
Spatial and Spatio-temporal Epidemiology 4 (2013) 1–14
Contents lists available at SciVerse ScienceDirect

Spatial and Spatio-temporal Epidemiology

journal homepage: www.elsevier .com/locate /sste
Modeling habitat suitability for occurrence of highly pathogenic avian
influenza virus H5N1 in domestic poultry in Asia: A spatial
multicriteria decision analysis approach

Kim B. Stevens a,⇑, Marius Gilbert b,c, Dirk U. Pfeiffer a

a Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane,
North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
b Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
c Fonds National de la Recherche Scientifique, Brussels, Belgium

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 October 2011
Revised 26 October 2012
Accepted 7 November 2012
Available online 24 November 2012

Keywords:
Emerging infectious diseases
Influenza in birds
Poultry diseases
Risk factors
Knowledge-driven spatial modeling
Model validation
1877-5845/$ - see front matter Crown Copyright �
http://dx.doi.org/10.1016/j.sste.2012.11.002

Abbreviations: AUC, area under the curve; AHP
process; BPA, basic probability assignment; DST, Dem
EMPRES-i, Emergency Prevention System Global A
mation System; GARP, genetic algorithm for rule-se
highly pathogenic avian influenza virus, Maxent
MCDA, multicriteria decision analysis; MPA, minim
ROC, receiver operating characteristic; WLC
combination.
⇑ Corresponding author.

E-mail addresses: kstevens@rvc.ac.uk (K.B. Ste
ac.be (M. Gilbert), pfeiffer@rvc.ac.uk (D.U. Pfeiffer).
Risk maps are one of several sources used to inform risk-based disease surveillance and
control systems, but their production can be hampered by lack of access to suitable disease
data. In such situations, knowledge-driven spatial modeling methods are an alternative to
data-driven approaches. This study used multicriteria decision analysis (MCDA) to identify
areas in Asia suitable for the occurrence of highly pathogenic avian influenza virus (HPAIV)
H5N1 in domestic poultry. Areas most suitable for H5N1 occurrence included Bangladesh,
the southern tip and eastern coast of Vietnam, parts of north-central Thailand and large
parts of eastern China. The predictive accuracy of the final model, as determined by the
area under the receiver operating characteristic curve (ROC AUC), was 0.670 (95% CI
0.667–0.673) suggesting that, in data-scarce environments, MCDA provides a reasonable
alternative to the data-driven approaches usually used to inform risk-based disease sur-
veillance and control strategies.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Although the first reported outbreak of highly patho-
genic avian influenza virus (HPAIV) H5N1 in Hong Kong
in 1997 was successfully controlled through mass slaugh-
ter of all chickens (Li et al., 2004; Lipatov et al., 2004), since
its re-emergence in 2003 the disease has become
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widespread in Eastern and Southeastern Asia (2003–04)
followed by incursions into Southern Asia (2005–06)
resulting in the cumulative deaths of millions of domestic
poultry and over 250 humans in the three regions (WHO,
June 2011). Not surprisingly, the disease has been
highlighted as one of the main animal disease threats in
Asia and its control described as ‘a formidable challenge’
(FAO, 2011).

As disease control resources are generally limited, tar-
geting of disease surveillance and control using risk-based
methods allows for the optimization of these finite re-
sources. Risk-based methods include estimating the level
of disease risk, mapping the spatial distribution of risk
and identifying important risk factors for disease (Pfeiffer
et al., 2008). While the majority of HPAIV H5N1 studies
have focused on the latter (Gilbert et al., 2006, 2007;
Martin et al., 2006; Henning et al., 2009; Loth et al.,
2010; Desvaux et al., 2011), relatively few have mapped
Ltd. All rights reserved.
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the spatial distribution of disease risk (Pfeiffer et al., 2007;
Fang et al., 2008; Gilbert et al., 2008; Hogerwerf et al.,
2010; Martin et al., 2011).

All these studies have used data-driven methods which
can be limited by their need for detailed locational infor-
mation about disease events that have occurred in a de-
fined animal population at risk. However, such methods
become less applicable in situations where disease event
details are unavailable or if a country has not yet detected
a disease incursion. In such data-scarce situations, an alter-
native approach could be to use a knowledge-driven mod-
eling method, such as multicriteria decision analysis
(MCDA), which uses current knowledge regarding the fac-
tors associated with disease occurrence as model inputs in
order to identify areas suitable for disease occurrence. For
example, the knowledge that a certain disease vector or
host species only occurs near water, within a specific tem-
perature range, and its preferred habitat is grassland can
be used to identify areas satisfying all those criteria and
therefore potentially suitable for the presence of the dis-
ease vector or host, and hence the disease. Thus, it is pos-
sible to generate maps showing areas suitable for disease,
in the absence of data, provided the necessary knowledge
is available. However, as with data-driven models, knowl-
edge-driven models are only as good as their inputs, and
therefore models of new or emerging diseases based on
meager knowledge are likely to be less useful than maps
of established diseases based upon a large body of
research.

Despite the fact that the method is not restricted by the
need for data, MCDA has been used infrequently in the ani-
mal health field; the authors are aware of only three stud-
ies that have used this method for modeling the spatial
distribution of animal diseases (Clements et al., 2006,
2007; Rakotomanana et al., 2007). One reason for its lack
of use may be that none of these studies performed a quan-
titative assessment of their model’s predictive accuracy
relying rather on visual appraisal of the agreement be-
tween actual disease presence and predicted risk, which
may inspire less confidence in the method than modeling
approaches involving empirical quantitative assessment.
We therefore felt that it was necessary to perform a
quantitative evaluation of an MCDA model to allow for
future comparisons of the method’s predictive accuracy
with those of the more frequently used data-driven
approaches.

Traditional methods for quantitatively evaluating the
predictive accuracy of maps, such as the area under the
receiver operating characteristic curve (ROC AUC) (Greiner
et al., 2000), require the use of both disease presence and
absence data thus ostensibly precluding their use with
knowledge-driven models. However, quantitative assess-
ments of model validity modeling can also be conducted
using disease presence data and a random sample of back-
ground data (Boyce et al., 2002; Franklin, 2009a) which
provide a representative sample of the conditions available
in the study area (Engler et al., 2004; Chefaoui and Lobo,
2008; VanDerWal et al., 2009; Wisz and Guisan, 2009)
and discriminates used from available habitat. Suitability
models based on disease presence and background data
therefore model occupied versus available habitat. The
use of background data instead of disease absence data
opens up possibilities for quantitatively evaluating MCDA
models using disease-presence data from national or
international databases such as the Food and Agricultural
Organization of the United Nation’s (FAO) Emergency
Prevention System Global Animal Disease Information
System (EMPRES-i) and, if the models prove to have a
reasonable predictive accuracy, for the increased use of
MCDA as a method for confidently modeling the
spatial distribution of disease, especially in data-scarce
situations.

Although MCDA is most useful in data-scarce situations,
such circumstances do not allow for a robust estimation of
the model’s predictive accuracy; instead, such an objective
calls for the use of a well-documented disease. As HPAIV
H5N1 is one in the most well-documented animal diseases
and, in Asia, occurs under widely differing socio-economic
and agro-ecological conditions, it was chosen as an appro-
priate disease for assessing the predictive accuracy of the
MCDA approach under a variety of conditions. Therefore,
the objectives of this study were (i) to identify areas in
Southern, Eastern and Southeastern Asia suitable for HPAIV
H5N1 occurrence in domestic poultry using MCDA and (ii)
to evaluate the predictive accuracy of the resulting model
using quantitative methods of model validation in order
to determine whether, in data-scarce situations, MCDA is
able to provide a reasonable alternative to the data-driven
approaches traditionally used to inform risk-based surveil-
lance and disease control strategies.
2. Materials and methods

2.1. The MCDA method

The process of spatial MCDA is described in detail
elsewhere (Malczewski, 1999, 2000; Pfeiffer et al., 2008;
Hongoh et al., 2011). Briefly, the approach involves identi-
fying risk factors associated with the outcome (in this
instance, occurrence of HPAIV H5N1 in domestic poultry),
based on existing or hypothesized knowledge of their rela-
tionship with the outcome, and which are available in
georeferenced format. These spatial data layers are manip-
ulated to produce appropriate spatial risk factor data layers
for inclusion in the model and standardized on a common,
continuous scale (IDRISI GIS and Image Processing soft-
ware uses the scale 0–255). The outcome will always be
scaled across the whole range of values (i.e. 0–255) and
this can be done using either linear transformations, or
preferably fuzzy logic (Malczewski, 1999, 2000), whereby
uncertainty regarding the association between risk factor
and outcome is modeled using a fuzzy membership func-
tion to describe the shape of the known or hypothesized
relationship between each risk factor and the outcome. If
only two risk factors of equal importance are being
modeled they can simply be combined using the Boolean
operators AND or OR. However, if the model includes two
or more risk factors of unequal importance, weights can
be applied to each risk factor, using a method such as
weighted linear combination (WLC), so that the more
important risk factors exert a greater influence on the
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outcome. A final suitability estimate for each spatial unit
(i.e. raster cell) is calculated using the equation:

S ¼
Xn

ij¼1

ðWjRFijÞ ð1Þ

where S is the final suitability estimate for each raster
cell, W is the weight for risk factor j and RF is the value
of risk factor j for raster cell i. Suitability of a raster cell
is expressed on a continuous scale (usually 0–255) with
the lowest value indicating cells least suitable for the out-
come and the highest value representing those cells most
suitable. However, the final suitability of a raster cell will
be relative to the range of suitability scores for that partic-
ular dataset.

2.2. Definitions

For the purpose of this study ‘suitability’ is defined as
‘the ability of a habitat to support a species’ (Franklin,
2009b); in this instance the species being the H5N1 virus.
Disease ‘occurrence’ refers to the presence of HPAIV H5N1
without defining either incidence or prevalence.

2.3. Study area

The study area included all countries in Southern, East-
ern and Southeastern Asia as defined by the United Nations
Geoscheme (http://millenniumindicators.un.org/unsd/
methods/m49/m49regin.htm; accessed March 2010).

2.4. Defining continental-level risk factors, constraints and
their relationship with HPAIV H5N1 occurrence

The systematic review published by (Gilbert and Pfeif-
fer, 2012) which ‘focused on studies that have studied explic-
itly the spatial distribution of HPAI H5N1 based on empirical
data’, was used to identify continental-level risk factors
associated with occurrence of HPAIV H5N1 in domestic
poultry in Asia, and to define the relationship between
individual risk factors and disease occurrence. Briefly, a
keyword-based search of the ISI Web of Science and CAB
Abstracts databases from January 1996 to December
2010 identified papers with explicit reference to spatial
data on avian influenza. These references were then
grouped into six categories based on the type of study
performed but only papers from the first category – those
focusing primarily on the statistical analysis of HPAIV
disease and infection data – were included in the review.
In addition, selection of papers was restricted to those
dealing with disease and infection caused by HPAIV sub-
type H5N1. Subsequently, the types of variables considered
in the different studies were grouped into nine, broad cat-
egories namely, (i) farming practice and local biosecurity,
(ii) poultry and livestock census data, (iii) anthropogenic
variables, (iv) socio-economic variables, (v) variables
indicative of the presence or abundance of wild birds,
(vi) variables indicative of the presence or abundance of
rivers, lakes or wetlands, (vii) eco-climatic variables,
(viii) land-use and cropping variables, and (ix) topographic
variables.
Variables were then selected from these categories for
inclusion in the MCDA model provided they met the fol-
lowing criteria: (i) able to be mapped and (ii) the relevant
spatial layer was available in the public domain at a
sufficiently high resolution to differentiate within-country
heterogeneity. In addition, the variables had to (iii) reflect
broad causal relationships at a continental scale rather
than be country-specific (i.e. have been identified to be of
importance in more than one country), and to have been
(iv) repeatedly identified to be (v) significantly (p 6 0.05)
associated with HPAIV H5N1 occurrence. The following
six variables met all these criteria.

(i) Domestic waterfowl density (heads/km2; WfowlDen):
Increased domestic waterfowl density is strongly
associated with occurrence of HPAIV H5N1 (Gilbert
et al., 2006, 2008; Pfeiffer et al., 2007; Minh et al.,
2009; Martin et al., 2011) as the birds act as a reser-
voir for the disease. Owing to the highly right-
skewed distribution of this variable together with
its wide range of values we assumed a sigmoidal,
monotonically increasing relationship between suit-
ability for HPAIV H5N1 occurrence and domestic
waterfowl density between 0 and 1000 heads/km2

with constant risk thereafter.
(ii) Chicken density (heads/km2; ChickDen): Although

chicken density has generally been shown to have
only a weak, positive association with HPAIV H5N1
occurrence (Pfeiffer et al., 2007; Gilbert et al.,
2008; Ward et al., 2008; Martin et al., 2011) it was
included in the model as chicken production appears
to drive the spatial expansion phase of HPAIV H5N1
(Slingenbergh and Gilbert, 2008). We assumed a
quadratic relationship between chicken density
and suitability for HPAIV H5N1 occurrence with
highest risk associated with medium density of
chickens (500–5000 heads/km2; semi-commercial/
backyard producers (Tiensin et al., 2005, 2007)),
and lowest risk associated with both low (0–
500 heads/km2; subsistence farmers with few birds)
and high (>5000 heads/km2; commercial producers
with good biosecurity) chicken densities.

(iii) Human population density (heads/km2; PopDen):
Increasing human population density has repeatedly
been shown to be associated with HPAIV H5N1
(Pfeiffer et al., 2007; Gilbert et al., 2008; Martin
et al., 2011) and it is hypothesized that population
density is a proxy for factors such as trade-associ-
ated movement of domestic poultry and fomites.
Different studies have shown the relationship
between population density and HPAIV H5N1 occur-
rence to be positive linear (Paul et al., 2010; Martin
et al., 2011) or quadratic (Loth et al., 2010). For the
model we assumed a positive linear relationship
(Paul et al., 2010; Martin et al., 2011) between pop-
ulation density and suitability for HPAIV H5N1
occurrence.

(iv) Proximity to open water (km; ProxWater): Proximity
to open water and density of waterways have been
shown to be associated with HPAIV H5N1 occur-
rence (Ward et al., 2008; Biswas et al., 2009b; Martin
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et al., 2011) as open water and wetlands can be used
as resting places by migratory birds resulting in
H5N1 occurrence through the presence of infected
wild waterfowl. As outbreaks of H5N1 in domestic
poultry have been shown to generally occur within
5 km of open water (Ward et al., 2008) we hypothe-
sized that suitability for HPAIV H5N1 occurrence in
domestic poultry was highest closest to open water
(0–5 km) and thereafter decreased in a sigmoidal,
monotonic fashion with negligible risk after 10 km
(Fang et al., 2008). The hypothesized mechanism
behind this is that domestic poultry close to open
water are more likely to come into contact with
infected water or wild waterfowl, and that this risk
decreases with decreasing proximity to open water.

(v) Proximity to areas suitable for rice-growing (km; Prox-
Rice): The percentage of land used for rice has been
shown to be associated with HPAIV H5N1 occur-
rence (Pfeiffer et al., 2007; Gilbert et al., 2008). We
assumed that proximity to areas suitable for rice-
growing would have a similar relationship with suit-
ability for HPAIV H5N1 occurrence as proximity to
open water and therefore hypothesized that risk
was highest closest to areas suitable for rice-
growing (0–5 km) (Ward et al., 2008) and thereafter
decreased in a sigmoidal, monotonic fashion with
negligible risk after 10 km (Fang et al., 2008).

(vi) Proximity to roads (km; ProxRoad): Density of roads
(Loth et al., 2010; Yupiana et al., 2010) and distance
to main roads (Biswas et al., 2009b) have been
shown to increase the suitability for HPAIV H5N1
occurrence as roads act as major arteries for trade
and movement of infected poultry or fomites. As
outbreaks in domestic poultry have been shown to
occur mainly within 5 km (Ward et al., 2008), but
seldom further than 60 km, from a road we assumed
that risk of HPAIV H5N1 occurrence followed a sig-
moidal, monotonically decreasing relationship with
greatest risk within 0–5 km of a road, decreasing risk
thereafter and negligible risk after 60 km.

Two models were run; one incorporating all raster cells
in the study area (Unconstrained Model) and one in which
the area was constrained to exclude raster cells considered
unsuitable for poultry production as defined by (Wint and
Robinson, 2007) (Constrained Model) using a binary spatial
data layer (suitable/unsuitable) derived from Gridded Live-
stock of the World (Wint and Robinson, 2007).

2.5. Data collection and generation of spatial risk factor data
layers

The necessary digital spatial data layers were sourced
primarily from the public domain. Human population den-
sity was obtained from Gridded Population of the World v3
(Center for International Earth Science Information
Network (CIESIN), 2005). Chicken and domestic waterfowl
densities for the study area were extracted from spatial
data layers created by (Prosser et al., 2011) and (Van
Boeckel et al., 2011). Location of open water was extracted
from VMap0 Perennial Water Courses (Rivers) of the World
and the location of primary and secondary roads was
extracted from VMap0 Roads of the World, both available
from the Food and Agricultural Organization’s (FAO)
GeoNetwork website (http://www.fao.org/geonetwork/
srv/en/main.home). Location of areas suitable for rice
growing was extracted from Suitability for Rain-fed and
Irrigated Rice (High Input) available from FAO’s
GeoNetwork website (http://www.fao.org/geonetwork/
srv/en/main.home). Only those areas with suitability
ratings of very high, high, good and medium were
extracted as we assumed that these would be the areas
used for intensive rice production, which has been shown
to be associated with HPAIV H5N1 occurrence (Pfeiffer
et al., 2007; Gilbert et al., 2008; Paul et al., 2010).

For the three ‘proximity to’ spatial data layers, raster
layers showing Euclidean distance to the feature of interest
were generated for inclusion in the model and, owing to
computational limitations imposed by mapping at the con-
tinental level, all raster layers were resampled to a resolu-
tion of 5 km2 with the attribute having the largest share of
a cell’s area assigned as the resampled cell’s attribute va-
lue. Spatial data layers with clearly defined attributes
(e.g. Euclidean distance to a feature) are known as crisp
sets, as opposed to fuzzy sets which indicate the hypothe-
sized strength of the association between different values
of the risk factor and the outcome (Eastman, 2009). Crisp
sets were converted to fuzzy sets using the fuzzy member-
ship functions detailed in Section 2.4. The scale of all spa-
tial risk factor data layers was continuous and positively
correlated with suitability for HPAIV H5N1 occurrence.
Crisp sets were produced in ArcGIS 10 (ESRI, Redlands,
CA, USA) while IDRISI Andes (Clark Labs, Clark University,
Worcester MA, USA) was used to create the fuzzy sets
and run the MCDA model.

Locational point data on all confirmed HPAIV H5N1 out-
breaks in domestic poultry in Asia between January 2004
and October 2010 (n = 10,104) were extracted from the
EMPRES-i database. These data are compiled from numer-
ous sources including reports from FAO and the Word
Organization for Animal Health (OIE). We assume that
these reports are not subject to false-positives but recog-
nize that there will be an element of under-reporting (i.e.
false-negative locations) although this is likely to be spa-
tially heterogeneous. All duplicate locations were removed
from the dataset so that any disease location was
represented only once, and when more than one disease
point occurred in a 5 km2 raster cell, only one was retained
leaving a total of 3690 disease points.
2.6. Generation of weights and creation of the final suitability
maps

Weights were generated for each factor using the pair-
wise comparison matrix of the analytical hierarchy process
(AHP) (Saaty, 1987; Saaty, 1990; Malczewski, 1999). With
this method, for each pair of risk factors, modelers are re-
quired firstly to specify whether risk factor A (for example)
is more or less important than risk factor B (for example)
with regards the outcome and secondly, to specify the
degree of importance on a nine-point scale ranging from
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extremely less important, through equal importance to ex-
tremely more important (Malczewski, 1999).

Pairs of risk factors were weighted based on (i) the
number of times they had been reported in the literature
as significant risk factors and (ii) the significance levels
they achieved in the different studies (Table 1). Level of
significance achieved by the risk factors in previous studies
was used as an indicator of the importance of the risk fac-
tor to disease occurrence because the lower the p-value the
stronger the statistical evidence required to prove that the
result could not have happened by chance, suggesting that
the lower the p-value the stronger the association between
the risk factor and outcome. Thus, those which had been
reported more frequently and which achieved a higher le-
vel of significance were considered to be more important
with respect to disease occurrence than risk factors which
were reported less often or achieved lower p-values. The
principal eigenvector of the pairwise comparison matrix
was then calculated to produce a best-fit set of weights
(Malczewski, 1999).

The Pearson product-moment correlation coefficient
was determined for each pair of factors and where this
was greater than 0.4 the weights of both factors were de-
creased by 10%. In the absence of any statistical evidence
upon which to base the amount by which weights of corre-
lated factors were decreased, we experimented with a
range of percentages (5–30%), finally selecting 10% as the
amount which provided a sufficient change to the weights
yet without allowing any of the altered risk factors to dom-
inate the model. Once the necessary pairs of risk factors
had been adjusted in this way, the weights of the
unadjusted factors were increased, in proportion with their
original ratio, so that all weights summed to one. The
weights were combined with the constraint and spatial
risk factor data layers using WLC to determine the
Table 1
Selected risk factors associated with highly pathogenic avian influenza (HPAI) H5N
in the respective studies. Plus (+) and minus (�) indicates positive and negative ass
��, and +/� refer to significance of the risk factor at p-levels of <0.001, <0.01 and <0
the same sequence as the corresponding references.

Risk factor Sign/
Significance

Country

Domestic waterfowl density +++, +, +++,
+++, +

Thailand, South
Asia, Thailand,
Vietnam, Thailan

Human population density +++, ++, ++/
��, +

Thailand, South
Asia, Bangladesh
Thailand

Chicken density +, +/� Global, Vietnam

Roads
Road density, presence of a road, road

length, minimum distance to highway
++, +,+, � �
�, +

Bangladesh,
Thailand, Roman
China, Thailand

Water
Minimum distance to lake⁄minimum

distance to wetland, number of rivers
and streams, access to water

���, ++, + China, Romania,
Bangladesh

Crops
Cropping intensity, % land used for rice +, +++, + South Asia,

Thailand, Vietnam
suitability of each 5 km2 raster cell for HPAIV H5N1 occur-
rence. Suitability was expressed on a continuous scale
ranging from 0 (lowest suitability) to 255 (highest suitabil-
ity), although this is relative to the range of suitability
scores for each dataset. IDRISI’s RANK module, which
applies a simple choice heuristic, was used to rank-order
all raster cells and the resulting map was divided by the
maximum rank thereby generating a map showing the
probability of cells being suitable for HPAIV H5N1 occur-
rence, relative to the highest suitability ranking (Eastman,
1997; Malczewski, 2000).

2.7. Map validation

The suitability maps were validated against the
EMPRES-i HPAIV H5N1 outbreak data specified in
Section 2.5, using the ROC AUC. As this evaluation method
requires data representing both disease presence and
absence, the EMPRES-i data were used together with 10
000 background data points. These data were randomly
generated within the constraints specified below, to repre-
sent the agro-ecological niche of areas without HPAIV
H5N1 outbreaks in domestic poultry. Ten thousand points
were considered sufficient to represent all environmental
conditions in the study area and were generated within a
constrained area based on three criteria: (i) being >5 km
from a disease presence point (i.e. presence and back-
ground points could not occur in the same cell), (ii) being
>5 km from another background point to ensure that there
was never more than one background point per cell and
(iii) having a PopDen P1 head/km2 (i.e. to exclude unpop-
ulated desert and mountainous areas which would be
unsuitable for poultry production).

Incremental probability cut-off values were used to
create multiple binary spatial data layers – cells ranked
1 outbreaks in domestic poultry and the significance level achieved by each
ociations respectively between the risk factor and HPAI while +++/���, ++/
.05, respectively. Sign/significance, country and spatial unit are presented in

Spatial unit References

d

All AdminL3 Gilbert et al. (2006), Gilbert et al. (2008),
Paul et al. (2010), Pfeiffer et al. (2007) and
Tiensin et al. (2009)

,
All AdminL3 Gilbert et al. (2006, 2008), Loth et al. (2010)

and Tiensin et al. (2009)

Country, AdminL3 Hogerwerf et al. (2010) and Pfeiffer et al.
(2007)

ia,
AdminL3,
AdminL3, cases,
AdminL3,
AdminL3

Loth et al. (2010), Paul et al. (2010), Ward
et al. (2008) and Fang et al. (2008)

AdminL3, cases,
farm

Fang et al. (2008), Ward et al. (2008) and
Biswas et al. (2009a,b)

All AdminL3 Gilbert et al. (2008), Paul et al. (2010) and
Pfeiffer et al. (2007)
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suitable or unsuitable – from the continuously ranked suit-
ability map. Each of these spatial data layers was overlaid
with the HPAIV H5N1 occurrence and background data
and their sensitivity and specificity calculated and plotted
as a ROC curve (sensitivity versus 1-specificity), and the
ROC AUC calculated.

2.8. Sensitivity analysis

A sensitivity analysis was conducted to determine how
changes in the weights and membership functions applied
to each risk factor affected the final suitability estimate. To
determine the effect of a change in membership function
the model was run assuming a linear relationship between
all factors and risk of HPAIV H5N1 occurrence. Similarly, to
determine the effect of a change in the weights applied to
each risk factor, two new weights were calculated for each
risk factor by adding and subtracting 25% from the original
weight. In the absence of any statistical evidence upon
which to base the amount by which the weights were al-
tered, 25% was selected as it provided a wide range of
uncertainty while simultaneously ensuring that the under-
lying model structure was maintained. Each of the newly
calculated weights was individually incorporated into the
MCDA model, while holding all other factor weights con-
stant. In addition, equal weights were applied to each risk
factor and the model re-run. Suitability estimates were ex-
tracted for all disease presence points from the original and
new maps, and the mean change in the suitability estimate
as a result of altering the weight or membership function
was determined, together with the standard deviation.

2.9. Application of Dempster-Shafer theory (DST)

Dempster-Shafer theory (DST) is an extension of Bayes-
ian probability theory and is explained in detail by East-
man (Eastman, 2009). Unlike Bayes, DST assumes the
existence of ignorance in the body of knowledge and that
absence of evidence in support of an hypothesis (in this in-
stance, the suitability of a raster cell for HPAIV H5N1
Table 2
Pairwise comparison matrix of the analytical hierarchy process (AHP) for risk fac
based on the significance level achieved by the different risk factors as detailed in

WfowlDen PopDen ProxRoad Pr

WfowlDen 1

PopDen 1/2 1

ProxRoad 1/3 1/2 1

ProxWater 1/4 1/3 1/2

ProxRice 1/5 1/4 1/3

ChickDen 1/6 1/5 1/4
occurrence) does not implicitly imply the presence of evi-
dence in support of the alternative hypothesis (in this in-
stance, the unsuitability of a raster cell for HPAIV H5N1
occurrence). DST recognizes six important concepts; basic
probability assignment (BPA), ignorance, belief, disbelief,
plausibility and belief interval. BPA represents the support
that a piece of evidence provides for the hypothesis and
can be obtained from knowledge or data. Belief represents
the total support for the hypothesis while plausibility rep-
resents the degree to which the hypothesis cannot be dis-
believed. In other words, belief signifies the degree of hard
evidence in support of the hypothesis while plausibility
denotes the degree to which the conditions appear to be
right for it even though hard evidence is lacking. The differ-
ence between belief and plausibility is the belief interval
and represents the level of uncertainty surrounding – in
this instance – the suitability or unsuitability of a raster
cell for HPAIV H5N1 occurrence.

As BPAs are fuzzy sets (Eastman, 2009), the spatial data
layers resulting from the application of the membership
functions described in Section 2.4, were used in the
application of DST after first converting them to a scale
of 0–1. The two risk factors that relate directly to the dis-
ease host and vector – chicken and domestic waterfowl
densities – were assumed to provide hard evidence for
the occurrence of HPAIV H5N1 while the remaining four
risk factors were assumed to provide soft evidence for
disease occurrence as they were considered proxies for
transmission mechanisms.
3. Results

3.1. Weights

The pairwise comparison matrix for the AHP is detailed
in Table 2, correlations between pairs of risk factors are
shown in Table 3 and final adjusted weights presented in
Table 4. Domestic waterfowl and population density were
the highest weighted risk factors while chicken density
tors associated with highly pathogenic avian influenza virus (HPAIV) H5N1
Table 1.

oxWater ChickDen ProxRice Weight

0.3768

0.2472

0.1574

1 0.1149

1/3 1 0.0652

1/4 1/3 1 0.0385



Table 3
Pearson product-moment correlation coefficient for pairs of risk factors associated with occurrence of highly pathogenic avian influenza virus H5N1.

WfowlDen PopDen ProxRoad ProxWater ProxRice ChickDen

WfowlDen 1 0.25 -0.08 -0.03 -0.20 0.34

PopDen 1 -0.33 0.26 -0.55 0.55

ProxRoad 1 -0.09 0.27 -0.24

ProxWater 1 -0.18 0.09

ProxRice 1 -0.47

ChickDen 1

Table 4
Risk-factor weights resulting from the analytical hierarchy process (AHP) and following adjustment for correlations between risk factors.

Risk factor Weight Adjustment

Original Adjusted for correlation

WfowlDen 0.3768 0.4281
PopDen 0.2472 0.1978 Adjusted ; for correlation with ProxRice (�10%) and ChickDen (�10%)
ProxRoad 0.1574 0.1767
ProxRice 0.1149 0.0919 Adjusted ; for correlation with PopDen (�10%) and ChickDen (�10%)
ProxWater 0.0652 0.0748
ChickDen 0.0385 0.0307 Adjusted ; for correlation with ProxRice (�10%) and PopDen (�10%)

Fig. 1. Map illustrating the suitability of Asia for occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1 in domestic poultry on a continuous
scale from least to most suitable, as defined by multicriteria decision analysis. (a) Area unconstrained by suitability for poultry production and (b)
constrained to areas considered suitable for poultry production by (Wint and Robinson, 2007).
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received the lowest weighting. Chicken density was
moderately correlated with population density (r = 0.55)
while proximity to areas suitable for rice-growing was
moderately correlated with population (r = �0.55) and
chicken density (r = �0.47).
3.2. Suitability of Asia for occurrence of HPAIV H5N1 in
domestic poultry

The suitability of Asia for occurrence of HPAIV H5N1 in
domestic poultry was displayed on a continuous scale of



Fig. 2. Map illustrating the suitability of Asia for the occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1 in domestic poultry overlaid with
the location of confirmed HPAIV H5N1 outbreaks in domestic poultry between January 2004 and October 2010. (a) Area unconstrained by suitability for
poultry production and (b) constrained to areas considered suitable by (Wint and Robinson, 2007) for poultry production.

Table 5
Sensitivity analysis of weights used to estimate the suitability of Asia for
the occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1.
Average change in risk estimates was calculated using the point locations of
3690 outbreaks of HPAIV H5N1 in domestic poultry.

Factor Mean change in suitability estimate ± standard
deviation

Factor weight increased
by 25%

Factor weight decreased
by 25%

WfowlDen 43.48 ± 24.14 21.00 ± 29.43
PopDen 33.24 ± 29.86 33.87 ± 23.31
ProxRoad 26.98 ± 25.49 40.19 ± 27.42
ProxRice 31.01 ± 26.30 35.92 ± 26.03
ProxWater 31.20 ± 26.30 35.72 ± 26.75
ChickDen 33.93 ± 26.54 33.92 ± 26.54
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least to most suitable represented by a blue–red color scale
(Fig. 1). Dark-red areas were considered highly suitable for
HPAIV H5N1 occurrence, light-red areas moderately suit-
able while light- and dark-blue indicated areas of low,
and very low suitability, respectively. Areas most suitable
for the virus included Bangladesh, the southern tip and
eastern coast of Vietnam, parts of north-central Thailand
and large parts of eastern China. Areas of moderate
suitability included central Sumatra, Java, and northern
India. In general, northern and central Asia, including
Mongolia, Afghanistan, the majority of Pakistan, Nepal,
Bhutan, western China, North Korea, northern and eastern
Myanmar, northern Laos and Kalimantan were considered
least suitable for HPAIV H5N1 occurrence. Areas consid-
ered unsuitable for poultry production (12% of study area)
generally coincided with those predicted least suitable for
HPAIV H5N1 occurrence (Fig. 1). Eighteen percent (n/
N = 675/3690) of all outbreak locations occurred in areas
deemed unsuitable for poultry production (Fig. 2).
3.3. Map validation

The ROC AUCs associated with the constrained and
unconstrained models ranged from poor (0.563; 95% CI
0.559–0.566) to almost fair agreement (0.670; 95% CI
0.667–0.673) between areas predicted suitable for HPAIV
H5N1 occurrence and the location of disease outbreaks in
domestic poultry. However, the model in which the study
area was unconstrained resulted in a higher ROC AUC than
the model constrained to those areas suitable for poultry
production (0.670 versus 0.563 respectively). As the
unconstrained model had a higher ROC AUC than the con-
strained model, and those areas considered unsuitable for
poultry production were generally modeled as being least
suitable for HPAIV H5N1 occurrence, the unconstrained
model was used in all further analyses.
3.4. Sensitivity analysis

Altering the fuzzy membership functions of the risk fac-
tors resulted in a larger mean change in suitability esti-
mates than altering the weights. Using the same weight
for all factors (0.1667) resulted in a mean change in suit-
ability estimates of 17 ± 30 units, while assuming a linear
relationship between all factors and HPAIV H5N1 occur-
rence, instead of using appropriate membership functions,
resulted in a mean change in suitability estimates of
99 ± 50 units. Increasing or decreasing individual factor
weights while holding all other weights constant resulted
in mean changes in suitability estimates ranging from 21
to 43 units (Table 5).

3.5. Application of DST

The map outputs resulting from the application of DST
to the MCDA model are illustrated in Fig. 3. The evidence
supported the belief that parts of eastern China, Bangla-
desh, the southern tip of Myanmar, and northern and



Fig. 3. Map outputs from the application of Dempster-Shafer theory (DST) to multicriteria decision analysis (MCDA) modeling of the suitability of Asia for
the occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1 in domestic poultry. (a) Belief, (b) plausibility and (c) belief interval.
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southern Thailand were suitable for the occurrence of
HPAIV H5N1. The model suggested that it was plausible
that similar areas, although slightly more extensive than
those indicated in the belief map, together with pockets
in India – in particular along the north-eastern border of
the country – parts of Thailand, Cambodia and Myanmar
and along the Indus River, were suitable for HPAIV H5N1
occurrence, albeit generally at a lower intensity. As a result
there were moderate levels of uncertainty surrounding the
suitability estimates for Bangladesh, Myanmar, Thailand,
Cambodia, Vietnam and eastern China but high uncertainty
surrounding the suitability estimates along the north-
eastern border of India and the Indus River.
4. Discussion

Only a few studies have attempted to map the risk or
suitability of HPAIV H5N1 occurrence in Asia and those
that have used a range of data-driven modeling methods.
This study is unique for two reasons: firstly, it is the only
study of which we know to use a knowledge-driven
approach to map the suitability of HPAIV H5N1 occurrence
in domestic poultry and secondly, the only MCDA
animal-health study to validate an MCDA model using
quantitative methods rather than visual appraisal of the
agreement between disease presence and predicted
suitability.

Areas identified by this model as being most suitable for
occurrence of the virus in domestic poultry included
Bangladesh, the southern tip and eastern coast of Vietnam,
parts of north-central Thailand and large parts of eastern
China. These areas were generally characterized by high
human population density, and to a lesser extent, high
chicken density. Although high density of domestic water-
fowl was generally associated with areas suitable for
HPAIV H5N1 occurrence, domestic waterfowl density was
low in Bangladesh –which was modeled as highly suitable
for disease occurrence.

Most of India and large parts of eastern China were
deemed to be moderately-to-highly suitable for the occur-
rence of HPAIV H5N1, yet have reported few outbreaks. This
discrepancy between prediction and reality was supported
by the high levels of uncertainty, as determined by DST,
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surrounding the suitability estimates in these areas. In
China the reason for this discrepancy may be due to a
combination of mass vaccination and under-reporting
while in India it may be the result of the prevailing semi-
arid climate and relatively low domestic waterfowl density.
In addition, WLC allows the low values of one risk factor
to be compensated for by high values of another, and
although India has a low domestic waterfowl density they
have an extensive road network. The risk factor ‘proximity
to roads’ therefore probably contributed largely to India
receiving a moderately-high suitability rating for HPAIV
H5N1 occurrence but the low domestic waterfowl density
and semi-arid climate preclude a high disease incidence.
Furthermore, this suggests that the occurrence of HPAIV
H5N1 in this part of Asia may be under-reported as the
extensive road network, together with its proximity to
Bangladesh, implies that the area is likely to have been
exposed to the virus yet has reported few outbreaks.

Our model showed good, broad visual agreement with
most of the previous studies (Pfeiffer et al., 2007; Gilbert
et al., 2008; Martin et al., 2011), in particular in the identi-
fication of disease ‘hot spots’. However, there was poor vi-
sual agreement between this model and that of Fang et al.
(Fang et al., 2008) whose predictions of high risk areas in
mainland China were far more extensive than those of
our model which identified only pockets in the east of
the country to be suitable for HPAIV H5N1 occurrence.
Martin et al. (Martin et al., 2011) and Hogerwerf et al.
(Hogerwerf et al., 2010) limited their study areas to regions
suitable for poultry production in order to exclude areas
such as the desert regions of Inner Mongolia, Tibet and
Xinjiang autonomous regions. These areas were all pre-
dicted to be high risk for HPAIV H5N1 occurrence by Fang
et al. (Fang et al., 2008) even though they do not allow for
the maintenance and transmission of HPAIVV H5N1. Our
model was run twice; the first time the study area was
constrained to those regions suitable for poultry produc-
tion (Wint and Robinson, 2007) and the second time the
study area remained unconstrained. In general, the uncon-
strained model categorized areas unsuitable for poultry
production as least suitable for HPAIV H5N1 occurrence,
suggesting that our model is a more accurate representa-
tion of the ecological niche of HPAIV H5N1 than that of
Fang et al.’s (Fang et al., 2008).

MCDA has been used infrequently in the animal health
field. One reason for the lack of use may be that none of the
previous studies performed a quantitative assessment of
their model’s predictive accuracy, relying rather on visual
appraisal of the spatial correlation between disease pres-
ence and predicted risk, which possibly inspires less confi-
dence in the method than modeling approaches that
include a quantitative assessment. This study is the first
that we know of to use traditional quantitative methods
of model evaluation to validate a MCDA model. A common
assumption is that knowledge-driven models are inferior
to data-driven ones; however, this assumption is not sup-
ported by any comparative studies of the two approaches
as, until recently, it was not possible to quantitatively eval-
uate an MCDA model. However, validation of our uncon-
strained model using disease presence and background
data produced a ROC AUC of 0.670 (95% CI 0.667–0.673)
which challenges, to some extent, the assumption of infe-
riority. In other words, a continental-level distribution
map with reasonable predictive accuracy was produced
without using data to fine-tune the model parameters.
However, in order to allow for a direct comparison of the
predictive accuracy of different modeling techniques, all
models need to have dealt with the same species and have
been modeled at the same extent and resolution (Lobo
et al., 2008), which precludes a direct comparison of the
accuracy of our model with those previously published
(Pfeiffer et al., 2007; Fang et al., 2008; Gilbert et al.,
2008; Hogerwerf et al., 2010; Martin et al., 2011).

The unconstrained model had a higher level of predic-
tive accuracy than the constrained model (ROC AUC
0.670 versus 0.563 respectively), possibly due largely to
disease presence points occurring in cells classified as open
water and therefore unsuitable for poultry production. This
was a particular problem on the island of Java. The reason
for this is possibly twofold. Firstly, as the map showing
areas suitable for poultry production was resampled to a
resolution of 5 km2, whole cells were classified as unsuit-
able for poultry production when only a portion of the cell
may have contained open water. Thus, a disease outbreak
may have, in reality, occurred near water but as a result
of being resampled to a lower resolution the outbreak
now appeared to occur in water. Secondly, disease out-
breaks are frequently georeferenced to the centroid of an
administrative area (Farnsworth et al., 2010; Gilbert and
Pfeiffer, 2012) which may have inadvertently placed them
in an area classified as unsuitable for poultry production
due, for example, to the presence of open water. Thus,
although biologically it seems reasonable to constrain a
study area to only those regions capable of supporting
the disease species, map resolution and how the data
points have been georeferenced must be taken into ac-
count if such an approach is followed. This will be an
important consideration when using ecological niche mod-
els, such as maximum entropy (Maxent) and genetic algo-
rithm for rule-set production (GARP), which compare the
ecological niche of disease point locations with that of
background data. When almost 20% (as in this study) of
those disease points occur in cells classified as unsuitable
for poultry production, possibly as a result of map resolu-
tion or imprecise georeferencing, the accuracy of such
models will be compromised.

It is important to bear in mind that the fair predictive
accuracy of this model may be partially the result of the
resolution used �5 km2. If we had used a higher resolution
(e.g. 1 km2) the predictive accuracy might have been lower.
Unfortunately, it was not possible to work with a higher
resolution owing to computational limitations imposed
by the size of the study area. However, we would argue
that this limitation is mitigated by the fact that, owing to
the potentially variable accuracy of the georeferencing of
the disease points, a high resolution map might actually
generate less meaningful output than a map of lower
resolution. Thus, data- and knowledge-driven models both
appear to be similarly constrained regarding the extent of
the study area being modeled, albeit for different reasons.
Conversely, our model may be under-predicting owing to
the imprecise georeferencing frequently associated with
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disease outbreaks. In addition, it is important to bear in
mind that by validating against known outbreaks we as-
sume that all areas have had the chance to become infected
and, where conditions were suitable, outbreaks occurred
and were reported. If some areas have not yet been ex-
posed, our validation will be affected, in particular through
occurrence of false-negatives.

Compared with data-driven modeling methods, espe-
cially those that require both disease presence and absence
data, MCDA is relatively quick and inexpensive to imple-
ment, especially if the spatial risk factor data layers are
sourced from the public domain. In addition, the method
has a strong participatory element in that a range of stake-
holders can be involved in the modeling process, thus
bringing together different points of view. MCDA easily
incorporates both qualitative and quantitative variables
and, through the use of fuzzy membership sets, is able to
accommodate non-linear relationships between risk fac-
tors and the outcome. Furthermore, unlike some of the
data-driven methods, the incorporation of DST allows for
the uncertainty surrounding the suitability estimates to
be explored.

The application of DST to our model showed that, based
on our choice of hard and soft evidence, disease has so far
occurred primarily in areas with a low level of uncertainty
(belief interval) while areas with a high level of uncertainty
generally coincided with areas predicted suitable for dis-
ease yet which have so far reported few or no outbreaks.
Such a spatial distribution of uncertainty may occur for
one or more of the following reasons. Firstly, based on
our classification of the risk factors as either hard or soft
evidence for disease occurrence, the observed spatial dis-
tribution of uncertainty may suggest that the densities of
the host (domestic chickens and waterfowl) and vector
(domestic waterfowl) have so far been the main risk fac-
tors in the occurrence of HPAIV H5N1 in Asia and that
the risk factors considered to represent soft evidence are
indeed of secondary importance to the density of domestic
chickens and waterfowl in disease occurrence. Secondly,
the level of uncertainty may be a reflection of the varied
degree of under-reporting in different countries or regions
with higher levels of under-reporting resulting in higher
levels of uncertainty being associated with the suitability
estimates. Thirdly, risk factors used to reflect broad, conti-
nental-level causal relationships may not apply to all re-
gions in the study area, reflected by high levels of
uncertainty in those regions.

A potential reason why MCDA has been infrequently
used to model the spatial distribution of disease is the sub-
jectivity associated with the method, particularly in the
selection of risk factors, definition of relationships between
risk factors and disease occurrence and determination of
weights, as opposed to the more objective data-driven
methods. There is no doubt that, for each of these, people’s
perceptions will be influenced largely by their own experi-
ence with a disease, and therefore using an individual to
build the model, based on their own experience with the
disease, would introduce a considerable degree of subjec-
tivity. One way to reduce this could be through identifying,
defining and weighting risk factors based on group consen-
sus. Another alternative would be to use the method
implemented initially by (Clements et al., 2006) and fur-
ther developed in this study. By selecting and weighting
risk factors based on the number of times each has been re-
ported in the scientific literature to be significantly associ-
ated with a disease, together with the level of statistical
significance achieved, the potentially biased perspective
of an individual can be ameliorated. However, of greater
concern is that this approach is heavily dependent on the
results of previous studies for the identification and
weighting of risk factors and thus, as our knowledge of
the disease grows, the risk factors, relationships and
weightings included in the model will inevitably be subject
to change. In addition, as a disease evolves the focus of the
studies regarding its epidemiology will inevitably change
to account for our wider knowledge of the disease and
the altered status of the disease in different locations
resulting from the successful implementation of control
measures.

On a similar note, in a study where the model inputs are
based largely on published papers, of concern is the
influence of publication bias on the results. According to
(Ioannidis, 2005) publication bias is least likely to arise
when (i) similar results have been identified (i.e.
confirmed) by several, independent studies, (ii) the studies
involved are large, (iii) the effect sizes are large, (iv) the
dependent variable is ‘‘unequivocal and universally agreed’’
(Ionnidis, 2005; e124), (v) the studies use common, well-
documented analytical methods, (vi) the research findings
are not influenced by financial interests (e.g. pharmacoki-
netic trials) and (vii) there is no race between scientific
teams working in the same field to be the first to publish
significant findings on a ‘hot’ new topic. As the publica-
tions used to identify and define our model inputs spanned
almost two decades, there is little likelihood that our
choice of risk factors was wrongly influenced by competing
teams hoping to be the first to publish significant findings
on a new topic. In addition, the six risk factors used in our
model have all been repeatedly identified, by several, inde-
pendent studies as being significantly associated with
HPAIV H5N1 occurrence. Furthermore, all studies used lo-
gistic regression together with a generally, well-defined
outcome (i.e. laboratory confirmed cases of HPAIV H5N1)
and, as a result of the disease characteristics, sample sizes
were relatively large and the studies were unlikely to have
been influenced by financial interests. All this suggests that
the effect of publication bias on our model was likely to be
minimal.

Despite concerns regarding the potential for error to be
introduced through the subjective weighting of risk fac-
tors, it has been shown by both this study and Clements
et al. (2006) that altering the weights has considerably less
of an effect on the final suitability estimates than changing
the shape of the relationships between risk factors and
outcome. Assigning equal weights to all risk factors re-
sulted in a mean change in suitability estimates of only
17 units, while modeling a linear relationship between
all risk factors and the outcome resulted in a mean change
in suitability estimate of 99 units, suggesting that choice of
weights is reasonably robust. We suggest that weights
have less of an effect than the relationships on the final
suitability value of any raster cell, as individual weights
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are always less than one (together they sum to one), while
the relationship between risk factor and outcome deter-
mines the spread of values on the 0–255 scale. Thus, when
calculating the final suitability estimate of a given pixel,
the weight has less influence in the calculation than the va-
lue of the risk factor. This is particularly disquieting in light
of the comment by Malczewski (Malczewski, 2000) that
the most frequently modeled relationship between risk
factor and outcome is a linear one. Another argument
against using linear transformations, rather than fuzzy
membership functions, to model the relationship between
risk factors and the outcome is that suitability maps gener-
ated using linear transformations of datasets of different
extent will not be comparable as the final suitability of a
raster cell will be relative to the range of suitability scores
for that particular dataset. However, if the same fuzzy
membership functions and decision rules are applied to
datasets of different extent then the resulting suitability
maps will be comparable.

One of the main limitations of MCDA, and all spatial
modeling techniques, is that risk factors must be able to
be mapped. This means that farm-level risk factors known
to be associated with HPAIV H5N1 occurrence, such as an
individual farm’s trading intensity (Desvaux et al., 2011;
Paul et al., 2011) or biosecurity practices (Paul et al.,
2011) cannot be included in the model. An extension of
this problem is that of risk factors not being available at
a sufficiently high resolution for incorporation in the mod-
el. For example, socio-economic factors such as purchasing
power per capita were incorporated in their spatial model
by Hogerwerf et al. (2010). However, such risk factors are
generally only available in the public domain at a national
level and therefore only serve to discriminate the level of
risk between countries and cannot be used to differentiate
between risk levels within a country. In addition, the diffi-
culties associated with obtaining the relevant spatial data
may mean that the contribution of certain risk factors to
disease occurrence have not been studied and are therefore
excluded from the MCDA model. For example, owing to the
lack of relevant spatial data, few statistical studies have
investigated the relationship between the presence of wild
birds and HPAIV H5N1 occurrence, even though wild birds
have been implicated in long-distance spread of the dis-
ease (Takekawa et al., 2010; Gilbert et al., 2011). However,
as the entire study area (apart from a small corner in
north-west Afghanistan, which had not experienced any
HPAIV H5N1 outbreaks at the time of the study) was cov-
ered by either the East Asia/Australia or Central Asia fly-
ways we assumed that any potential risk of HPAIV H5N1
occurrence associated with migratory birds would be rea-
sonably constant across the study area and the omission
of this risk factor from the model would not unduly influ-
ence the results. However, those implementing and using
spatial models need to bear in mind that, by omitting po-
tential risk factors for such reasons, the final model may
not represent the whole picture. In addition, our knowl-
edge of the epidemiology of HPAIV H5N1 is constantly
growing and evolving and therefore modelers and deci-
sion-makers need to take into consideration that MCDA
maps only reflect the current state of our knowledge and
therefore the more we know about the epidemiology of
the disease the more accurate the suitability maps that
can be produced.

As we were modeling the risk of HPAIV H5N1 occur-
rence for the whole of Asia rather than for a specific coun-
try risk factors had to reflect broad causal relationships at
the continental-level rather than be country-specific. We
therefore assumed that risk factors which had been identi-
fied as being significantly associated with HPAIV H5N1
occurrence in multiple countries were those that described
general, continental-level causal relationships even if indi-
vidual risk factor had not been found to be significant in
certain countries. For example, although a range of studies
have shown density of domestic wildfowl to be associated
with HPAIV H5N1 persistence in Asia (Gilbert et al., 2006;
Pfeiffer et al., 2007; Gilbert et al., 2008; Tiensin et al., 2009;
Paul et al., 2010; Hogerwerf et al., 2010), Loth et al.’s high-
resolution studies found no significant association be-
tween this variable and disease occurrence in either Java
(Loth et al., 2010) or Indonesia (Loth et al., 2011) despite
the fact that both countries have high densities of domestic
waterfowl and are endemic for HPAIV H5N1. However, we
assume this to be to due to the variable reflecting different
transmission mechanisms at different resolutions as the
extent to which domestic waterfowl contribute to HPAIV
H5N1 transmission may vary considerably depending on
local farming and trading conditions, which themselves
differ greatly between countries (Gilbert and Pfeiffer,
2012). As these mechanisms are seldom of the type that
can be mapped, a model that reflects broad causal relation-
ships at a crude scale is possibly more accurate and con-
tains less uncertainty than one which attempts to model
complex, fine-scale mechanisms.

Although the spatial unit of analysis for seven (70%) of
the ten studies used to identify the variables for inclusion
in the MCDA model (Table 1) was Administrative Level 3,
for the remaining three studies spatial extent varied from
individual cases (Ward et al., 2008) and farms (Biswas
et al., 2009a) to country-level (Hogerwerf et al., 2010).
Using studies performed at different spatial extents to
identify variables for inclusion in the model and to define
their relationship with disease occurrence can add an extra
degree of uncertainty to the MCDA model as, variables
modeled as significant at different spatial extents may re-
flect different processes in the causal relationship between
variable and outcome (Gilbert and Pfeiffer, 2012).
Similarly, studies performed in vastly differing countries
yet which identify the same variable to be significantly
associated with disease may again be modeling different
processes. However, the coarser the spatial extent of the
studies, the more likely they are to be modeling the same
processes (Gilbert and Pfeiffer, 2012) and similarly, the
more alike countries are with respect to climate, agro-
ecological and socio-economic factors the more likely they
are to be modeling the same causal relationship. In this
study, the majority of papers used to identify model inputs
were performed at a similar coarse spatial scale (i.e.
Administrative Level 3) suggesting that the associations
they identified between the different variables and HPAIV
H5N1 occurrence were more likely to reflect the relatively
straightforward relationships we modeled here as opposed
to the complex and diverse mechanisms by which the
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variables could contribute to disease occurrence at a finer
scale. This assumption is also supported by the generally
low levels of uncertainly presented in the Dempster-Shafer
map (Fig. 3).

Our predictive risk map was validated using HPAI H5N1
outbreak data extracted from the EMPRES-i database,
which contains data collected from both formal (e.g. re-
ports from the OIE, World Health Organization, national
authorities, FAO country or regional projects, field missions
and field officers, non-governmental organizations, labora-
tories and reference centers) and informal sources (e.g.
media reports and those disseminated by the Global Public
Health Intelligence Network and ProMED) (Martin et al.,
2007; Farnsworth et al., 2010). In addition, all outbreaks
appearing in the EMPRES-i database are followed-up until
either confirmed or denied (Farnsworth et al., 2010). An
alternative to EMPRES-i data is the individual, national
HPAIV databases which are generally more comprehensive
than the international data sources with respect to number
of outbreaks, level of detail included and are recorded at a
finer spatial resolution (Farnsworth et al., 2010). However,
these databases are not available for all countries and are
generally not as easily accessible as their global counter-
parts. This suggests that EMPRES-i is an adequate source
of data for the spatial modeling of HPAIV H5N1 at a conti-
nental level and for the inferences we wanted to draw,
although users need to bear in mind the limitations of
using data that have been spatially referenced to adminis-
trative centroids rather than exact outbreak locations, as
discussed previously.

In conclusion, this work demonstrates the potential of
MCDA for knowledge synthesis. In contrast to data-driven
models, which require the availability of a single dataset
containing all relevant information, MCDA can integrate
data generated by a range of studies conducted together
or independently from each other. Many risk management
scenarios require action in the presence of scarce knowl-
edge, and in such situations MCDA allows decision-makers
to take advantage of existing qualitative expert knowledge
while recognizing the uncertainty associated with their
predictions. Furthermore, the resulting suitability models
can be updated or modified once additional knowledge
has been generated, and the quantitative relationships rep-
resented in MCDA models can be communicated and de-
bated with an expert audience, thereby providing an
opportunity for consensus building.

5. Conclusion

Using only knowledge regarding the relationship be-
tween key risk factors and HPAIV H5N1 occurrence in
domestic poultry, this study showed that it is possible to
model the continental-level risk of HPAIV H5N1 occur-
rence in domestic poultry with a fair degree of predictive
accuracy, in particular the broad location of disease ‘hot-
spots’. However, by validating a knowledge-driven spatial
model using a quantitative method, this study has paved
the way for future research involving a comparison of
knowledge- and data-driven spatial modeling methods.
The work has also shown that MCDA is a practical tool
for synthesizing knowledge about a disease and generating
reasonable spatial representations of variation in disease
suitability which in turn has direct relevance for informing
the design of risk-based animal health surveillance.
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