Set prr1 = (6,...,¢,1,0.5),
Pnt1 = (€...,60.5,1), ¢gnt1 = (0,...,0,1,0) and g,41 = (0,...,0,0,1). It is clear that n + 1 and
n + 2 are preferred over every other observation and that no observation ¢ < n is preferred over
either n + 1 or n + 2. In this way, one more violation is added, with an MPI of 0.5. It follows that
the minimum MPI of dataset D has a value of 0.5 and that there is one unique violation that has
this MPIL.

Now, consider that we add additional goods and observations to the dataset D, creating D+.
For these new goods and observations, the prices and quantities are so that all existing violations
remain with the same MPI, a known number of new violations are created, and the MPI of these
new violations are smaller than the minimum MPI of violations in D. It is clear that if the Median
MPI of D7 is equal to the minimum MPI of D, then the number of new violations created in D7 is
equal to the number of violations in D and thus one more than the number of cycles in G. We will
now show that we can efficiently add new goods and observations to D to create a known number
of extra violations in DT, and that creating a polynomial number of datasets D™ is sufficient for
finding a DT for which the median MPI is equal to the minimum MPI of D.

First, we notice that G has less than O(n x n!) < O(n"*!) cycles. A binary search over this
number can be done in O(log(n"1)) = O((n + 1) log(n)) time. At each step in this binary search,
a component C is added to D so that D U C = D¥. This component is created as follows. Let
f(k) be the number of cycles in a fully connected digraph. Now assume z arcs must be added
to D to form D™, then find maxy(f(k) < z) and add {ﬁj subcomponents of k observations to

C. Set the prices and quantities so that all observations within one subcomponent are preferred



to all other observations in that group, and so that the MPI of these violations are smaller than
the minimum MPT of D and so that no cycles that include observations of multiple subcomponent
exist.? It is easy to see that for a given x we can efficiently find the groups to be added and, as
(2k 4+ 1) x f(k) > f(k+ 1), the number of subcomponents is polynomial.

In conclusion, the #Cycle problem for a graph G can be solved by calculating the Median MPI
of at most O((n + 1)log(n)) graphs, which can be constructed in polynomial time and have a size
that is polynomial in the size of the graph G. As such, a polynomial time algorithm for the Median
MPI would mean a polynomial time algorithm for #Cycle, which implies P = N P.

Proof of Theorem 2

Proof for the Mazimum MPI. We prove this theorem by reducing the problem of computing the
Maximum MPT to the Minimum Cycle Ratio problem (see Ahuja et al. [2]). This is done by first
creating a graph corresponding to the consumption data. More precisely, we build the graph G,
corresponding to the dataset S. For every observation ¢ = 1,...,n in the dataset, there is a vertex
i in the graph. If and only if ¢; Rog;, there is a directed arc (4, j) € E. Each arc has a weight w(s, j)
and a budget b(7, j). We set the weight of each arc, w(3i, j) := p;q; — pig; and b(¢, j) := p;q;. Notice
that for a given cycle in the graph, the ratio of the sum of the weights of the arcs over the sum
of budgets of the arcs is the MPI of the corresponding GARP violation. It is clear that the cycle
with the minimum cycle ratio in this graph corresponds to the violation with the maximum MPI.
Since constructing the graph is possible in O(n?) time, and Megiddo [6] showed that computing the
Minimum Ratio Cycle has a time complexity of O(n®logn), the theorem follows.

Proof for the Minimum MPI. The proof of this result is directly analogous to the one above. For
compactness, we do not include it here.
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