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Abstract

In this paper, we adapt the heuristic of Fortz and Thorup for optimizing the weights of Shortest Path First protocols such
as Open Shortest Path First (OSPF) or Intermediate System-Intermediate System (IS-IS), in order to take into account failure
scenarios.

More precisely, we want to find a set of weights that is robust to all single link failures. A direct application of the original
heuristic, evaluating all the link failures, is too time consuming for realistic networks, so we developed a method based on a
critical set of scenarios aimed to be representative of the whole set of scenarios. This allows us to make the problem manageable
and achieve very robust solutions.
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1 Introduction
Shortest Path First (SPF) protocols such as Open Shortest Path First (OSPF) [11] or Intermediate System-Intermediate System
(IS-IS) [4] are the most commonly used intra-domain internet routing protocols today. Traffic is routed along shortest paths
to the destination. The weights of the links, and thereby the shortest path routes, can be changed by the network operator. A
simple default weight setting suggested by Cisco [5] is to make the weight of a link inversely proportional to its capacity. As an
alternative to OSPF/IS-IS, the more flexible Multi-Protocol Label Switching (MPLS) protocol has been suggested. MPLS is not
yet widely deployed, but in principle, it would allow arbitrary routing in networks.

Our general objective in this paper is to route demands through an OSPF/IS-IS based network so as to avoid congestion in
terms of link loads exceeding capacities with resulting packet loss and back-off in TCP. The routing must be effective not only
when the network is running without failure, but also in each case of single link failure.

In the context of a fixed network (i.e. with a fixed topology and no failure), with a fixed known demand matrix this problem
has already been addressed experimentally in [9] with real and synthetic data, showing that we can find weight settings supporting
50%-110% more demands than Cisco’s defaults inverse-capacity-weights, and get within a few percent of the best possible with
general routing, including MPLS. Similar positive findings have been reported in [2, 6, 3, 14].

However, as stipulated in [1], demand matrices and networks change. In [10], several scenarios of change are considered,
with the objective of changing as few weights as possible. One of the results obtained shows the robustness of OSPF routing with
optimized weights with respect to link failures. In this application, weights are optimized for the no-failure case, and a method
to recover the performance with a few weight changes is provided. However, as described in [7], operators do not like to change
weights, so it would be preferable to take into account the failure scenarios when optimizing the weights, in order to obtain a
robust weight setting. This paper describes how the heuristic of Fortz and Thorup [8, 9] for the no-failure case can be adapted to
take into account failure scenarios.

Our objective is to optimize network parameters with respect to a robustness objective function that requires the evaluation
of all possible link failure scenarios. We would like to use our previous local search heuristic, but evaluating all link failures
for each solution was intractable for the problems considered. We circumvented this problem by developing a set of critical link
failures, which were the only ones considered in the inner loop of the local search. In an outer loop, we tested on all possible link
failures the solution from the inner loop for the critical link failures. Based on this test, we sometimes added new link failures to
the critical set. In the experiments reported, we managed to use critical sets that were two orders of magnitude smaller than the



set of all link failures, yet we managed to get very good with respect to all possible link failures. As a result, our critical set idea
provided a speed-up by two orders of magnitude, allowing us to deal with the AT&T’s IP backbone, which is the largest today.
This critical set idea is of a very general nature and we expect it to find many other applications in the future.

A similar problem is considered in [13]. In this paper, only the maximum utilization in the normal state and for the worst
link failure are optimized. The approach evaluates all link failures during the optimization, but the search space is reduced by
considering only paths with a limited hop-count. Results are presented for a small network with 16 nodes and 68 arcs, while our
approach allows to deal with much larger networks.

In Section 2, we recall the basic weight setting problem and the heuristic for the no-failure case. After describing why this
heuristic cannot be used without modifications when all link failures are taken into account, we describe in Section 3 how it is
adapted for this case. Preliminary numerical results are reported in Section 4.

2 The OSPF weight setting problem
In this section, we recall the basics of the OSPF weight setting problem and the heuristic proposed in [8, 9] for solving it.

2.1 The general routing problem
Optimizing the use of existing network resources can be seen as a general routing problem defined as follows. We are given a
directed network G = (N,A) with a capacity ca for each a ∈ A, and a demand matrix D that, for each pair (s,t) ∈ N ×N, s 6= t,
tells the demand D(s,t) in traffic flow between s and t. We sometimes refer to the non-zero entries of D as the demands. The
set of arcs leaving a node u is denoted by δ+(u) := {(u,v) : (u,v) ∈ A} while the set of arcs entering a node u is denoted by
δ−(u) := {(v,u) : (v,u) ∈ A}

With each arc a ∈ A, we associate a cost function Φa(la) of the load la, depending on how close the load is to the capacity
ca. We assume in the following that Φa is an strictly increasing and convex function. Our formal objective is to distribute the
demanded flow so as to minimize the sum

Φ = ∑
a∈A

Φa(la)

of the resulting costs over all arcs. Usually, Φa increases rapidly as loads exceeds capacities, and our objective typically implies
that we keep the max-utilization maxa∈A la/ca below 1, or at least below 1.1, if at all possible.

In this general routing problem, there are no limitations to how we can distribute the flow between the paths. With each pair

(s,t) ∈ N ×N and each arc a ∈ A, we associate a variable f (s,t)
a telling how much of the traffic flow from s to t goes over a.

Moreover, for each arc a ∈ A, variable la represents the total load on arc a, i.e. the sum of the flows going over a. With these
notation, the problem can be formulated as a classical multi-commodity flow problem [8].

In our experiments, Φa are piecewise linear functions, with Φa(0) = 0 and derivative

Φ′
a(l) =































1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,

500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < ∞.

(1)

The objective function was chosen on the basis of discussions on costs with people close to the AT&T IP backbone. Motiva-
tions on our choice for the objective function and the different model assumptions are discussed in detail in [9], and, for a closely
related application, in [10]. A description of the general infrastructure behind this kind of OSPF/IS-IS traffic engineering is given
in [7].

2.2 The OSPF weight setting problem
The most commonly used intra-domain internet routing protocols today are shortest path protocols such as Open Shortest Path
First (OSPF) [12]. OSPF does not support a free distribution of flow between source and destination as defined above in the
general routing problem. In OSPF, the network operator assigns a weight wa to each link a ∈ A, and shortest paths from each
router to each destination are computed using these weights as lengths of the links. In practice, link weights are integer encoded
on 16 bits, therefore they can take any value between 1 and 65,535. In each router, represented by a node of the graph, the next
link on all shortest paths to all possible destinations is stored in a table. A flow arriving at the router is sent to its destination by
splitting the flow between the links that are on the shortest paths to the destination. The splitting is done using pseudo-random
methods leading to an approximately even splitting. For simplicity, we assume that the splitting is exactly even (for AT&T’s
WorldNet this simplification leads to reasonable estimates).



More precisely, given a set of weights (wa)a∈A, the length of a path is then the sum of its arc weights, and we have the extra
condition that all flow leaving a node aimed at a given destination is evenly spread over the first arcs on shortest paths to that
destination. Therefore, for each source-destination pair (s,t) ∈ N ×N and for each arc a ∈ δ+(u) for some node u ∈ N, we have

that f (s,t)
a = 0 if a is not on a shortest path from s to t, and that f (s,t)

a = f (s,t)
a′ if both a ∈ δ+(u) and a′ ∈ δ+(u) are on shortest paths

from s to t. Note that the routing of the demands is completely determined by the shortest paths which in turn are determined by
the weights we assign to the arcs.

The quality of OSPF routing depends highly on the choice of weights. Nevertheless, as recommended by Cisco (a major
router vendor) [5], these are often just set inversely proportional to the capacities of the links, without taking any knowledge of
the demand into account.

The OSPF weight setting problem is to set the weights so as to minimize the cost of the resulting routing. This problem is
NP-hard [8].

2.3 Local search heuristic
In OSPF routing, for each arc a ∈ A, we have to choose a weight wa. These weights uniquely determine the shortest paths, the
routing of traffic flow, the loads on the arcs, and finally, the value of the cost function Φ.

Suppose that we want to minimize a function f over a set X of feasible solutions. Local search techniques are iterative
procedures that for each iteration define a neighborhood N (x) ⊆ X for the current solution x ∈ X , and then choose the next
solution x′ from this neighborhood. Often we want the neighbor x′ ∈ N (x) to improve on f in the sense that f (x′) < f (x).

In the remainder of this section, we first describe the neighborhood structure we apply to solve the weight setting problem.
Second, using hashing tables, we address the problem of avoiding cycling. These hashing tables are also used to avoid repetitions
in the neighborhood exploration. While the neighborhood search aims at intensifying the search in a promising region, it is often
of great practical importance to search a new region when the neighborhood search fails to improve the best solution for a while.
These techniques are called search diversification. We refer the reader to [8] for a description of the diversification techniques we
use.

A solution of the weight setting problem is completely characterized by its vector w = (wa)a∈A of weights, where wa ∈W ,
the set of possible weights. We define a neighbor w′ ∈ N (w) of w by one of the two following operations applied to w.

Single weight change. This simple modification consists in changing a single weight in w. We define a neighbor w′ of w for
each arc a ∈ A and for each possible weight t ∈W\{wa} by setting w′(a) = t and w′(b) = wb for all b 6= a.

Evenly balancing flows. Assuming that the cost function Φa for an arc a ∈ A is increasing and convex, meaning that we want to
avoid highly congested arcs, we want to split the flow as evenly as possible between different arcs.

More precisely, consider a demand node t such that ∑s∈N D(s,t) > 0 and some part of the demand going to t goes through
a given node u. Intuitively, we would like OSPF routing to split the flow to t going through u evenly along arcs leaving u.
This is the case if every arc in δ+(u) belongs to a shortest path from u to t. More precisely, if δ+(u) = {ai : 1 ≤ i ≤ p}, and
if Pi is one of the shortest paths from the tail of ai to t, for i = 1, . . . , p, then we want to set w′ such that

w′
ai

+w′(Pi) = w′
a j

+w′(Pj) 1 ≤ i, j ≤ p,

where w′(Pi) denotes the sum of the weights of the arcs belonging to Pi. A simple way of achieving this goal is to set

w′(a) =

{

w∗−w(Pi) if a = ai, for i = 1, . . . , p,
wa otherwise.

where w∗ = 1+maxi=1,...,p{w(Pi)}.

A drawback of this approach is that an arc that does not belong to one of the shortest paths from u to t may already be
congested, and the modifications of weights we propose will send more flow on this congested arc, an obviously undesirable
feature. We therefore decided to choose at random a threshold ratio θ between 0.25 and 1, and we only modify weights for
arcs in the maximal subset B of δ+(u) such that

wai +w(Pi) ≤ wa j +w(Pj) ∀i : ai ∈ B, j : a j /∈ B,

lw
a ≤ θ ca ∀a ∈ B,

where lw
a denotes the load on a resulting from weight vector w. The last relation implies that the utilization of an arc a ∈ B

resulting from the weight vector w is less than or equal to θ, so that we can avoid sending flow on already congested arcs.
In this way, flow leaving u towards t can only change for arcs in B, and choosing θ at random allows to diversify the search.

This choice of B does not ensure that weights remain below wmax. This can be done by adding the condition maxi:ai∈B w(Pi)−
mini:ai∈B w(Pi) ≤ wmax when choosing B.



The simplest local search heuristic is the descent method that, at each iteration, selects the best element in the neighborhood
and stops when this element does not improve the objective function. This approach leads to a local minimum that is often far
from the optimal solution of the problem, and heuristics allowing non-improving moves have been considered. Unfortunately,
non-improving moves can lead to cycling, and one must provide mechanisms to avoid it.

Our choice was to use hashing: hash functions compress solutions into single integer values, sending different solutions into
the same integer with small probability. We use a boolean table T to record if a value produced by the hash function h() has been
encountered. At the beginning of the algorithm, all entries in T are set to false. If w is the solution produced at a given iteration,
we set T (h(w)) to true, and, while searching the neighborhood, we reject any solution w′ such that T (h(w′)) is true. Checking
that a solution has been encountered is therefore performed in constant time. The hash function we used is described in [8].

3 Single link failures
The above heuristic has been designed to provide a weight setting for a single demand matrix and a fixed network. We now
consider the possibility of link failures. We define a state of the network as a subset S ⊆ A of arcs containing the arcs that are
operational. The states considered in this paper are the normal state A and the single link failure states A\{a} for each link a∈ A.
In SPF protocols, the network operator assigns a weight to each link, and shortest paths from each router to each destination are
computed using these weights as lengths of the links. These shortest paths are updated each time the network state changes. Given
a network state S, a weight setting w and a vector of arc capacities c, we denote by Φ(S,w,c) the cost of the routing obtained with
weight setting w in state S of the network, using the piecewise linear cost function described in the previous section.

We suppose that once the operator has fixed the set of OSPF weights, he does not want to change it whatever the state of the
network is. The possibility of getting a better routing in case of failures by allowing a few weight changes has been studied in
[10].

The cost function we use has been designed in such a way that it tries to keep the flow on each link below the capacity of that
link. This is an objective we want to maintain for each link failure. In the normal state, however, the operator usually wants the
flows to remain much more below the capacity, in order to be more robust in cases of increasing demand and to ensure capacity
will be available to perform the rerouting in case of failure. Let α be the maximal ratio of the capacity the network operator
wants to use in the normal state. In our experiments, we assumed α = 0.6. Therefore, in the normal state, the operator wants w
to minimize Φ(A,w,αc). We suppose here that the operator gives an equal importance to the quality of the routing in the normal
state and to its robustness (i.e. the quality of the routing in all the single link failure states). Moreover, we assume all the link
failures have the same importance, but it is trivial to extend our results by giving a weight to each link failure.

Putting it all together, we want to find a weight setting w∗ that solves

min
w

Ψ(w) :=
1
2

(

Φ(A,w,αc)+
1
m ∑

a∈A
Φ(A\{a},w,c)

)

(2)

where c is the capacity vector and m := |A| the number of links in the network. A brute force approach would be to use the heuristic
presented in the previous section to optimize Ψ(w). However, this would require the evaluation of all the m+1 scenarios for each
weight setting encountered, therefore increasing the computing time by a factor m (even with dynamic updates of shortest paths
and flows as proposed in [8]).

Our approach to reduce the computing time is the following. We hope that only a few link failures will be representative of
“bad cases” and will contribute for a large part of the total cost in (2). At each iteration, we maintain a list of critical links C and
only evaluate the cost function restricted to the corresponding states, i.e. we evaluate each weight setting w in the neighborhood
of the current iterate with the cost function

Ψ(w,C ) :=
1
2

(

Φ(A,w,αc)+
1
|C | ∑

a∈C
Φ(A\{a},w,c)

)

.

The heuristic starts with C = /0. It is essentially the same as in the previous section, adapted to optimize Ψ(w,C ), with the
addition that C is updated every T iterations. We update C as follows. Let u(a,w) be the maximum utilization with weight setting
w when arc a has failed, i.e.

u(a,w) = max
b∈A\{a}

l(b,w,a)

cb
,

where l(b,w,a) denotes the load on arc b with weight setting w when a has failed, and let u be the average maximum utilization
over all scenarios in the critical set, i.e. u := 1

|C | ∑a∈C u(a,w). We first choose the arc a not in the critical set that maximizes

u(a,w). If u(a,w) > u, we add a to C . Moreover, we want to keep C of small size. To this end, we fix a maximal size K and we
remove the arc that minimizes u(a,w) over C from the critical set each time its size exceeds K.



InvCap FT Robust-FT
Normal Worst Normal Worst Normal Worst

Network Ψ Φ u Φ u Ψ Φ u Φ u Ψ Φ u Φ u
HIER-50-148-2488 1700 3384 1.31 303.5 1.61 0.457 0.630 0.67 11.98 1.35 0.186 0.248 0.64 0.184 1.04
HIER-100-280-1934 16.81 33.45 0.87 10.41 1.34 0.779 0.174 0.64 1.384 1.24 0.124 0.136 0.56 1.233 1.23

RAND-100-403-29813 17.56 34.98 0.86 0.464 1.16 0.321 0.530 0.67 0.608 1.20 0.178 0.283 0.57 0.127 0.90

Table 1: Numerical results

4 Preliminary numerical results
In Table 1, we present some results obtained with the heuristic described in this paper. These are preliminary results and a fine
tuning of the parameters of the heuristic as well as more extensive testing are under way. Three networks coming from [8] are
used. Two of them are 2-level graphs (HIER-) and one pure random graph (RAND-). We also performed some experiments on
AT&T’s IP backbone, but these could not be reproduced here for proprietary reasons. However, results obtained were similar to
those presented here.

The methodology used to build the graphs and the demand matrices is widely discussed in [8, 10]. The numbers after the
type of graph denote the number of nodes, the number of arcs and the total demand. The level of demand was chosen such that
the maximum utilization obtained with the original heuristic for optimizing the weights is close to the critical level α for the
normal state. In the table, InvCap denotes Cisco’s recommended strategy of setting the weight of an arc inversely proportional to
its capacity, FT denotes the original weight setting heuristic of [8, 9] and Robust-FT is the heuristic presented in this paper. We
performed 500 iterations of Robust-FT, with α = 0.6, T = 10 and K = 5. The starting point for the optimization was InvCap.
For each heuristic, Ψ is the total cost (2), and Φ and u are the cost and the maximum utilization, given for the normal state and
the worst link failure. From these results, it clearly appears that both FT and Robust-FT outperform InvCap. Moreover, Robust-
FT does pretty well in improving both the total cost and the worst failure case, as well as the normal state. Remark that FT was
applied to optimize Φ without scaling the capacities, while Robust-FT tries harder to push the maximum utilization below α. This
explains why Robust-FT improves on the normal state, even if one could have expected a deterioration due to the simultaneous
optimization of failure cases.

The computing times for 500 iterations of Robust-FT were of the same magnitude as performing 5000 iterations of FT. As
Robust-FT outperforms FT while ensuring a more robust solution in cases of failure, we think it is a powerful tool for traffic
engineering in IP networks.
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de Bruxelles, 2000. http://smg.ulb.ac.be/Preprints/Fortz00 21.html.

[9] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. In Proc. 19th IEEE Conf. on Computer
Communications (INFOCOM), pages 519–528, 2000.

[10] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing world. IEEE Journal on Selected Areas in Com-
munications, 20(4):756–767, 2002.



[11] J. T. Moy. OSPF version 2. Network Working Group, Request for Comments: 1247, http://search.
ietf.org/rfc/rfc1247.txt, July 1991.

[12] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocal. Addison-Wesley, 1999.

[13] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot. IGP link weight assignment for transient link failures. to
appear in ITC18, Berlin (Germany), 31 August - 5 September 2003.

[14] M.A. Rodrigues and K.G. Ramakrishnan. Optimal routing in data networks, 1994. Presentation at International Telecom-
munications Symposium (ITS), Rio de Genero, Brazil.


