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Abstract

Approximate factorizations are probably the most powerful preconditioners at the present time in the context of

iterative solution methods for FE structural analysis. In this contribution we focus on some aspects of the reduction
method proposed previously, which allow the use of perturbed approximate factorizations. In particular, we show
that it is not suitable for systems arising from discretizations with plate or shell elements. In contrast, corrected
incomplete Cholesky preconditioners are shown to exhibit a much better convergence for such systems. # 1999

Civil-Comp Ltd and Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many iterative solvers for FE structural analyses

have been experienced during the last few years. They

are all based on the preconditioned conjugate gradient

method because of its optimal speed of convergence.

The preconditioner has, however, to be carefully cho-

sen to avoid unpredictable behaviours or even non-

convergence. Nevertheless, iterative solution pro-

cedures are gaining popularity and interest amongst

FE software users due to their small memory require-

ments: some of the popular direct solvers used by now

need gigabytes of disk space to deal with problems

with hardly more than 100,000 degrees of freedom. A

key feature to make iterative solvers decisively more

attractive than direct ones is then robustness.

Incomplete Cholesky (IC) factorizations can be used

in many ®elds and often permit fast convergence pro-

vided the system matrix is a Stieltjes matrix, a more

restrictive condition than simple positive de®niteness.

In previous works [1], the present authors have pro-

posed a so-called DC-reduction extracting a Stieltjes

matrix S from an initial positive de®nite sti�ness

matrix K, in order to apply an incomplete factorization

to S instead of K. This procedure works as long as S

and K are spectrally equivalent, which was theoreti-

cally and numerically proven in [1] for sti�ness

matrices arising from the discretization of plane stress/

strain and solid structures. Thanks to this technique,

perturbed modi®ed IC (XIC) methods could be used

instead of the basic IC preconditioner, which consider-

ably speeds up the convergence.

In this contribution, it is shown that DC-reduction

cannot be used for discretizations including rotational

degrees of freedom, like those in which plate and shell

elements appear. Since e�cient reduction schemes have

still not been found, no equivalent `pre-processor'

enabling the use of XIC methods is available. Some

authors [2,3] have proposed corrected IC (CIC)
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methods that are robust in the sense that they always

yield a positive de®nite preconditioner if the factored

matrix is positive de®nite. With this approach, a re-

duction is no longer necessary, but the obtained pre-

conditioner does not take advantage of the advances in

perturbed modi®ed IC methods. It is shown here that,

despite the latter remark, CIC methods are well

adapted for plate and shell analysis, although XIC-DC

preconditioners remain much more e�ective for pro-

blems including only translational degrees of freedom.

This con®rms that there is for the present time no

universal preconditioner: a choice has to be made to
get the `best' one depending on the nature of the con-

sidered problem. A general purpose FE software

should switch between preconditioning methods, based

on the type of element used.

Two classes of problems are therefore considered in

the remainder of the paper:

. type T, for structures involving only translational

degrees of freedom like solid, plane stress/strain and

rod structures;

. type R, for discretizations where rotational degrees

of freedom appear, like plate, shell and beam struc-

tures.

E�cient preconditioning could also in principle be

obtained by multigrid techniques. Grid coarsening is

however di�cult to implement in FE structural ana-

lyses because the meshes used in practice are usually

close to the coarsest ones compatible with the actual

geometry. It is therefore necessary to resort to alge-

braic multigrid or multilevel methods presently under

development. We expect that multilevel approximate

factorizations will bring further signi®cant improve-

ment with respect to the methods presented here.

However the methods presented here are fully oper-

ational while the multilevel methods still need further

developments to be applicable to irregular three-dimen-

sional grids.

In Section 2, preconditioning of linear systems is
introduced by focusing on a ®rst trend in approximate

factorization preconditioning, based on the introduc-

tion of small perturbations on the diagonal of the fac-

tored matrix in order to get a better conditioning. The

applicability of methods of the ®rst trend, namely

XIC, has already been discussed in a previous work [1]

where they have been shown to be very e�ective for T-

problems. The poor performance of XIC on R-pro-

blems is highlighted. The CIC preconditioners are

described in Section 3, where they are considered as a

second trend in IC-based preconditionings. Numerical

results show that CIC preconditioners behave much

better than XIC for R-problems. Advantages and

drawbacks of both methods are discussed in Section 4

which collects numerical results comparing their e�-

ciency on academic and industrial problems. Tests with

various more commonly accepted preconditioners like
Jacobi (diagonal scaling) or element-by-element

methods (EBE) [4] are presented. A comparison is also
made with the frontal solver of the industrial FE soft-
ware SAMCEF, and it is shown that switching

between XIC and CIC preconditioners permits lower
CPU times and memory requirements than with this
direct solution method.

2. A ®rst trend: approximate factorizations aiming at

e�ciency

2.1. The method(s)

Iterative solution methods are highly a�ected by the
conditioning of the matrix of the system Kq=f to be

solved. A rough theoretical measure of conditioning is
given by the condition number kkk, i.e. the ratio of the
largest to the lowest eigenvalue of the considered
matrix. In elastostatics FE analyses, sti�ness matrices

K are symmetric positive de®nite and the conjugate
gradient method is generally chosen because it yields
the most rapid convergence. In this case, the condition

number directly a�ects the convergence through the
number of iterations iE which is bounded by

iER
1

2

���
k
p

log
2

E
� 1 �1�

if E is the precision required on the solution according
to

kqi ÿ qk
kqk RE

qi is the approximation of q obtained at iteration i and
the norm is the Euclidean norm.

Remark. All the numerical results presented in this

paper have been produced with E=10ÿ8, except for the
industrial FE analyses for which E=10ÿ6 was used.

Preconditioning may be viewed as transforming the
given system Kq=f into

�Bÿ1=2KBÿ1=2�fB1=2qg � fBÿ1=2fg
where B, the preconditioner, is a symmetric positive
de®nite matrix that needs be inverted at each iteration

(in the sense that a system of the form Bs=r is to be
solved at each iteration). The hope is that the new sys-
tem matrix Bÿ1/2KBÿ1/2 is better conditioned than K.

Note that the conditioning of K depends on a series of
parameters such as the mesh size h, the aspect ratio r
of the elements, the possible presence of discontinuities
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or anisotropies, and so on. For each matrix K(h, r . . . )
a preconditioner B(h, r . . . ) can be computed; both

families of matrices are said to be spectrally equivalent
with respect to one or all of the above mentioned par-
ameters if k(Bÿ1/2KBÿ1/2) (or at least an upper bound
of it) is independent of these parameters.

In addition to conditioning aspects, the precondi-
tioner must satisfy feasibility requirements: since it will
be used at each iteration, it must have `reasonable'

memory needs and yield a `reasonably' low amount of
computations. With these conditions, spectrally equiv-
alent preconditioners are hard to ®nd, causing

k(Bÿ1/2KBÿ1/2) to be often a�ected by many par-
ameters. The Jacobi preconditioning (B=diag(K))
minimizes the memory needs but k(Bÿ1/2KBÿ1/2) is

then proportional to hÿ2 when h4 0, which we
denote O(hÿ2). The same result is also true for el-
ement-by-element methods [4] and for basic approxi-
mate factorization preconditioners like incomplete

Cholesky (IC), even if the leading proportionality con-
stant is smaller. A whole family of approximate factor-
izations with the generic name XIC were derived from

IC in order to reduce the dependency on h, as recalled
in [1]. These methods force a `resemblance' between
the preconditioner B and the matrix that undergoes

the factorization K by prescribing that the diagonal
entries of B are computed such that

Bx � Kx� L diag�K�x �2�

for a given positive vector x and a diagonal matrix L
containing small perturbations. The way L is com-
puted corresponds to a particular choice between the
methods of the XIC family, which form what is called

here the ®rst trend. Their introduction goes back to
Buleev [10], but the understanding of their power to
improve the conditioning of Stieltjes matrices came

from the analysis by Axelsson and his coworkers
[11,12]. Subsequent improvement were brought to light
a.o. by Beauwens [13,14], who suggested viewing the

rowsum rule as a perturbed version of the rule
Bx=Kx, as written under Eq. (2). Dynamic versions
were introduced a.o. by Beauwens [15] and by Notay

[5]. Among these, DRIC [15] seems to be currently the
most robust method since its related conditioning is
O(hÿ1) while not being a�ected by the presence of ani-

sotropies. The DRIC algorithm for ®nding an approxi-
mate factorization

B � �P� U�tPÿ1�P� U�

of a given matrix S, P being a diagonal matrix and U

a strictly upper triangular matrix, is given in Table 2
and can be compared to the basic IC algorithm of
Table 1. The parameter t is computed a priori from

1ÿt=h0 where h0 is a dimensionless measure of the
mesh size,

h0 � 2

d
���������������������������������
number of nodes
p

if the original problem is formulated in a d-dimen-

sional space.
Positive de®niteness of S does not ensure that IC

and XIC are feasible algorithms, i.e. that all entries of

the diagonal matrix P are positive. A su�cient con-
dition is that S be a Stielyes matrixÐsymmetric posi-
tive de®nite with non-positive o�-diagonal entries,

which is almost never satis®ed for sti�ness matrices K

in practical FE structural analysis. A solution to this
bottleneck consists of building a Stieltjes matrix S

from K such that these are spectrally equivalent; S

then undergoes the XIC factorization. A method for
®nding a spectrally equivalent matrix S, called DC-re-
duction, is proposed and validated in [1] for T-pro-

blems and very satisfactory numerical results have
been obtained.
The DC-reduction proceeds in two steps: the so-

called D- and C-reduction, respectively, due to
Axelsson and Gustafsson [16] and Munksgaard [17].
First, a decoupled matrix KD is built from K by decou-

Table 1

The IC factorization

U3 up(S)

P3 diag(S)

For r= 1 . . . n

For i=r+ 1 . . . n such that (S)ri$0

w3 (U)ri (P)
ÿ1
rr

(P)ii3 (P)iiÿw(U)ri
For j=i+ 1 . . . n such that (S)rj$0

If (c)ij=1

then (U)ij=(U)ijÿw(U)rj

Table 2

The DRIC factorization

U3 up(S)

P3 diag(S)

For r= 1 . . . n

t03 ÿ(Pÿ1rr

P
r<i

(U)ri

If t0>t then o3 2t/t0ÿ1 else o3 1

For i=r+ 1 . . . n such that (S)ri$0

w3 (U)ri (P)
ÿ1
rr

(P)ii3 (P)iiÿw(U)ri
For j=i+ 1 . . . n such that (S)rj$0

If (c)ij=1

then (U)ij=(U)ijÿow(U)rj
else )P)ii3 (P)iiÿow(U)rj
(P)jj3 (P)jjÿow(U)rj
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pling all translational degrees of freedom related to
di�erent axes:

K �
24Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

35�)KD �
24Kxx 0 0
0 Kyy 0
0 0 Kzz

35
Next, the remaining positive entries in KD are shifted
onto the diagonal to get a Stieltjes matrix S, such that

offdiag�S� � min�offdiag�KD,0��

and

S1 � KD1

if 1 is a vector whose components are all 1.

2.2. On the spectral equivalence of DC-reduction with
respect to the mesh size for R-problems

The theoretical works that validate the DC-re-
duction, and more precisely the D-reduction step, are
based on the Navier equations of elasticity which

allow the modelling of any structure. However, FE
users generally prefer to use other models for struc-
tures having a much smaller size following one direc-

tion. The reason is that using the Navier equations
implies an explicit FE discretization along the thick-
ness of the structure and involves:

. either the use of pretty ¯atÐand therefore ill-con-
ditionedÐsolid elements;

. or a large amount of well-conditioned solid elements
(almost cubic), involving huge computational

requirements.

Typical modellings for the above-mentioned structures,
like Kirchho�'s or Mindlin±Reissner's, allow them to

be considered as if they were two-dimensional without
any explicit discretization along the thickness. The dis-
tribution of strains through the thickness is then

assumed to satisfy given hypotheses (e.g. plane ro-
tation of cross-sections). This is taken into account
thanks to the introduction of rotational degrees of

freedom representing the rotation of the cross-sections
and therefore the strain evolution along the thickness.
The equations obtained from the analysis of plates are
more sophisticated than Navier's and are of fourth

order instead of second order [6].
Shlafman and Efrat [7] claimed that the scope of D-

reduction could be extended to R-problems as well.

Therefore, our preliminary developments [1], together
with some unpublished numerical experiments on thick
plates, gave us the hope that the DC-reduction would

apply to R-problems as successfully as they did to T-
problems. Further experiments with thin shells given
below, discouraged us from considering further this

approach. The ®rst experiments investigate the quality

of the D-reduction and the DRIC-DC preconditioner,

through the condition numbers of

. K, which is considered as the system matrix with

preconditioner I (in this paper, a condition number

is always related to a preconditioner);

. Kÿ1/2D KKD
ÿ1/2 which corresponds to the EC-D pre-

conditioner (exact Cholesky factorization preceded

by a D-reduction);

. Bÿ1/2KBÿ1/2 where B is the DRIC-DC precondi-

tioner of order 1;

which are represented in Fig. 1 for a series of test pro-

blems including plane stress and shell analyses. The

tested structures are regular meshes of four-node quad-

rilateral elements; the values of the unknowns at the

corners are ®xed to zero and there is a nodal load of

104 N at the centre of the structure, applied in all

translational directions (x and y for the plane stress, x,

y and z for the shell). The dimensions of the structures

are always (1, 1, 0.005) where all lengths are expressed

in meters. The Young modulus and Poisson ratio are

1.1 1011 N/m 2 and 0.3.

The comparison of k(K) and k(Kÿ1/2D KKÿ1/2D ) re¯ects

the quality of the D-reduction, and thus partly of the

DC-reduction. In both cases (plane stress and shells)

the condition number is reduced and the di�erence

between the two curves does not decrease for growing

numbers of unknowns, tending to validate empirically

the spectral equivalence of K and KD with respect to

Fig. 1. Condition numbers obtained with I, EC-D and DRIC-

DC preconditioners for regular plane stress and shell pro-

blems (t= 0.005 m).
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the mesh size h. Unfortunately, the condition numbers
of Kÿ1/2D KKÿ1/2D for shells are much larger than those
obtained for plane stress analyses and above all, they
increase faster. In fact, the reduction seems to perform

actually equally well as for plane stress but the initial
matrix to reduce, K, is much worse conditioned. These
comments on the EC-D preconditioner extend to

DRIC-DC. The reason for the lack of e�ciency of the
DC-reduction for the R-problems has not yet been
fully understood and deserves further investigation.

2.3. On the spectral equivalence of DC-reduction with
respect to the thickness

It is easy to ®nd numerically the origin of the ill-
conditioning of K for shell problems by performing

some experiments in which all parameters are ®xed
except the thickness t. This is shown in Fig. 2 which
represents the condition number against the thickness
for a square shell (already tested in the previous sec-

tion) with 50 by 50 quadrilateral four-node Mindlin el-
ements. In addition to the condition numbers obtained
with I, EC-D and DRIC-DC preconditioners, those of

. Dÿ1/2KDÿ1/2 with D=diag(K), the Jacobi precondi-
tioner;

. Bÿ1/2KBÿ1/2 where B is the CIC(10ÿ3) presented in

section 3;
. Bÿ1/2KBÿ1/2 where B is the standard EBE precondi-

tioner introduced by Hughes et al. [4];

are also presented in Fig. 2.

The important thing is that the condition number
varies by a factor up to 1000 for DRIC-DC. Eq. (1)
shows that an increase of the condition number by a
factor 1000 may yield an increase of the number of

iterations by a factor 30, which is roughly veri®ed nu-
merically from Fig. 3. The spectral equivalence is then
not useful.

If the condition numbers for thin shells were 100
times smaller, the curves related to thin shells in Fig. 1
would be shifted down near the plane stress curves and

the same performance as for plane stress analyses
could be expected. This explains the above mentioned
optimistic results obtained by the authors with thick
shells that have condition numbers 1000 times smaller

than those of thin shells.

3. A second trend : approximate factorizations aiming at

robustness

3.1. The CIC method

As a conclusion of the previous section, the DC-re-

duction allowing the use of high-performance precon-
ditioners like DRIC cannot be used to solve problems
derived from discretizations involving rotational

degrees of freedom. Moreover, the condition numbers
reach considerably larger values when compared to
those usually encountered in the plane stress case.

Fig. 2. E�ect of the thickness t on the conditioning of the pre-

conditioned system for various preconditioners.

Fig. 3. E�ect of the thickness t on the number of iterations

obtained with various preconditioners.
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We unfortunately did not ®nd an alternate satisfac-

tory reduction technique. This led us to consider
methods that automatically produce positive de®nite
preconditioners (when applied to any positive de®nite

matrix) and more speci®cally

. explicit methods like Jacobi or EBE. Because Jacobi
is the best diagonal preconditioner [9], any improve-

ment over Jacobi must involve some o�diagonal
structure. On the other hand no optimality result is
known for sparsity patterns like those obtained

through EBE. Direct numerical experimentation is
thus required. But the numerical results already pre-
sented in Figs. 2 and 3 show that neither Jacobi nor
EBE ®ts better than DRIC-DC to the solution of

sytems derived from shell analyses;
. approximate factorization schemes that are corrected

in order to always lead to a positive de®nite precon-

ditioner. The remaining of this section is devoted to
these CIC methods.

In order to avoid possible zero or negative entries in

P, Jennings and Malik [2] introduced in 1977 a modi-
®ed version of IC which has the nice property of
always producing a positive de®nite factorization when

applied to any symmetric positive de®nite matrix. The
Jennings±Malik modi®cation consists in adding to the
diagonal entries of rows i and j corrections equal to
the absolute value of rejected ®ll-in in position (i,j ),

properly rescaled. The method was subsequently
improved by Ajiz and Jennings [3] through determining
the ®ll-in pattern by value (according to some drop-

tolerance criterion) rather than by position. Since
Jennings and co-authors did not give a name to their
method, we called it `corrected' IC, or CIC, to avoid

confusion with `modi®ed', `relaxed' and other `per-
turbed' IC methods (see [1]).
CIC is based on a splitting of the system matrix K

of the form

K � Bÿ E �3�

with B being de®ned by

B � �P� U�tPÿ1�P� U�

The positive de®niteness of B, and thus its ability to be
used as preconditioner in a conjugate gradient iter-
ation, would be ensured if E was at least non-negative

de®nite, since K is already supposed to be positive de®-
nite. Starting from the IC factorization scheme, refor-
mulated in Table 3, modi®cations are introduced in

order to satisfy this condition. In the IC scheme of
Table 3, there are so-called `candidates' eligible to
become entries of the factored matrix. If all candidates

were accepted, the factorization would be exact. Here,
the factorization is incomplete due to the possible zero
values found in the ®ll-in matrix c. If candidate (i, j )

is rejected, i.e. if (c)ij=0, IC sets entry (i, j ) of U to a
zero value. This is the reason why B may be non-posi-
tive de®nite, which must be avoided by acting on E.
Indeed, the rejected candidates contribute to the

error matrix E. Let (candidate)ij=x be rejected, which
causes (E)ij=ÿx. We would like to ®nd a way to cor-
rect matrix E such that this latter be non-negative de®-

nite. Assuming that no rejection is performed on the
diagonal entries, only the o�-diagonal part of E is fed
by rejected entries and we remain free to alter the diag-

onal of E. The diagonal entries corresponding to the
rejected entry at position (i, j ) may always be written
as the product of vxv with, temporarily unknown, num-
bers a and b, which is suggested by writing E as

E �

26666666666664

. .
. ..

. ..
. ..

. ..
.

. . . a j x j ..
. ÿx ..

.

. . . . . . . .
. ..

.

. . . ÿx . . . b j x j ..
.

. . . . . . . . . . . . . .
.

37777777777775
Matrix E is non-negative de®nite if hv, Evie0 for any
v. The quadratic form expands as

j x j �a�v�2i 22�v�i�v�j � b�v�2j �

and taking a=r 2 and b=rÿ2 gives

Table 3

The alternate IC factorization

For i= 1 . . . n

(P)ii3 (K)iiÿ
P
r<i

(U)2ri (P)
ÿ1
rr

For j=i+ 1 . . . n

(candidate)ij3 (K)ijÿ
P
r<i

(U)ri (U)rj (P)
ÿ1
rr

If (c)ij=1

then (U)ij3 (candidate)ij
else (U)ij3 0

Table 4

The CIC factorization

For i= 1 . . . n

(P)ii3 (K)iiÿ
P
r<i

(U)2ri (P)
ÿ1
rr

For j=i+ 1 . . . n

(x )ij3 (K)ijÿ
P
r<i

(U)ri (U)rj (P)
ÿ1
rr

If (c)ij=1

then (U)ij3 (x )ij
else compute r

(P)ii3 (P)ii+r 2v(x )ijv
(P)jj3 (P)jj+rÿ2v(x )ijv
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j x j �r�v�i2rÿ1�v�j �2

which is non-negative for any r and ensures the non-
negative de®niteness of E.

It has to be noticed that, due to Eq. (3), one cannot
add r 2vxv and rÿ2vxv on the main diagonal of E without
adding them on the main diagonal of B, which gives
the ®nal form of the CIC algorithm of Table 4.

3.2. Choosing the rejection parameter

There exists some similarity between XIC and CIC
factorizations. Both methods accept or reject o�-diag-
onal entries according to some sparsity pattern. For

the diagonal entries, XIC computes them following
Eq. (2) for a given perturbation matrix while CIC uses
Eq. (3) with a given de®nition of the rejection par-

ameter. The rejection parameter r may besides be con-
sidered as a perturbation; the di�erence with XIC is
that this perturbation

. is not small;

. is not designed for the enhancement of the conver-
gence but to ensure the feasibility of the algorithm.

This di�erence is at the origin of the larger dependency
of CIC with respect to parameters like h. Although it
has not yet been possible to evaluate theoretically this
dependency, numerical experiments tend to show that

the obtained convergence is O(hÿ2) with much smaller
leading constant than for Jacobi, EBE or IC.
Of course, the value of r remains free. With r =1

(the absolute values of) entries (i, j ) that are rejected
and do not contribute to the o�-diagonal part of B are
simply added on the corresponding (i, i ) and ( j, j )

entries of the main diagonal.
Another possibility would be to set

r2 �
����������
�P�ii
�P�jj

s

as proposed in [3]. With this choice, the modi®cation

of the diagonal entries in CIC, as described in Table 4,
becomes

�P�ii3�P�ii
 
1� j x j������������������P�ii�P�jj

p !
;

�P�jj3�P�jj
 
1� j x j������������������P�ii�P�jj

p !

meaning that the diagonal entries are increased pro-
portionally to their initial value. There is currently no
rigorous way to select r but our experience is that the

latter generally gives CIC the fastest and smoothest
convergence with respect to element size h and thick-
ness t, even if the advantage is slight.

3.3. Choosing the ®ll-in pattern

The choice of the ®ll-in pattern c is still to be dis-

cussed. A ®rst possibility is to use the concept of

order, with increasing ®ll-in patterns c0, c1, . . . cm of

order 0, 1 . . . m corresponding to the de®nitions

. c00{(c0)ij=1\ i=j }

. c10{(c1)ij=1\ (K)ij$0}

. cm0{(cm)ij=1\ (cm ÿ 1)ij=1 or 9r < i, j such that

(cm ÿ 1)ri=1 and (cm ÿ 1)rj=1}

Only the connectivity of the entries of the matrix to be

factored in¯uences such ®ll-in patterns. For low-order

®ll-ins, the factorization re¯ects local e�ects only,
increasing the order creates a connectivity between

unknowns that are more distant with respect to the

connectivity of the matrix to be factored, so that the

incomplete factorization tends to exact elimination.
This kind of ®ll-in pattern was found very e�ective

even at very low (0 or 1) orders for structures includ-

ing only translational degrees of freedom [1] when
XIC-DC preconditioners were used.

Increasing the order is not a solution to enhance sig-
ni®cantly the e�ciency of XIC-DC on R-problems

since it has been established that the thickness has an

important e�ect while not modifying the connectivity

of the system matrix. A more accurate ®ll-in pattern
would thus not (only) be based on connectivity but

rather on the value of the entries of the factored

matrix. Such a ®ll-in pattern is built by setting (c)ij to
1 if and only if the candidate corresponding to entry

(i, j ) is larger than some value, following for instance

Fig. 4. Number of entries in the sti�ness matrix and in the

CIC(f ) preconditioner for varying values of the drop-toler-

ance f, on the benchmark PARKING.
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�candidate�2ij > f�P�2ii
or

�candidate�2ij > f�P�ii�P�jj
with f being a given drop-tolerance. It is our experi-
ence that the latter test gives better results; see [3,8] for
additional comments about this topic.

Here also, there is no optimal value for f and one
has to proceed empirically. Figs. 4 and 5 represent the
e�ect of f on memory needs and convergence respect-

ively, for a benchmark named PARKING already
used in [1] which represents the plane stress study of a
concrete parking ¯oor. In Fig. 4 the growing memory
needs of the preconditioner B are compared to those

of the sti�ness matrix K (not a�ected by f ). Since we
are interested in solving large systems and B is stored
in RAM with K, it would be reasonable to keep the

size (i.e. the number of non-zero entries) of B under or
close to that of K. On the other hand, the plot of Fig.
5 shows that a decrease of f from 1 to 10ÿ3 produces

impressive accelerations of the convergence while
values beyond 10ÿ3 yield only small enhancements at a
much larger cost in memory.
The results obtained with this benchmark typify the

general behaviour of CIC, so that all the results in this
paper are produced with 10ÿ3, which is denoted
CIC(10ÿ3).

4. More numerical results

The tests performed in the previous sections were

designed to highlight the e�ect of some parameters on

the behaviour of the studied preconditioners. From

here, the numerical experiments will serve for the dis-

cussion of the advantages and drawbacks of DRIC-

DC and CIC. The e�ciency of both techniques will be

compared to that of the high-performance frontal sol-

ver of the industrial FE software SAMCEF v5.1. All

tests were run on a SUN SPARC20/514-50 with 128

Mb RAM.

The ®rst major di�erence between DRIC-DC and

Fig. 5. E�ect of the drop-tolerance f on the convergence for

the CIC(f ) preconditioner, illustrated on the benchmark

PARKING.

Fig. 6. Ratio of the number of entries in the preconditioner

and the system matrix for DRIC(1)-DC and CIC(10ÿ3) on

regular thin shell (t=0.005) and regular plane stress struc-

tures.

Fig. 7. Number of iterations for DRIC(1)-DC and CIC(10ÿ3)
on regular thin shell (t = 0. 005) and regular plane stress

structures.
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CIC is their memory needs. The preconditioner B must
be stored in the RAM because it is used at each iter-
ation and it is well known that swapping can increase

dramatically the solution time. The system matrix K is
also used at each iteration and must also be stored in
the RAM. These two matrices are the main memory

requirements; the place taken by K is not available to
B, so the ratio of the number of nonzero entries of B
and that of K gives a good idea of the memory
requirements of a preconditioner. This ratio is rep-

resented in Fig. 6 for a series of thin shell and plane
stress structures.
DRIC(1)-DC always gives values of the ratio under

1 (and even under 0.5); it is thus a quite economical
preconditioner. CIC(10ÿ3) leads to a ratio around 1
for shell problems, which is acceptable, but the ratio

increases to 2.5 for plane stress structures, which is no
longer reasonable with a view to the solution of large
problems.

Fig. 7 represents the numbers of iterations obtained
for regular shell and plane stress problems against the
number of unknowns. The number of iterations of
CIC is always smaller than that of DRIC-DC. For

plane stress however the enhancement obtained by
switching from DRIC-DC to CIC is obtained at a
much too large cost with respect to memory require-

ments.
Regular plane grids allow curves to be plotted and

the e�ect of h and t on the quality of the precondi-
tioners to be studied. They do not, however, re¯ect the
complexity of the grids encountered in industrial prac-

tice. Fig. 8 represents industrial models of, respectively,
a turbine blade, a quarter of a turbine shaft and the
rim of a car. The blade and the shaft are meshed with

solid elements of various shapes, with linear and quad-
ratic shape functions while the rim is meshed with tri-
angular and quadrilateral Marguerre shell elements.
Additional information on the number of unknowns,

elements and frontwidth is given in Table 5.
Table 6 presents a series of numerical values related

to the solution of these industrial benchmarks by

DRIC-DC and CIC, and by the frontal solver
FRONT of the FE software SAMCEF v5.1 which is
generally admitted to be e�cient. This gives an idea of

the quality of our preconditioners compared to cur-
rently implemented direct solvers on which industrial
FE softwares generally rely because of their robust-

ness. The ®rst thing to notice in Table 6 is that DRIC-
DC is not able to deal with the rim (the error has not
been reduced su�ciently during the ®rst 7500 iter-
ations). In contrast, CIC obtained the solution in 409

iterations, but su�ers from its large RAM requirements
when considering the 'solid` benchmarks: CIC(10ÿ3)
requires 2.36 times more RAM for the blade problem

and was not able to solve the shaft problem within 120
Mb. When switching to CIC(10ÿ2), the CPU time is

Fig. 8. The BLADE, SHAFT and RIM industrial grids.

Table 5

Characteristics of the proposed benchmarks

Benchmark Number of unknowns Number of elements Frontwidth

BLADE 38657 5084 2619

SHAFT 49119 5622 1499

RIM 59490 9928 1023
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not satisfactory when compared to that obtained with
DRIC-DC. Secondly, when the most e�ective precon-

ditioner is chosen according to the nature of the pro-
blem to be solved (T- or R-), the solution is always
obtained within:

. a smaller CPU time;

. a much smaller amount of disk space;

. and a larger (while reasonable) amount of RAM;

than with the frontal solver. Concerning the disk
space, only the elementary sti�ness matrices are needed
for the iterative solver to build the assembled sti�ness

matrix. This explains that the same disk space is
required for both preconditioners.

5. Conclusions

In this paper, we concentrated on the solution of lin-
ear systems arising from FE discretizations with ro-

tational degrees of freedom. Some preconditioners
have been discussed in the context of a conjugate gra-
dient iteration. It has been shown that due to the
strong ill-conditioning of R-problems sti�ness matrices,

Jacobi and element-by-element preconditioners yield
too slow convergence rates, so that one has to go to
approximate factorizations.

A DC-reduction had been successfully introduced to
allow the use of high-performance perturbed modi®ed
approximate factorizations (XIC) in the context of dis-

cretizations of the Navier equations of elasticity. It has
been shown that XIC-DC could perform as well for R-
problems provided the thickness has about the same
value as the `in-plane' dimensions of the elements, a

condition seldom ful®lled. It has been demonstrated
that CIC gives satisfying results (fast convergence and
small CPU times) for thin shells while its larger RAM

requirements make it too expensive for T-problems
and it has therefore been proposed to switch between
DRIC-DC and CIC according to the nature of the

problem. This allowed an e�cient frontal solver to
always be outperformed.
Finally, the numerical experiments proposed in this

paper give su�cient information to use the solver as a
`black box' by selecting appropriate values for the par-

ameters on which the preconditioners depend. Indeed,
the main parameter that a�ects the preconditioner con-
cerns the ®ll-in pattern. Fill-ins based on the concept

of order and connectivity have been validated in [1] for
T-problems and order 0 and 1 were determined to
enable fast convergence. The interest of a ®ll-in pattern

based on the rejection of small entries has been dis-
cussed here for shell analyses and a drop-tolerance cri-
terion of 10ÿ3 has been found to give fast convergence
while limiting the memory needs of CIC.
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