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Abstract

Principal Component Analysis has demonstrated promise in its ability to identify the

low-dimensional chemical manifolds of turbulent reacting systems by providing a basis

for the a priori parameterization of such systems based on a reduced number of parame-

terizing variables. Previous studies on PCA have only mentioned the importance of data

pre-processing and scaling on the PCA analysis, without detailed consideration. This pa-

per assesses the influence of data-preprocessing techniques on the size-reduction process

accomplished through PCA. In particular, a methodology is proposed to identify and

remove outlier observation from the datasets on which PCA is performed. Moreover, the

effect of centering and scaling techniques on the PCA manifold is assessed and discussed

in detail, to investigate how different scalings affect the size of the manifold and the

accuracy in the reconstruction of the state-space. Finally, the sensitivity of the chemical

manifold to flow characteristics is considered, to investigate the invariance of the man-

ifold with respect to the Reynolds number. Several high-fidelity experimental datasets

fro the TNF workshop database are considered in the present work, to demonstrate the

effectiveness of the proposed methodologies.
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1. Introduction

Recently, principal component analysis (PCA) was introduced as a method of iden-

tifying manifolds in turbulent combustion [? ]. PCA has also been used by others to

analyze combustion data [? ? ? ], but for different purposes - see [? ] for a discus-

sion. The merits of PCA in the context of modeling turbulent reacting flows have been

demonstrated for identifying low-dimensional manifolds underlying the thermo-chemical

state [? ? ] and toward the development of PCA-based combustion models [? ? ].

A particularly noteworthy feature of PCA-based models is the possibility of obtaining

low-dimensional parameterizations satisfying well-defined error bounds. Previous studies

on PCA [? ? ] have mentioned the importance of pre-processing data prior to applying

PCA, but the effects of pre-processing strategies have not been assessed in detail. In

particular, the effect of potential outlier observations as well as the role of centering and

scaling on the principal component structure has not been addressed. The objective of

the present paper is to review the PCA procedure and highlight the role of the available

pre-processing techniques on the robustness of PCA and its ability to identify a low-

dimensional representation of a thermo-chemical manifold. The sensitivity of PCA to

modifications of the database from which the low-dimensional basis is extracted is also

considered, to investigate the universality of the PCA method.

Section 2 provides a review of PCA as well as a discussion on outlier removal (2.1),

data centering and scaling (2.2), and dimension reduction (2.3). Section 3, applies PCA to

several experimental datasets from the Sandia non-premixed flame datasets, to illustrate

the effect of pre-processing and scaling on the PCA reduction. Finally, the invariance of

the chemical manifold with respect to the Reynolds number is demonstrated for a set of

piloted flames at different Reynolds number.

2. Principal Component Analysis

Principal Component Analysis (PCA) provides a rigorous mathematical formalism for

the identification of the most active directions in multivariate datasets. PCA identifies

correlations among the variables defining the state space. As a result, a new coordinate
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system is identified in the directions of maximal data variance, which allows less impor-

tant dimensions to be eliminated while maintaining the primary structure of the original

data. Details of the PCA reduction have been already provided [? ]. Here, the PCA

concept will be reviewed briefly whereas the impact of pre-processing and post-processing

on PCA results will be discussed in detail.

In PCA, n observations of Q variables are assigned to an (n×Q) matrixX whose rows

represent individual observations of all Q variables x. For the combustion applications

considered in this paper, the Q columns in X are taken to be the temperature and species

mass fractions1. PCA projects x onto a rotated basis obtained from the eigenvalue

decomposition of the (Q×Q) covariance matrix,

S =
1

n− 1
XTX = ALAT , (1)

where A and L are the eigenvectors and eigenvalues of S. The rotated basis, defined

by the eigenvectors A, may be truncated to retain the most energetic directions (those

columns of A associated with the largest eigenvalues of L), providing the non-square

matrix Aq on which the original data are projected to obtain the principal components

(PC), Zq,

Zq = XAq. (2)

Eq. (2) can be inverted to obtain an approximate reconstruction of the original (n×Q)

dimensional sample:

Xq = ZqA
T
q . (3)

Note that (3) is a linear reconstruction. Nonlinear reconstructions can provide more

accurate mappings from Zq to Xq [? ]. The PCA reduction process is represented

schematically in Figure 1.

Several procedures are required prior to performing the PCA reduction process (Fig-

ure 1):

1Formally, pressure should also be included, but for low mach number flows in open domains, it is
safely neglected.
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Figure 1: PCA reduction process.

1. Outlier removal

Experimental datasets usually contain a few unusual observations which can strongly

affect the data covariance structure and, therefore, the structure for the principal

components. If we refer to a one-dimensional problem, the outliers can be classified

as those observations which are either very large or very small with respect to the

others. In high dimensions, there can be outliers that do not appear as outlying

observations when considering each dimension separately and, therefore, they will

not be detected using univariate criteria. Thus, a multivariate approach must be

pursued. PCA itself represents an ideal tool for the identification and removal of

outlier observations.

2. Centering and scaling

Data are usually centered and scaled before PCA is carried out. Centering repre-

sents all observations as fluctuations, leaving only the relevant variation for analysis.

Scaling is a crucial operation when analyzing the thermochemical state of a react-

ing system since temperature and species concentrations have different units and

vary over different scales. The choice of scaling significantly affects the subsequent

PCA analysis: different scalings allow to emphasize correlations among different

groups of state variables, providing an effective tool for targeting the PCA analysis

on the variables which are most relevant for an investigated application.

Section 2.1 presents a technique to identify outliers, while §2.2 addresses centering and
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scaling.

2.1. Outlier Detection and Removal with PCA

The usual procedure for outlier detection in multivariate data analysis is to measure

the distance of each realization i of the Q observed variables, from the data center, using

the so called Mahalanobis distance:

DM =
(
X−X

)T
S−1

(
X−X

)
, (4)

where X is a matrix containing the average values, x̄j = 1
n

∑n
i=1 xij , of the original vari-

ables. The observations associated with large values of DM are classified as outliers and

then discarded. The Mahalanobis distance can be related to the principal components: it

can be shown, in fact, that the sum of squares of the PC, standardized by the eigenvalue

size, equals the Mahalanobis distance for observation i:

Q∑
k=1

z2ik
lk

=
z2i1
l1

+
z2i2
l2

+ . . .+
z2iQ
lQ

= DM . (5)

This realization can be exploited for building a robust methodology based on PCA for

outlier identification and removal. As mentioned previously, the first few principal com-

ponents have large variances and explain most of the variation in X. Therefore, those

components are strongly affected by variables with relatively large variances and covari-

ances. Consequently, the observations that are outliers with respect to the first few

components usually correspond to outliers on one or more of the original variables. On

the other hand, the last few principal components represent linear functions of the origi-

nal variables with minimal variance. These components are sensitive to the observations

that are inconsistent with the correlation structure of the data but are not outliers with

respect to the original individual variables. Based on the above considerations, the fol-

lowing detection scheme can be proposed, as suggested by [? ]:

1. Multivariate trimming. A fraction γ (typically 0.01%-0.1%) of the data points

characterized by the largest value of DM are classified as outliers and removed. X

and S are then computed from the remaining observations. The trimming process

can be iterated to ensure that X and S are resistant to outliers.
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2. Principal components classifier (PCC). The PCC consists of two functions, one

from the major,
∑q

k=1
z2ik
lk
, and one from the minor principal component,

∑Q
k=Q−r+1

z2ik
lk
.

The first function can easily detect observations with large values on some of the

original variables; in addition, the second function helps detect the observations

that do not conform to the correlation structure of the sample. The number of ma-

jor components, q, is determined by retaining the minimum number of PC required

to account for at least 50% of the original data variance, while r is chosen so that

the minor components used for the definition of the PCC are those whose variance

is less than 0.2 · l, where l is the average value of the eigenvalues of S. This ensures

that the selected minor components account for a very marginal variance and they

only represent linear relations among the variables. Based on the PCC definition,

an observation Xi is classified as an outlier if:

∑q
k=1

z2ik
lk
> c1 or

∑Q
k=Q−r+1

z2ik
lk
> c2, (6)

where c1 and c2 are chosen as the 99th quantile of the empirical distributions of∑q
k=1

z2ik
lk

and
∑Q

k=Q−r+1
z2ik
lk
.

The convergence of the algorithm is verified by looking at the third and fourth order

moments of the major principal components. Since the structure of the data is frequently

non-normal, the skewness and kurtosis are monitored from one iteration to the other and

convergence is achieved when the rate of change of such quantities falls below an a priori

defined tolerance, (e.g., 10−6) or a maximum number of iterations is reached.A schematic

representation of the outlier removal process is shown in Figure 2.

An example of the outlier detection scheme applied to a dataset consisting of 62,766

observations of 10 state variables [? ] is shown in Figures 3a and 3b. Outliers were

artificially introduced in the experimental data: specifically, 1000 observations have been

generated from a matrix (1000× 10) of random numbers between 0 and 1 and scaled

using the standard deviation, sj , of the variables xj . The effect of the outliers on the

PCs is very clear from Figure 3a. The introduced outliers (black circles) are mostly

outliers with respect to the original variables and they are visible in the plot of first two
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Figure 2: Outlier identification and removal.

PCs: a small cluster of points, separated from the majority of observations, appears in

the plot of the first and second PC scores. They are also apparent (although less so)

in the plot of the last and second-last scores as observations scattered around the main

cloud of points. If the outlier detection scheme is applied (Figure 3b), the introduced

outliers are completely removed; in addition, outliers present in the original experimental

dataset, affecting the first and last PC scores (univariate and multivariate outliers), are

also detected with the procedure described. A closer look at Figure 3b also indicates that

the elimination of the outliers results in a slight modification of the first two PC scores,

which are rotated counter-clockwise and compressed (especially in the z2 direction).

Outliers must be treated with care as they can strongly affect the covariance matrix,

thus leading to the identification of false PCs.

2.2. Centering and Scaling

When the variables are centered and scaled, a reduced variable can be defined as:

x̃j =
(xj − xj)

dj
, (7)

where dj is the scaling parameter for variable xj . PCA, as discussed above, is applied on

x̃ rather than x. Centering is always applied in conjunction with scaling. We consider

the following scaling methods:

1. Auto scaling. Also called unit variance scaling, auto scaling uses the standard

deviation, sj , as the scaling factor for each xj . After auto scaling, all the elements
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(a) Principal component scores showing the original data (red points) and
artificial outliers (black circles).

(b) Principal component scores after outlier removal.

Figure 3: Demonstration of removal of outliers artificially inserted into a dataset and the
effect on the resulting PCA structure.
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of X have a standard deviation equal to one and therefore the data is analyzed on

the basis of correlations instead of covariances.

2. Range scaling. Range scaling adopts the difference between the minimal and the

maximal value, (max (xj)−min (xj)), as scaling factor. A disadvantage of range

scaling with respect to other scaling methods is that only two values are used to

estimate the range, while for the standard deviation all measurements are taken into

account. This makes range scaling more sensitive to outliers (see §2.1). To increase

the robustness of range scaling, the range could also be determined by using robust

estimators for maximum and minimum sample values, or after outliers have been

removed.

3. Level scaling. The mean values of the variables, xj , are used as scaling factors.

As with range scaling, level scaling can be affected by outliers. Therefore, a more

robust estimator of the mean (the median) could be used or the mean could be

determined after outlier removal. Level scaling can be used when large relative

changes are of specific interest. However, in the case of the thermochemical state

of a system, this could exaggerate the role of chemical species which appear in very

small concentrations (e.g. radicals).

4. Max scaling. The variables are normalized by their maximum values, max (xj), so

that they are all bounded between zero and one. As for the range and level scaling,

a robust estimator of maximum values or a procedure for outliers removal should

be employed.

5. VAST scaling [? ]. VAST is an acronym for variable stability scaling and it is an

extension of auto scaling. It focuses on variables which do not show strong variation,

using the product between the standard deviation and the so-called coefficient of

variation, defined as sj/xj. Such scaling results in a higher importance for variables

with a small relative standard deviation.

6. PARETO scaling [? ]. PARETO scales each variable by the square root of its stan-

dard deviation. As a consequence, PARETO gives the variable under evaluation a

variance equal to its standard deviation instead of unit variance, which is used for
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auto scaling.

The impact of the different scaling methods will be discussed for several datasets in §3.

2.3. Choosing a Subset of Principal Components

The major objective of PCA is to replace the Q elements of X with q < Q principal

components, while minimizing information loss. The most obvious criterion for choosing

q is to select a cumulative fraction of the total variance that the PCs have to account

for. The required number of PCs, q, is then the smallest value of q for which this chosen

percentage is exceeded. The cumulative variance in the data can be obtained as

Q∑
k=1

lk =

Q∑
j=1

var (xj) . (8)

Then the fraction of the total variance accounted for by retaining q of the Q eigenvectors

can be defined as:

tq =

∑q
k=1 lk∑Q
k=1 lk

. (9)

Importantly, it can be shown that the definition of tq is equivalent to the so-called R2

value,

R2 = 1−
∑n

i=1(xq,ij − xij)2∑n
i=1(xij − xj)2

, (10)

where xq,ij is the reconstructed ith observation of xj . Following the derivation of tq, an

appropriate measure of lack-of-fit of the rank q linear approximation of X can be related

to the size of the discarded eigenvalues, i.e.

εj =

Q∑
k=q+1

lk =
n∑

i=1

Q∑
j=1

(xq,ij − xij)2 . (11)

For a given number (q) of retained components, it is also possible to determine the

variance accounted for each variable by the retained eigenvectors as:

tq,j =

q∑
k=1

(
ajk
√
lk

sj

)2

, (12)

where ajk is the weight of the jth variable on the kth eigenvector of S.
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Figure 4: Scree plot for the determination of the number of principal components. The
left frame shows the eigenvalue magnitudes (log scale) while the right frame shows eigen-
value magnitudes (linear scale) along with the associated variance in the data recovered
from retaining the given number of eigenvalues.

A less rigorous method to identify the number of retained PCs uses a scree plot, as

shown in Figure 4 for the jet in hot co-flow dataset, presented in section 3. This is a

simple plot of the eigenvalue magnitudes sorted in descending order against their indexes,

and provides a graphical interpretation of the information encoded in each dimension.

As previously observed [? ? ], there is an exponential decay in the information encoded

in each succeeding dimension.

3. Results

High fidelity experimental data provided under the framework of the Workshop on

Measurement and Computation of Turbulent Non-premixed Flames (TNF workshop)

[? ] are analyzed in the present paper. In particular, the following TNF datasets are

employed:

• Turbulent non-premixed CO/H2/N2 (0.4/0.3/0.3 by vol.) jet flame [? ]. This flame

represents an ideal test-case due to its simplicity in terms of turbulence/chemistry

interactions.
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• Flames C, D E and F, a set of four piloted CH4 jet flames [? ], are characterized by

an increasing Reynolds number and exhibit increasing non-equilibrium phenomena,

including local extinction and re-ignition.

• The jet in hot co-flow (JHC) burner [? ], designed to emulate MILD conditions. It

consists of a central fuel jet (80% CH4 and 20% H2) within an annular co-flow of

hot exhaust products from a secondary burner mounted upstream of the jet exit

plane. O2 in the co-flow is controlled at three different levels, 3, 6 and 9 mol%,

while the temperature and exit velocity are kept constant.

• A bluff-body stabilized flame [? ? ]. The experimental data used in this paper,

designated as HM1, refer to an equimolar mixture of CH4/H2 with a fuel velocity

of 118 m/s and coflow air velocity of 40 m/s.

“Instantaneous” (as opposed to ensemble-averaged) measurements were used for all anal-

yses presented here.

It should be emphasized that experimental data are “incomplete” in the sense that

we do not have simultaneous measurements of all species and temperature, as is possible

from computationally obtained data (from, e.g., DNS). In previous studies that employed

computational data, we employ all species and temperature in the analysis. However, for

the purposes of this paper, this is not an issue, since we are focused on data preprocessing

strategies.

In the following, the effect of data pre-processing on PCA results will be discussed in

detail, pointing out the possible impact of outliers on PC determination and the impact

of scaling methods on the PC structure. Moreover, the PCA structure will be analyzed

and processed with PC rotation, to provide a physical interpretation for the extracted

components.

3.1. Effect of Outliers on the PCA Structure

Outlier detection and removal is particularly important when using PCA with ex-

perimental data. If outliers are not removed, the resulting PCA can show significant

sensitivity to their existence, thereby complicating interpretation of the PCA.
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Figure 5: Scatter plot of the first two (left frame) and last two (right frame) principal
components from the JHC dataset before (black circles) and after (red circles) outlier
removal. Scaling method: auto scaling. Trimming fraction, γ: 0.1%. Outliers are
indicated by the blue circle.

Figure 5 shows the effect of the outlier removal process on the principal component

structure for the JHC dataset, scaled using auto scaling and a trimming fraction γ

0.5%. In contrast to the example discussed in §2.1, the dataset is not augmented with

artificial outliers, but processed to identify the existence of experimental measurements

inconsistent with the primary structure of the data.

It can be observed that, using the original data without any pre-processing, the scat-

ter plot of the first two principal component scores show the existence of observations

which strongly differ from the main multi-variate structure of the data. Those can be

classified as univariate outliers (see §3.1), as they correspond primarily to the compo-

nents associated with the largest eigenvalues. Mathematically, those observations are

flagged as outliers because, as explained in §2.1, the PC classifier related to the first few

PCs is larger than the 99th quantile of the actual PC distribution, indicating that the

scores associated with those observations largely deviate from the main data structure.

Multivariate outliers are also present in the original dataset, as indicated by the plot of

the last two principal components.

To confirm the existence of univariate outliers, NO mass fraction is plotted against
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(a) Original data from 6% O2 case. (b) Retained data (red points) and removed outliers
(black circles) for 3% O2 case. Trimming fraction, γ:
0.1%.

Figure 6: Scatter plot of NO mass fraction as a function of the mixture fraction. Effect
of outlier removal for the 3% O2 dilution case. JHC dataset [? ].

the mixture fraction, ξ, for the original data, at 3% and 6% O2 mass fraction in the

co-flow. Figure 6 shows, for the 3% O2 case, unphysically high concentrations of NO

on the oxidizer side (ξ = 0), which are not observed for the other dilution cases (e.g.,

6% O2, Figure 6a) and that determine the extreme score values observed in Figure 5.

Figure 6b points out that some “feasible” observations are also removed during the outlier

detection process (black circles behind red dots). This does not affect the statistical value

of the analysis since only approximately 1500 out of more than 60,000 observations are

removed, and only a few hundred of those are in the feasible NO range.

The eigenvectors (A) of the covariance matrix provide insight into the effect of outliers

on the principal components. Figure 7 shows a comparison between the first two PCs

obtained for the JHC dataset with (gray) and without (black) outlier observations. In

particular, the figures graphically indicate the weight of the original variables on the first

two components. From Figure 7, it is clear that, for the JHC dataset, outlier removal

results in the chemical species NO being eliminated from the first two PCs, while the

remaining weights in A remain largely unaffected. This confirms, as indicated by Figure

6, that the outliers identified in Figure 5 are related to NO measurements, leading to the

overestimation of such species in the PC structure when the dataset is not pre-processed.
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Figure 7: Weights of the original variables on the first (a) and second (b) principal
components before (black bars) and after (gray bars) outlier removal for the JHC data.
Scaling method: auto scaling. Trimming fraction, γ: 0.1%.

The results shown above indicate the strong relevance that outlier observations,

caused by measurement errors, may have on the covariance structure of the data, con-

firming the need for effective outlier removal tool, as the one employed here and based

on PCA. The importance of an effective pre-precessing of the data is not limited to the

application of PCA but it should aways be considered, whenever PCA is used to extract

information about the system behavior.

3.1.1. Effect of the Threshold Parameter, γ

The trimming fraction γ (see §2.1) plays a critical role in the outlier removal process:

large values of γ may result too many samples being eliminated, resulting in an unphysical

modification of the PC structure. Figure 8 shows the number of removed points as a

function of γ for the HM1, 3% O2 JHC and flame F datasets. Figure 9 shows the effect

of γ on the structure of the first PC for the 3% O2 JHC (9a), flame F (9b) and HM1 (9c)

datasets. The PC structure is relatively constant for γ < 0.05%, but begins to change

noticably for γ > 0.1%. Flame F and the HM1 were inluded in such analysis with the

JHC dataset as they show specific features which can help identifying appropriate ranges

for γ, to avoid over-agressive observation removal during the outlier identification process.

Indeed, those systems show singificant extinction: flame F is close to global extinction [?

] and the HM1 bluff-body stabilized flame is known to show intermittent local extinction

being at 50% blow-of conditions [? ? ] Figure 9c indicates γ < 0.05% leads, in all cases,
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Figure 8: Effect of γ on the number of points removed during the outlier identification
process for the 3% O2 JHC, flame F and HM1 datasets. Scaling method: auto scaling.

to a PC structure which is unaffected by outlier removal, for all analyzed datasets.

Figure 10 illustrates the effect of over-agressive outlier removal (γ = 1%) on the tem-

perature distribution for the JHC and flame F datasets. Over-agressive outlier removal

eliminates observations corresponding to extinction for the JHC dataset while eliminat-

ing fully-burning regions for the flame F datset. A similar effect (not shown here) is

observed for the HM1 bluff-body dataset, where large γ also results in removal of points

corresponding to extinction. Figure 9a indicates that the corresponding PC structure is

significantly altered in both cases when the choice of γ is too large.

Figures 9b and 11 indicate that, for flame F, the outlier removal process with an

appropriate choice for γ does not significantly impact the PC structure, although some

of the realizations inside the main “data cloud” are removed because they exceed the

99th quantile of the experimental distribution of the first and last eigenvectors. As a

consequence, the PC determined before and after the outlier removal procedure show

very minor differences among the weights, as shown by Figure 9b.

Based on the observations above, we recommend 0.01% < γ < 0.05%, which effec-

tively removes outliers but does not remove enough physically meaningful datapoints to

alter the PC structure.
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Figure 9: Effect of the trimming fraction γ on the structure of the first PC. Scaling
method: auto scaling.
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(a) JHC dataset (b) HM1 dataset

Figure 10: Effect of the trimming fraction γ on the temperature distribution (plotted
against the mixture fraction, ξ) for the JHC and flame F datasets.

Figure 11: Scatter plot of the first and last two principal components from flame F before
(black circles) and after (red circles) outlier removal. Scaling method: auto scaling.
Trimming fraction, γ: 0.5%.

18



3.2. Effect of Scaling

We now consider the effect of scaling strategies outlined in §2.2 on the PCA reduc-

tion, focusing on the Sandia CO/H2 jet flame dataset. Figure 12 shows the normalized2

eigenvalue size distribution obtained by applying the different scaling options. It in-

dicates that the VAST and PARETO scaling methods result in larger weights for the

first few eigenvalues while the other scaling options are all very similar in their eigen-

value size distribution. This is a consequence of the high importance given by the VAST

and PARETO scaling methods to temperature over the chemical species mass fractions.

This effect is accentuated for the PARETO scaling, where the square root of the stan-
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Figure 12: Ordered normalized eigenvalue magnitudes for the CO/H2 jet flame dataset
for various scaling strategies.

dard deviation is used to scale variables: this enhances the relevance of temperature

with respect to the other variables defining the state-space. Indeed, the application of

PARETO scaling results in temperature being the variable carrying most of the data

variance and is, therefore, equivalent to forcing the first principal component to align

with the temperature. Such behavior is a consequence of the size-dependency of PCA for

non-homogeneous datasets (where the variables have very different scales) as is charac-

teristic of combustion. Therefore, the choice of such scaling does not appear very useful

for the analysis carried out in the present paper, as it is equivalent to an a priori choice

2The eigenvalues obtained using different scaling methods are normalized between 0 and 1, to allow
comparison of different pre-processing techniques.
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of the PC. However, PARETO scaling can be extremely appealing for the definition of

reduced-order combustion models, as the choice of temperature within the set of PC has

a dramatic influence on the model’s accuracy [? ].

Table 1 shows tq and tq,j (see Eqs. (9) and (12)) obtained by applying range, max,

VAST and level scaling to the CO/H2 dataset. Results indicate that auto scaling is the

only scaling technique that provides a uniform reconstruction of the state variables (for

q = 3), as evidenced by relatively high values of tq,j for all variables. Range and max

scaling, whose behavior is very similar (as expected), perform slightly better than auto

scaling for most of the main species and temperature. However, they cannot properly cap-

ture NO variation, even with q = 3. Similarly, VAST scaling concentrates on extremely

stable variables such as N2, but fails to recover minor species such as OH properly. This

effect is accentuated in PARETO scaling, which clearly emphasizes main species and

temperature. The higher values of tq given by range, max, VAST and PARETO scal-

ing, compared to auto scaling, are due to the higher variance explained for the major

variables. However, these scaling approaches do not preserve features related to minor

species such as NO and OH. The variance accounted for OH and NO by auto scaling is

up to 16% and 25% higher, respectively, than that explained by the other scaling meth-

ods. On the other hand, level scaling focuses on variables characterized by large changes

(relative to their mean) and leads to an overestimation of the role of minor species in

the PCA reduction. Therefore, the reconstruction of minor species such as OH and NO

is very accurate, but major species such as H2O are poorly recovered. On the basis of

the described sensitivity, it becomes clear how scaling can be constructively employed

to target the desired accuracy of different subsets of state variables. In particular, auto

scaling appears very well-suited when an exploratory analysis on the chemical manifold

should be performed, whereas range, max and vast scaling are useful for capturing the

principal features of the systems and the behavior of the main chemical species. This

appears very appealing for building reduced-order models of combustion systems to be

used in optimization studies.
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Table 1: Total, tq, and individual variance, tq,j , (see Eqs. (9) and (12)) accounted for the
CO/H2 jet flame dataset, as a function of the number of retained PC, q, and the scaling
option used.

Auto (std) Range Max VAST Level PARETO
q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

T 0.971 0.973 0.983 0.991 0.979 0.990 0.992 0.992 0.896 0.943 1.000 1.000
YO2 0.986 0.986 0.994 0.994 0.997 0.997 0.975 0.978 0.942 0.961 0.990 0.991
YN2 0.986 0.986 0.981 0.981 0.971 0.971 1.000 1.000 0.965 0.970 0.989 0.994
YH2 0.968 0.969 0.962 0.963 0.957 0.960 0.945 0.947 0.991 0.991 0.965 0.967
YH2O 0.930 0.936 0.945 0.945 0.944 0.944 0.940 0.978 0.870 0.884 0.917 0.968
YCO 0.994 0.994 0.995 0.997 0.990 0.994 0.979 0.980 0.987 0.987 0.999 0.999
YCO2 0.973 0.977 0.979 0.987 0.977 0.988 0.981 0.985 0.908 0.959 0.967 0.993
YOH 0.738 0.940 0.731 0.991 0.745 0.992 0.660 0.687 0.870 0.993 0.554 0.567
YNO 0.772 0.930 0.728 0.795 0.729 0.802 0.744 0.970 0.701 0.926 0.759 0.813
tq 0.924 0.966 0.946 0.975 0.942 0.975 0.992 0.996 0.949 0.973 0.999 0.999

3.3. PC sensitivity to system variability

We now consider the question of how sensitive a PCA is to the characteristics of a

system such as Reynolds number. To investigate this, the four piloted jet flames (Sandia

flames C to F) are considered. These flames have increasing Reynolds numbers that

lead to significant extinction in flames E and F, which is near blow-out. Given that

significantly different regions of state space are realized in these flames (e.g. extinction),

one may not think that the PCA structure should be consistent across all flames. Figure

13 shows the weights of the original variables on the first four PCs (columns of A) for

Sandia flames C, D, E and flame F. The PC structure remains very similar for the first

four PCs. The possible exception is weights on intermediate species such as CO, H2 and

OH, which show some variation in their contributions to the eigenvectors across the range

of Reynolds numbers. This is a consequence of the increasing degree of extinction which

characterizes flames C to F: the OH distribution shows a larger scatter as the Reynolds

number is increased. As a result, OH contribution to the covariance matrix is decreased

(OH is less correlated with the other state parameters) and the corresponding weights

on the PC is reduced.

Although Figure 13 indicates that the PCA structure is largely unchanged, the ques-
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Figure 13: Structure of the first four PC for PCA applied to flames C, D, E and F in the
TNF series [? ]. Scaling criterion adopted: auto scaling.
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tion remains of how sensitive the PCA reconstruction of state variables is to slight vari-

ation in the PCA structure. In other words, can the low-dimensional representation

obtained via PCA for one of the four systems can be exploited for the others, without

performing a new decomposition? This question is crucial to assess the universality of the

PCA approach for identifying manifolds in reacting systems. To answer this question, a

PCA was performed for flames C and F and employed to reconstruct the other datasets.

This implies projecting the scores of each system onto a single PC basis (C or F):

Xq,i = Zq,iA
T
q,k k = C, F. (13)

Table 2 lists tq,i (the R2 values for a linear reconstruction) for

1. flames C-F using PCA on each dataset (labeled as tq,i)

2. flames C-E using the PCA obtained from flame F (labeled as tFq,i).

3. flames D-F using the PCA obtained from flame C (labeled as tCq,i)

Results indicate that the low-dimensional representation found for flame F provides a

very satisfactory representation of the other systems. In all cases, the relative error with

respect to an optimal reconstruction (tq,i versus tFq,i) is less than 1%. When the basis

found for flame C is employed, a very interesting result is observed: the reconstruction of

most state variables slightly improves and the accuracy in NO reconstruction decreases.

This is probably due to the increasing degree of extinction determined by the increase

of Re, which leads to a large variability of NO species, as shown in Figure 14. As a

consequence, the basis identified directly from the flames reflect the major variability of

NO, leading to larger weights on the first components. This is not the case when the

basis is extracted from flame C, leading to less accurate NO predictions.

3.3.1. Effect of Scaling on Manifold Invariance

For completeness, we also consider the effect of scaling on the manifold invariance.

Figure 15 shows the standard deviation of the first PC weights on each original variable

considering PCA performed on flames C, D, E and F independently with different scaling

methods. Large standard deviations indicate an alteration in the PCA structure across
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Table 2: Individual variance, tq,j , accounted for the Sandia flame C, D, E and F datasets
by the PCA reduction, as a function of the number of retained PCs, q. Note that tFc,i and
tCq,i refer to the accuracy by which variables are reconstructed using the PCA obtained
for flame F and flame C, respectively.

tq,i (%) tFq,i (%) tCq,i (%)

C D E F C D E D E F
T 0.985 0.985 0.976 0.971 0.982 0.981 0.974 0.984 0.977 0.974
YO2 0.987 0.986 0.980 0.979 0.983 0.983 0.979 0.986 0.980 0.977
YN2 0.982 0.982 0.980 0.980 0.983 0.981 0.980 0.981 0.979 0.979
YH2 0.975 0.969 0.964 0.970 0.973 0.966 0.966 0.966 0.964 0.965
YH2O 0.989 0.989 0.986 0.984 0.987 0.986 0.984 0.988 0.985 0.984
YCH4 0.987 0.987 0.984 0.984 0.986 0.985 0.984 0.986 0.985 0.985
YCO 0.972 0.968 0.962 0.969 0.970 0.963 0.962 0.964 0.962 0.970
YCO2 0.987 0.986 0.976 0.974 0.983 0.980 0.975 0.985 0.977 0.975
YOH 0.999 0.999 0.995 0.978 0.990 0.990 0.984 0.999 0.999 0.998
YNO 0.945 0.932 0.887 0.892 0.942 0.931 0.895 0.933 0.877 0.850

Figure 14: NO distribution with increasing Reynolds number (from left to right) for
flames C-F.
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Figure 15: Standard deviation of the weights on the first principal component across
flames C-F when applying different scaling methods.

flames C-E when using the given scaling method. In all cases, there is not a significant

variation in the PC structure (with the standard deviation remaining below 0.04 in all

cases), but they appear extremely stable for VAST and PARETO scaling methods, which

emphasize major and stable variables of the state-space.

The results shown in this section indicate the potential of exploiting a PCA-reduced

representation even when the system characteristics are modified. In particular, the

relative independence of the basis on the Reynolds number indicate the invariability of

the manifold in a range of operating conditions. Nevertheless, further study considering

more systems over wider ranges of Re is warranted before concluding that PCA is entirely

independent of Re.

4. Conclusions

PCA has recently been proposed as a technique to identify correlations among the

multivariate datasets ubiquitous to turbulent combustion. These correlations imply the

existence of manifolds in the chemically reactive systems, and PCA has shown promise

in identifying these manifolds [? ? ? ? ]. This paper has explored the details of data

pre-processing for use in PCA. Specifically, scaling and centering the data as well as

outlier removal have been discussed.

The existence of outliers in the dataset can significantly alter the determination of

the PC structure and this can lead to the overestimation of the role of specific variables,

or sets of variables, for which outlier observations exist. A method based on PCA has
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proved very satisfactory for the elimination of the observations which differ from the

main multi-variate structure, based on PC classifier built from the first and last few PC,

respectively. The effectiveness of the approach was proven for a jet in hot co-flow dataset,

and results indicate that outlier removal does not alter the PC structure of outlier free

datasets.

The choice of scaling in particular has a significant impact on the resulting PCA

structure by altering the relative importance of various species and temperature. Indeed,

different scaling choices may be made depending on the goal of the resulting PCA to

optimize the reconstruction of specific classes of state variables. In particular, auto-

scaling appears the best option where a balanced reconstruction of the state-space is

required for exploratory analysis, whereas level scaling enhances the role of minor species.

All the other tested scalings (range, max, VAST) appear ideal for the optimization of

stable and major species.

Finally, for the TNF flame datasets, we have demonstrated that the PCA structure

remains nearly invariant with Reynolds number across the range from flame C to flame

F. This observation is further substantiated by the fact that reconstructing flame C data

from a PCA obtained on flame F (or vice-versa) is nearly as accurate as reconstructing

data from a PCA obtained directly on that dataset.
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