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This paper extends the existing literature on strategic R&D alliances by presenting

a model of innovation networks with endogenous absorptive capacity. The networks
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ferent locations in the knowledge space. Social capital is ignored, and firms ally

purely on the basis of knowledge considerations. Partner selection is driven largely

by absorptive capacity which is itself influenced by cognitive distance and invest-

ment allocation between inventive and absorptive R&D. Cognitive distance between

firms changes as a function of the intensity of cooperation and innovation. Within

different knowledge regimes, we examine the structure of networks that emerge and

how firms perform within such networks. Our model replicates some stylised em-

pirical results on network structure and the contingent effects of network position

on innovative performance. We find networks that exhibit small world properties

which are generally robust to changes in the knowledge regime. Second, subject to

the extent of knowledge spillovers, certain network strategies such as occupying bro-
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1 Introduction

The main aim of this paper is to examine the influence of absorptive capacity on the struc-
ture and performance effects of innovation networks that emerge from bilateral R&D
collaboration. Innovation is, by nature, a highly uncertain process which involves re-
combination of knowledge (Dosi, 1988). Knowledge recombination is facilitated when it
diffuses effectively. Networks are often perceived as an infrastructure for knowledge dif-
fusion (Cowan, 2005). These networks usually arise out of voluntary cooperation either
among firms or between firms and other economic agents. A standard result in studies of
strategic alliances and networking is that firms benefit through cooperation. The benefits
show up in terms of accessing complementary resources, division of labor, risk sharing,
reduction of uncertainty and improved chances of innovative success through multiple
search efforts (Pittaway et al., 2005; Powell, 1998). Two alternative explanations for the
emergence of and benefits derived from networks can be found in literature.

From the social capital perspective, network position is considered to be very crucial,
such that more central firms tend to outperform peripheral ones both in terms of suc-
cessful alliances and innovativeness (Gulati, 1995; Powell et al., 1999). For this reason,
alliances are thought to be largely motivated by social capital considerations (Coleman,
1988; Ahuja, 2000; Burt, 2004; Gilsing et al., 2008) and most of the empirically observed
properties of innovation networks are explained by the fact that firms are seeking to in-
crease their number of economically valuable connections. In particular, some authors
argue that it is strategically important to combine both relational and structural em-
beddedness in networks (Moran, 2005; Rowley et al., 2000). In this regard, small world
structures are thought to be particularly beneficial for innovation and the diffusion of
knowledge (Schilling and Phelps, 2007).1

From a knowledge perspective, alliances can be heavily motivated by technological
fit, that is the extent to which partners potentially learn from each other (Cowan, 2005).
On the one hand, what is missing from a firm’s stock of knowledge and competences
influences its decision to cooperate and its choice of partners. In this sense, multiple
partnerships may not be necessary and a firm may stop its partnership search once it
locates a technologically fit partner. On the other hand, a firm’s suitability is assessed by
potential partners on the basis of what is present in its knowledge base. Thus, firms’ in-
ternal knowledge deficiencies and externally available complementarities play a significant
role in the emergence of learning and innovation networks. In this regard, small world
structures are important because they preserve the quantity and diversity of knowledge
(Baum et al., 2003), thereby affecting the learning and innovation potential of alliances.

The foregoing considerations are central to the models of Cowan et al. (2007) and
Baum et al. (2010) in which alliance formation is driven by its probability to succeed in
terms of knowledge generation and innovation, as well as the proximity of the potential
partner. The studies demonstrate that networks with small world properties and other
empirically founded network characteristics such as repeated alliances and transitivity can
be observed even when alliances are formed only on the basis of knowledge considerations.
However, these studies treat absorptive capacity as an exogenous parameter which is
similar for all firms in an industry. This simplification is motivated by the fact that it
allows to focus on the nature of the innovation process and its effects on emergent network

1With respect to a network of firms, a small world is a network in which distinct regions with dense
interconnectedness (or cliques) of firms are linked by relationships (or clique spanning ties) that act as
information conduits between them (Watts and Strogatz, 1998).
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properties. However, this imposes the neglect of an important source of heterogeneity,
that is, differences in firms’ learning rates.

In this paper we also approach alliance formation from the knowledge perspective
but with endogenous absorptive capacity. Firms form alliances for the purpose of knowl-
edge sharing. Partner selection is entirely network-independent, implying the exclusion
of network-based motives. The effectiveness of alliances is influenced by two factors: cog-
nitive distance between partners and their investment allocation. Both factors determine
absorptive capacity which is required to effectively deploy externally generated knowledge
(Cohen and Levinthal, 1989). While the former has an inverted ‘U’-shaped relationship
with the learning and innovation potential of the alliance (Wuyts et al., 2005), the latter
presents a trade-off in the optimal distribution of total R&D investments between the
creation of own knowledge and the improvement of absorptive capacity. The higher the
investment in original knowledge creation, the more attractive a firm appears as an inno-
vation partner. At the same time, the lower the investments in the build-up of absorptive
capacity, the more difficult it is to exploit external knowledge.

Taken together, the foregoing hold important implications for cooperation and partner
selection. On the one hand, a firm needs to carefully balance between R&D investments
made to generate inventions and to develop absorptive capacity. On the other hand, the
firm needs to select partners that are neither too close to it in the knowledge space (to
facilitate novelty) nor too far away (to facilitate understandability). An additional con-
sideration is the distinction that can be made between voluntary spillovers which exist
in the context of cooperation and involuntary ones that exist elsewhere. In particular,
voluntary spillovers are reciprocal, thereby constituting both a benefit and a potential
risk. In this regard, firms will pay attention not only to the amount of knowledge they
can get from their potential partner but also to the partner’s absorptive capacity. These
elements were combined in our earlier model of absorptive capacity and inter-firm cooper-
ation (Egbetokun and Savin, 2012). In that static model, the cognitive distance between
cooperating partners was set exogenously. This simplification permitted a focus on the
relationship between performance and cooperation strategy for a representative firm.

Building on research on alliance formation, we focus on dynamic aspects of coopera-
tion wherein the cognitive overlap between partners increases with intensity of coopera-
tion, either in terms of duration or frequency (Cantner and Meder, 2007). For instance,
Wuyts et al. (2005) argue that the cognitive distance between cooperating firms is a neg-
ative function of their frequency of interaction. In other words, their knowledge bases
become more similar as they cooperate more frequently. A similar argument was made
by Mowery et al. (1998) for the duration of cooperation. Ex post, the knowledge overlap
may be greater than its pre-cooperation level because of the mutual knowledge exchange
over time. Cooperating firms may then become so close that the knowledge potential of
their partnership becomes too low to permit recombinant novelty (Antonelli et al., 2010,
p. 53). At this point, investments in absorptive capacity become less productive as far
as the particular partnership is concerned. This may motivate the firms to invest more
in own knowledge generation (inventive R&D) while reducing the absorptive R&D. In
addition, when this stage is reached, the firms might reconsider their cooperation deci-
sions and the partnership may dissolve.2 Heterogeneity between the firms increases again

2This situation arises even between asymmetric firms, that is, a technological leader and a follower,
because, as long as they operate within the same technological trajectory, the leading firm has little
reciprocal incentive to continue the relationship except that of opportunism or expropriation, which
constitute disincentives for the follower. As noted by Nooteboom (1999, p. 802), “A problem in collabo-
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if they subsequently generate new knowledge either alone or in cooperation with other
partners. The two firms may then be incentivised to re-establish partnership.

This paper analyses a dynamic model3 in which networks emerge as a result of bilateral
cooperation between firms occupying different locations in the knowledge space. The
hypothesis that we examine is straightforward: could the empirically observed properties
of networks be reproduced by abstracting from social capital and focusing exclusively on
knowledge considerations with endogenous absorptive capacity?4

An important contribution of this paper is that, in contrast to Cowan et al. (2007)
and Baum et al. (2010), we account for differences in firms’ absorptive capacity and how
this affects their dynamics in the knowledge space. Absorptive capacity is endogenously
defined by two factors: (i) a firm’s distance both to a potential partner and to aggregate
external knowledge, and (ii) its decision on the investment trade-off between inventive
and absorptive R&D potentially compensating for a larger distance to a partner. This
way, absorptive capacity combines elements of searching for, valuing, identifying and
assimilating new knowledge (Zahra and George, 2002).

Furthermore, distinguishing between voluntary and involuntary spillovers allows us to
examine our hypothesis with respect to different knowledge regimes. The intuition here
is that at different times in the history of an industry, different extents of voluntary and
involuntary spillovers will be observed due to varying levels of inter-firm cooperation. For
instance, industries tend to cluster in the early stages when knowledge is more tacit and
its diffusion require face-to-face interactions (von Hippel, 1989; Audretsch and Feldman,
1996). At such times, a higher proportion of inter-firm collaborations characterised by
high levels of voluntary spillovers is likely to be observed. However, in later stages, the ef-
fects of localised spillovers have been reported to diminish significantly (Potter and Watts,
2011) partly due to congestion, obsolescence of local knowledge and, in particular, a high
amount of codifiable intra-industry spillovers.

Our results do indeed replicate important empirical facts and generate some new
insight. We observe networks with small world properties at all levels of spillovers that
we examine. The effects of network structure on firm performance varies with changes
in the knowledge regime. Aggregate profit in the networks increases with increasing
involuntary spillovers but an inverted ‘U’-shaped relationship is observed with increasing
voluntary spillovers. Moreover, when involuntary spillovers are small, networks with high
average path length - implying low accessibility and inefficient information flow within the
network - are especially detrimental for innovation. High betweenness - that is, occupying
some kind of brokerage positions - turns out to be a very profitable network strategy at
low levels of involuntary spillovers. A particularly striking result is that firms which
employ different network strategies do indeed differ in their absorptive capacities.

The rest of the paper is organized as follows. Section 2 presents the basic model.
In Section 3 we address the parameter calibration issues of the present ABM. Section 4
illustrates the obtained results, while Section 5 contains some concluding remarks.

ration, especially in innovation, is that under some conditions there may be opportunities and incentives
for free ridership, or for one party extracting more gain than others, or even expropriating their gain”.

3With many firms, analytical solution of the dynamic model becomes intractable so we employ an
agent-based simulation model (ABM). ABMs have gained an increasing interest in different fields of
economic research having an advantage in (i) a more realistic representation of agents’ behavior than in
a standard representative agent model and (ii) possibility of an extensive and fast simulation analysis
for different parameter settings due to the ongoing advances in computational performance.

4We do not imply a contrast between absorptive capacity and social capital; rather, we examine the
networks generated when cooperation is motivated by knowledge gains rather than social capital.
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2 The Model

In the model, a fixed population of firms (N) seeks to generate new knowledge over a cer-
tain number of periods within a defined knowledge space. Similar to Baum et al. (2010),
a simple representation of firms in a two-dimensional metric space5 capturing cognitive
distance is used. While firms’ locations in the underlying space have no particular mean-
ing, they “translate directly into a network of strategic alliances” (Baum et al., 2010, p.
2097), because the distances affect the learning ability and, hence, partnership formation.

In each period, innovations can be generated from new knowledge created within that
period.6 Each firm maximizes its potential to innovate either alone or in cooperation with
another firm. The decision to cooperate is influenced by absorptive capacity not only of
the firm itself but also of its potential partner. The absorptive capacities, in their turn,
depend on the extent to which the two firms’ knowledge endowments both resemble and
complement each other (cognitive distance). Bilateral partnerships among the firms yield
an aggregate network. We are particularly interested in three issues:

i. the kinds of aggregate network structures that emerge: here we examine whether the
networks generated by our model display small world properties like many real life
networks (Cowan and Jonard, 2004; Verspagen and Duysters, 2004).

ii. the effects of different knowledge regimes on aggregate network structures and per-
formance: here we analyze how the network structures respond to varying degrees of
voluntary and involuntary spillovers.

iii. the relationship between firms’ network position and their innovation performance:
the focus here is on individual firms and the manner in which the structural charac-
teristics of the network relate to their performance.

Four important assumptions are made in the model. First, partnership formation is
only a short-term profit-maximising decision. Second, each firm selects only one partner
and conducts one R&D project in each period. Partnerships are reconsidered in every
period so that previously formed alliances may be discontinued. Third, reciprocity in
partnerships is only relevant in terms of shared knowledge; partners’ trust and reliability
are ignored. Last, firms are well informed about the knowledge base but are uncertain
about the investment decisions of other firms.

2.1 R&D investments

For each firm i, we distinguish between investments in directly in R&D (rditi) for the
creation of own knowledge (which is a share, ρ, of total research budget, RDi), and
investments for exploring the environment for new complementary knowledge (aciti):

RDi = rditi + aciti = ρtiRDi + (1− ρti)RDi, (1)

Allocation of these investments is influenced by the potential quantity and complexity
of external knowledge, either within a partnership or beyond it, both of which, in the

5A two-dimensional representation is the smallest suitable form allowing for transitivity relations in
the metric space and provides a clear graphical representation of network formation and evolution.

6Thus, although the new knowledge may be combined with already existing knowledge to innovate,
not every new recombination of knowledge is considered to be an innovation.
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context of cooperation, are proportional to cognitive distance. In making its own R&D
investment decisions, each firm takes into account the investment decision of its potential
partner. It does this by forming an expectation, considering the investment decision of
the partner to be equal to the average from the last three investment allocations made by
the partner in a cooperation setting.7 This introduces uncertainty into the model as the
expectation does not exactly coincide with the actual investment decision of the potential
partner, which is itself based on an expectation. Thus,

Ei(ρtj) 6= ρtj = f(Ej(ρti)), where Ei(ρtj) =

(

3
∑

ι=1

ρt−ιj

)

/3. (2)

2.2 Knowledge generation

Firm i’s stock of knowledge in period t (kti) increases as a result of its direct investment
in R&D (rdii) and involuntary spillovers (ekt) from other (both cooperating and non-
cooperating) firms. In an alliance, firm i can also appropriate voluntary spillovers (δc)
from its strategic partner j. The extent to which the firm benefits from the two types of
spillovers depends on its absorptive capacities: acti,j and acti,ek. Thus,

kti =
(

rditi
)ξ

+ acti,j
(

δcrdi
t
j

)

+ acti,ek
(

ekti
)

, (3)

where ξ ∈ (0, 1) is a parameter which defines the rate of returns to inventive R&D.
External knowledge, eki, is set as the total inventive R&D investment of companies in

the knowledge space which firm i can potentially understand (in total, let us say, equal
to Hi), rescaled by the parameter of involuntary spillovers,8 δn ∈ (0, 1):

eki = δn
∑

i∈Hi

rdih. (4)

The understandability restriction ensures that firm i can utilize the involuntary spillovers
from firms located in the knowledge space and sets a certain ‘radius’ around the firm,
within which external knowledge (also from the side of strategic cooperation) can be
considered. Hence, firms having a more central position in the knowledge space have an
access to potentially more spillovers than those being in the periphery.

In our model we focus on the situation, where 1 > δc > δn > 0 with δc + δn reflecting
total spillovers available to a cooperating firm.

7The expectation formation plays an important role in our ABM and several alternatives have been
analyzed. In the simplest case, the expectation was set equal to the decision made by the partner in the
previous period, regardless of its decision to cooperate. Naturally, this approach was most imprecise.
Alternatively, a generalization as an average over several periods was taken, but still providing a big
mismatch between the expectation and the actual decision. Finally, an average over the last three
investment decisions made by the partner within a cooperation is taken. This approach provides a good
approximation of the actual investments made by the partner in all the scenarios considered: correlation
between expectation and actual investments is always between 0.7 and 0.95 (see Appendix B).

8This fraction reflects the portion of knowledge not appropriated by companies and is determined by
the appropriability conditions which include the patent system in a particular industry and the efficacy
of secrecy or other forms of protection of firm j’s internal knowledge
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2.3 Cognitive distance

Firms select partners from whom they are likely to benefit the most. Such partners
typically possess complementary assets and other endowments that might not be easily
accessible elsewhere, or they may be easily understood by the focal firm. Consequently,
the cognitive distance of a firm i from a potential partner j (dij) is not necessarily equal
to that from other external knowledge ek (diek). The former is modeled as the Euclidean
distance between the stock of knowledge of the two partners (νi· and νj·), which are
independently and randomly attributed to the firms in the interval [0, 1]:

dij =
√

(νi1 − νj1)2 + (νi2 − νj2)2. (5)

Cognitive distance from external knowledge is represented as the average distance to
the firms in the knowledge space firm i is able to understand:

diek =

(

∑

i∈Hi

dih

)

/Hi, (6)

so that the maximum distance to the external knowledge does not exceed the maximum
distance to a single potential partner in this space.

2.4 Absorptive capacity

As noted earlier, a firm develops its absorptive capacity by investing a share (1 − ρi) of
its total R&D budget for that purpose. Since a firm aims to maximise the knowledge it
absorbs given its current level of absorptive capacity, one can think of absorptive capacity
as the actual amount of knowledge absorbed by the firm divided by the total amount of
knowledge available to absorb:

aci,j =
αβ1dij + αβ1dijaci

ψ
i − αβ2d

2
ij

1
4αβ2

[

αβ1(1 + aciψi )
]2 ∈ [0, 1]. (7)

The parameter ψ ∈ (0, 1) reflects the decreasing marginal returns to absorptive R&D
investments. The function (7) is derived and discussed in Egbetokun and Savin (2012).
In short, the function reflects two main empirical findings. First, the cognitive distance
(dij) between cooperation partners has an inverted ‘U’-shaped relation with the knowl-
edge the partners obtain Lin et al. (2012); Gilsing et al. (2008); Nooteboom et al. (2007);
Wuyts et al. (2005); Mowery et al. (1998). Second, investments in absorptive capacity al-
low firms to reach further in space in selecting cooperation partners (de Jong and Freel,
2010). This causes an increase in optimal distance between pairs of cooperating firms.
Thus, an understandability–novelty trade-off exists such that effective learning by in-
teraction is better accomplished by limiting cognitive overlap while securing cognitive
proximity.

Note at this point that for dij = 0, the respective absorptive capacity in (7) equals
zero as there is no new knowledge to absorb. In contrast, even with no investments in
absorptive R&D, acij may be positive for some minor cognitive distances. The latter
assumption can be justified by the fact that firms working in similar fields have some
level of mutual understanding even without explicit investments in absorbing R&D.
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Similarly, aci,ek has the same functional form as (7) with the only difference that diek
replaces dij. Thus, for the same level of absorptive R&D investments, the absorptive
capacities directed on each of the two sources of spillovers can be different.

Note also that the investment in absorptive capacity increases the distance (di·) over
which the firm can absorb external knowledge (the radius mentioned in Section 2.2).9

2.5 Profit generation

In our model innovation involves recombination of heterogeneous resources by a firm
either working alone or in partnership with another firm. Therefore, the magnitude of a
successful innovation is defined by the amount of knowledge firm i can appropriate (Πi):

Πi =

{

(kti)
generated in cooperation

/
(

1 + κactj,iδcrdi
t
i

)

if i has a partner,

(kti)
generated alone

if i has no partner.
(8)

This variable is an output of the appropriated knowledge from a firm’s continuous
R&D effort and, as the case may be, partnerships. The appropriated knowledge is applied
in the recombination process to generate an incremental innovation through which the
firm maintains its competitiveness. Consequently, one can think of the firm’s profit as
being proportional to its knowledge input into the innovation process.10 In this sense, (8)
is henceforth referred to as profit and used as a main indicator of firms’ performance.

In a partnership, Πi decreases proportionally with the amount of knowledge spillovers
(actj,iδcrdii,t) that the partner can absorb (which is a constituent part of kj that reduces
the appropriability of ki). This is in contrast to Cohen and Levinthal (1989) where Πi

is reduced proportional to the knowledge generated by the partner (kj).
11 This ‘cost of

partnership’ affects the choice of an R&D partner. Although this cost provides a disin-
centive to cooperate, one should remember that the cost is contingent upon the partner’s
absorptive capacity which itself is imperfect preserving the cooperation incentives.12

To avoid the problem of increasing Πi for actj,iδcrdi
t
i < 1, we introduce a ‘natural’

leak-out that is fixed and equal to 1. Furthermore, since the cost of partnership affects
Πi multiplicatively, while absorbed knowledge from external sources comes into Πi only
additively, we downsize actj,iδcrdi

t
i by factor κ to ensure that cooperation in our model

brings more benefits than losses.13

To sum up, the function (8) is meant to introduce the trade-off between cooperative
and non-cooperative strategies in our model: it provides a larger pool of knowledge
spillovers for a cooperating firm i to benefit from, but also penalizes it by the spillovers the
partner j can absorb. This function is later used as a main objective function of the firms
reflecting the short-term profit-maximising objectives stated earlier. More information
on the calibration of the function is provided in Section 3.

9Specifically, this radius is set to be not larger than β1

β2

(1 + (RDi)
ψ) and can be derived from (7).

10Obviously, we limit ourselves here to successful innovation. Nevertheless, it can be argued that the
learning effects from failed innovation efforts will be proportional to the knowledge input.

11Recall that in Cohen and Levinthal (1989), ∂Πi

∂ki
> 0, ∂Πi

∂kj
< 0 and ∂Πi

∂ki∂kj
< 0, which is also fulfilled

in (8) with the distinction that Πi reduces proportional to the firm’s i spillovers j can absorb.
12See Egbetokun and Savin (2012); Hammerschmidt (2009, p. 426); Cohen and Levinthal (1989, p.

575-6) for a more elaborate discussion of this.
13Simulations show that setting κ = 1 leads firms to prefer the standalone mode in most of the

situations, while correlation between firm performance and the number of partnerships becomes negative.
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2.6 Innovation and learning

There are two sources of dynamics in the knowledge space: learning and innovation.
First, firms move closer together according to their learning capacity with respect to
their partner (acij), the extent to which they disclose own knowledge (δc) in a cooperation
agreement and the extent to which the partner conducts inventive R&D in the period
(ρj). Logically, the higher the three variables are, the faster the two firms learn from each
other, reducing their cognitive distance.14 Technically this ‘convergence’ in knowledge
space is implemented similar to Baum et al. (2010) with the distinction that the learning
is potentially much faster15 and is endogenously driven by firms’ investment allocation:

νt+1
i1 =

(

δcac
t
ijρ

t
j

)

νtj1 +
(

1− δcac
t
ijρ

t
j

)

νti1

(9)

νt+1
i2 =

(

δcac
t
ijρ

t
j

)

νtj2 +
(

1− δcac
t
ijρ

t
j

)

νti2.

In interpreting (9) we believe that the learning capacity (actij) itself should not be set
to some small value16 simply by arguing that firms do not learn from each other that
quickly. In contrast, we believe that what actually matters is how much information
the two firms disclose to each other in a cooperation agreement and how much original
(inventive) R&D each of them conducts in that period.

The second driver of dynamics in cognitive distance is innovative activity. When
a firm produces a radical innovation,17 it dislocates firms in its surrounding according
to its innovative success (ΘΠi),

18 where Θ is a binary outcome with one standing for a
successful innovation. We set Θ equal to one for only one randomly drawn firm per period
so that on the one hand, we do not have too many innovations and dislocations at each
period, but also avoid the situation where all firms converge to one specific location in
the knowledge space. Important also is that we do not distinguish between probabilities
to successfully innovate alone or in a cooperation in order not to introduce even more
heterogeneity in an already complex model. The difference in terms of innovation between
the cooperative and non-cooperative strategies is that in a partnership, firms have the
potential to generate innovations of larger magnitude19 due to voluntary spillovers.

We also restrict the effect of dislocation to the firms which are located close enough to
the firm producing an innovation at time t, i.e. again the ‘radiuses’ of surrounding firms

14In this respect, there is a clear parallel with the ‘cost of partnership’ operationalized in (8) except
that instead of R&D budget, the firms’ coordinates in the knowledge space are taken.

15A standard in the literature is setting the learning capacity (actij) equal 0.01.
16Otherwise, why would firms put so much effort in increasing their absorptive capacity (Fabrizio,

2009), if it should always be equal to a value like 1%?
17Here we distinguish between two types of innovation. Whereas incremental innovation in (8) is

considered to be a consistent indicator of firms’ performance in generating new knowledge, radical inno-
vation (taking place infrequently and randomly) here is an important source of firms’ dynamics in the
knowledge space. This distinction is useful for technical convenience. Nevertheless, it is logical because,
while incremental innovations tend to encourage the status quo, radical innovations cause paradigmatic
shifts with entire industries emerging or transforming (see Section 2 in Koberg et al., 2003, for a more
detailed discussion). Thus, one can argue that the effects of incremental innovation reflect more in the
innovator’s profit without significantly shifting other firms’ position in the knowledge space, whereas a
radical innovation forces other firms to adjust their position within the knowledge space.

18Again, the magnitude of innovation is endogenized in this model and not drawn from any exogenous
distribution as it is done in some recent studies (Baum et al., 2010).

19Here one can think of magnitude in terms of quality improvement or cost reduction that is significant
enough to generate reactions from other firms in the knowledge space.
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are used checking that the distance between the innovating (i) and a surrounding (h)
firm is not too big for the latter one to comprehend the innovation. A technical aspect of
this limitation allows one not to ‘shake’ the entire population of firms but only a certain
number of them located in the specific region of the knowledge space. Furthermore, it
also matters how large is the distance of the affected firms to the innovating ones (dih) –
the smaller it is, the larger the dislocation:

νt+1
h1 = νth1 + ǫ1 ln(Πi,t)/d

t
ih

(10)

νt+1
h2 = νth2 + ǫ2 ln(Πi,t)/d

t
ih,

with ǫ1, ǫ2 ∈ [− 1
200

; 1
200

] rescaling the entire dislocation effect on each firm below dmaxih /2 =√
2/4. The dislocation effect in (10) holds irrespective of whether or not a firm h is

involved in a partnership in the specific period. Thus, moving along the knowledge space
according to their learning and innovativeness, firms may essentially form some clusters
within which they exchange knowledge.

2.7 Optimal investment allocation and partnership formation

For certain levels of distances dij and diek that determine understandability and novelty,
firm i is incentivized to invest in absorptive R&D to maximize the amount of external
knowledge absorbed. The trade-off that the firm faces is how to optimally distribute its
total R&D investment between the creation of own knowledge and the improvement of
absorptive capacity. This necessitates a comparison of the marginal returns to each type
of investment with respect to the profit gained:

∂Πi

∂acii
=

∂Πi

∂rdii
(11)

In Egbetokun and Savin (2012) the derivatives from (11) have been analyzed and
considered for a representative firm in a cooperative and non-cooperative setting.20

Ultimately, the decision to cooperate (or not) is a profit-maximizing one which de-
pends on the potential profit generated when working alone in comparison with profit
generated by cooperating with any of the possible partners:

max
(

Πgenerated alone
i ; Πwith any of the possible partners

i

)

. (12)

Therefore, for each firm in each period the investment trade-off (ρi) is obtained for all
potential partners, taking into account the expectation about those partners’ R&D in-
vestments (2) and not their actual investments. After that, the amount of knowledge ki
to be generated by each company either alone or in partnership is estimated. Based on
this the most lucrative partner for each company is selected by maximizing profit in (8).

20However, already in that setting those functions are highly complex and non-linear with multiple
local minima depending on the particular set of parameter values applied. To solve such a non-trivial
optimization problem and find an optimal ρi for each firm both in a cooperating and non-cooperating set-
ting a heuristic optimization technique, Differential Evolution (Storn and Price, 1997) is applied. Among
its advantages are comparative simplicity in tuning (Blueschke et al., 2013), a good approximation of a
global optimum satisfying (11) for different sets of our model’s parameters and fast convergence. For
more details see Appendix 2 in Egbetokun and Savin (2012).
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Although the most lucrative partner for each firm is identified, partnership formation
is a non-trivial task. The reason is that the incentives of a firm i to build a partnership
with a firm j are asymmetric: while distance between the partners is the same, the
investment decision is individual for each company. Hence, there is no ‘Nash stable
network’.21 Hence, few alternatives on forming partnerships are considered:

• Unilateral partnership formation: in each period in a random order (to ensure that
none of the firms has an advantage over others throughout the entire simulation
process) firms sequentially identify their most fitting partner (based on the estima-
tion of ρi and Πi for each potential partner). Once the partner is found, partnership
is formed (i.e. the chosen firm simply adjusts its ρ to the given partner) and the two
firms are excluded from the search process in the respective period. If for any given
firm the standalone mode is more lucrative, it generates new knowledge alone and
is excluded from further search in this period. The main advantage of the method
is its simplicity and lowest computational time required. However, reciprocity is
not required; therefore, a firm i can exploit its partner j in a given period. Hence,
this method is expected to result in the largest discrepancy in firms’ performance
and can be considered as a certain benchmark to compare with.

• Reciprocal partnership formation: at first, both ρi and Πi of each firm for each
potential partner are estimated. After all firms preferring a standalone mode are
excluded, again in a randomized order in each period, firm i ’makes a proposition’ to
firm j as its most lucrative cooperation partner, which will be successful if and only
if it belongs to the ‘top’ 5% of the companies with whom firm j would cooperate.
Then the two firms are excluded from further search. This approch is clearly more
computationally intensive and sets the strictest limitation on reciprocity.

• A ‘popularity contest’ : starts exactly as with reciprocal partnership by computing
ρi and Πi. Afterwards, for each firm a ‘rating’ of each firm’s popularity among other
firms is calculated. This rating is measured as the number of times a particular firm
is listed as the first, second or last ‘fittest’ partner for each firm in the population
(including itself), while the weights are the inverses of the positions (i.e. weight of
being first is equal one, of being tenth is equal one tenth):

Ratingi =
N
∑

j=1

weightby firm j
i , where weightby firm j

i =
1

Order of i by firm j
.

After that firms choose themselves a partner sequentially according to their rating:
the most popular choose first. Although some reciprocity is present in the model,
it is not ensured in every partnership. Computational cost of this approach is
comparable to the one before, but it has some additional merits. First, the order
in which partnership choice is made is not random. Second, the popularity ranking
introduces some form of hierarchy (heterogeneity) among the firms. This presents a
modest representation of competition: since firms ranked higher choose first, firms
with the desire to form alliances may tend to adopt strategies which improve their
ranking, thereby competing for alliances.

21‘A stable network is one in which for each agent (or pair of agents) there is a payoff maximizing
decision about which link to form’ (Cowan et al., 2007, p. 1052)
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It is worth noting that the procedures just described take place every period. This
implies that the process of partner selection occurs in every period, and a partnership
formed in one period may be terminated in the next one depending om its profitability.

3 Numerical Experiment

Given the complexity of the model at hand, we need to set some parameters described as
fixed ones leaving only few to vary in the following extensive numerical simulation.22 The
dynamics arising from this modeling should provide us with complex network information
which we discuss in Section 4. The entire simulation runs over two hundred periods
(T = 200) repeated ten times. In each case, the first hundred periods are removed
from further consideration to avoid any effects arising from initial random allocation of
parameters.

At the beginning of each simulation restart, a population of N = 100 firms23 are
randomly distributed in the knowledge space [0, 1]× [0, 1]. They are also given a certain
fixed R&D budget uniformly drawn from the interval [7.5, 12.5].24 To form expectations
about other firms’ investment decision, we randomly allocate values between 0 and 1 to
all firms in the first three periods. Throughout the next remaining 197 periods, the firms
should form alliances (or stay alone) according to one of the three matching alternatives
described in Section 2.7 always solving two trade-offs: what is the preferred distance
to the partner to cooperate with and how much to spend on absorbing voluntary and
involuntary spillovers. After all alliances are set, firms generate knowledge in an alliance
or staying alone and subsequently move in the knowledge space. While cooperating firms
learn from each other and move towards each other in the knowledge space according to
(9), roughly once in each period one of the firms innovates and dislocates the surrounding
ones according to (10).

We set α =
√
2/50, β1 =

√
2/40, β2 = 1 and ψ = ξ = 0.5, thus allowing i) aci,j to

have the inverted ‘U’-shaped form in dij: first increasing and then decreasing;25 ii) acii
to have a positive but marginally decreasing impact on absorptive capacity; iii) rdii to
have a positive but marginally decreasing impact on ki and iv) setting the radius (within
which firm can find a partner, absorb involuntary spillovers or be affected by another firm
successful in generating an innovation) equal ≈ 0.15 on average (depending on the exact
R&D budget the firms have). We also set κ as the rescaling parameter for the costs of
partnership equaling 0.1.26 We describe both the firms and the arising networks over ten

22The entire code is written in MATLAB except of few parts on network statistics made in
C++ by means of Microsoft Visual Studio boosting the efficiency of simulation. In this respect
we want to thank Lev Muchnik for his instructive tutorial and codes on social network analysis at
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html. The code can be
obtained from the authors on request.

23This number is neither too large nor too small for simulation purposes. Besides, it is comparable to
the population of firms applied in previous related studies

24In this we attempt to introduce some moderate heterogeneity between firms in our model. Clearly,
an even more ambitious idea would be to set the R&D budgets in the future periods contingent on the
firm’s performance in the previous period, but this we leave for further research.

25Furthermore, as stated in Section 2.4, without any investments in absorptive capacity (acii) aci,j
remains positive for dij ∈ (0, 0.0353] and reaches its maximum level at dij = 0.0177 (i.e. in the middle of
the interval). Thus, at some very moderate level of cognitive distance, assimilation of external spillovers
can be efficient without any explicit investments in absopptive capacity.

26We tried different values of κ both above and below 0.1 and it turns out that this value produces more
meaningful results in terms of number of partnerships per period (10-90% of firms in the population coop-
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histories each lasting hundred periods (after discarding the first hundred periods in each
case). In particular, we concentrate on:

i. the network statistics, taking the whole population as one network.

ii. firms’ ego-network statistics and their correlation to the firms’ performance.

In this model four parameters that determine absorptive capacity also drive the net-
work structure and its effect on firm performance. First, cognitive distance (dij) between
cooperating firms influences the learning and innovation potential of an alliance. This
distance changes according to the firms’ learning and innovation. As a result, previously
discontinued alliances may be re-formed.27 Second, R&D investments (RD) are the ma-
jor source of absorptive capacity. Allocating this investment between invention and the
development of absorptive capacity is an important strategic decision that every firm
makes in response to the behaviour of their potential partners. Third, appropriability
conditions within a partnership (δc) determine both the pool of knowledge of its partner
that each firm can benefit from and the magnitude of spillovers the partner can absorb
from the firm. The size of δc is an important factor both in partner selection and learning
speed. Fourth, magnitude of involuntary spillovers (δn) generated by surrounding firms
defines the pool of external knowledge.

While the first two factors are exogenously given only in the initial stage and en-
dogenized afterwards, the latter two are held as exogenous. In particular, we consider
δc ∈ [0.1; 0.9] and δn ∈ [0.03; 0.1].28 This setup allows us to examine the evolution and
performance effects of the other parameters - and, by extension, of the entire network -
with respect to changes in the knowledge regime within the knowledge space.

4 Results

In order to understand results contained in this section, certain knowledge of network
analysis is necessary. To help readers to follow the discussion we clarify the network
measures (both the unweighted ones and their weighted generalizations) in Appendix A.

4.1 Network measures and characteristic networks

To give an idea of what networks emerge from our model, we provide some descriptive
information on networks formed with the three different matching rules applied, using

erate). Giving a calculation example from our model according to (3) and (8), to give an idea about what

forces are actually at work, consider Πt =
(

(rditi)
ξ + acti,j

(

δcrdi
t
j

)

+ acti,ek (ek
t
i)
)

/
(

1 + κactj,iδcrdi
t
i

)

equaling to 4.62 (for dij = 0.0375, ρi = 0.5 = Ei(ρj), ρj = 0.5, δc = 0.9, RDi = 9.19, acij = 0.89,
RDj = 10.15, acji = 0.88, ek = 1.07, diek = 0.11 and aciek = 0.07). While the knowledge generated
(before the cost of partnership reduces it in Πi) equals 6.30, Πi is rescaled by factor 1.36 (and not 4.63 for
κ = 1). This makes the profit (knowledge generated and appropriated) still higher than investing only
in inventive R&D (Π = 3.03) or absorbing only involuntary spillovers with the same investing decision
(Π = 2.22). As it is also clear, setting κ = 0.01 would make the cost of partnership negligible. Smaller
deviations, e.g., κ ∈ [0.05; 0.15] do not change the further results dramatically.

27As noted by Rosenkopf and Schilling (2007), alliance duration often ranges from one to five years.
Thus, over a sufficiently long time horizon and in a sufficiently large population of firms, alliances will
repeat often enough that firms will re-select partners with whom they had cooperated in the past.

28Here we restrict the amount of involuntary spillovers from below to ensure the emergence of a network
in the ‘popularity contest’ matching rule.
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some intermediate values of δc and δn (in particular setting them equal to 0.5 and 0.05,
respectively). These results are given both on a single simulation run (first and last panel
in Figure 1) as well as for ten restarts.

The network using unilateral partnership formation (presented to the left in Figure
1) has the largest density and contains all except one firm in its largest component.
The density of the network generated in the popularity contest scenario is much smaller,
indicating relatively few alliances taking place in each period. Even more, in this scenario
the total number of unconnected components, several of which contain more than one
firm, is above 20. However, the network appears to be highly centralised (as seen in
the network representation on the bottom right of Figure 1). This feature, to some
extent, is an effect of the fact that network formation is based on reputation such that
much fewer firms form alliances and repeatedly connect with each other.29 An interesting
measure in the context of this study is the fraction of reciprocal links (i.e. the share of
double-connected pairs - alliances formed on the ‘initiative’ from both sides). This is one
of the few characteristics where we account for link direction and examine differences
among the three matching rules. Clearly as a result of the barter-like setup, mutual
linkages, or what we can term double coincidence of wants (Cowan and Jonard, 2004),
are significantly higher in the network generated from the reciprocal partnership rule.
The other two networks are not particularly different in this respect; they both have
relatively fewer mutual linkages.

To see how dense the resulting networks are (in other words, to what extent partners
of partners are connected to each other), we measure the clustering coefficient. Since
our networks are cumulated over 100 periods with many alliances taking place several
times, a weighted generalization of this coefficient is more suitable. From the values
we see that the local structure of the network with reciprocal partnership is the most
dense. Another important network measure is the mean path length30 which proxies the
efficiency of information flow within a network - the smaller the value, the more efficient
a network is in terms of information diffusion. The network with unilateral partnership
has the shortest path, while the popularity contest network has the longest. The network
with reciprocal partnership lies between these two extremes but has a mean path length
much closer to the former one. Combining these two measures, we can assess the small

world property of each network structure. The most common quantitative measure of
this is the small world ratio obtained from dividing clustering coefficient by mean path
length. Typically, values greater than one have been used in previous studies to indicate
that a network is small worldly (Davis et al., 2003). Judging from the weighted version
of this measure, the networks generated from our model, with the exception of the one
with popularity contest, seem to represent small worlds.

By definition, a network with small world properties will be much more clustered
than a corresponding random network but the average path length between its nodes
will be comparable to that of the random network (Watts and Strogatz, 1998). Thus, to
make sure that the resulting networks truly represent small worlds, one has to compare
the relevant measures with an equivalent random network (benchmark). Specifically, the
benchmark is one with not only the same number of nodes and links (which would have

29This feature reflects in most of the other measures that we examine subsequently. Thus, the discus-
sions in the rest of the paper relies more on the results from the other two matching rules.

30This should not be confused with distance. Mean path length is the average number of nodes
separating two distinct nodes (e.g., i and j) in the network, while the distance refers to the (Euclidian)
distance between two nodes in the knowledge space: dij .
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been sufficient for an unweighted one-period network), but also the same distribution of
weights. For that we generate random networks having the same number of nodes and
links as those observed in our ABM. We then randomly assign weights to the links in the
benchmark from the distribution of weights of our observed networks. This procedure was
replicated 100 times31 and average values for clustering coefficient, mean path length and
small world ratio were obtained. After that, we divide measures derived from the ABM
by the values from benchmark networks, denoting the resulting network characteristics
as rescaled.32

Unilateral partnership Reciprocal matching Popularity contest

S
in

g
le

ex
a
m

p
le

# of components 2 6 39

Average degree 26.20 21.76 15.42

Density 0.262 0.209 0.100

Fraction of reciprocal links 54.06 69.77 55.83

Weighted clustering coefficient 1.01 1.56 0.63

Rescaled clustering coefficient 2.16 3.28 2.32

Weighted mean path length 0.55 0.75 1.59

Rescaled mean path length 1.16 1.66 1.17

Weigted Small World ratio 1.85 2.08 0.40

Rescaled Small World ratio 1.86 2.04 2.00

R
es

u
lt
s

o
v
er

1
0

re
st

a
rt

s

# of components 2 (0.7) 4 (1.05) 24.67 (14.01)

Average degree 23.04 (2.84) 19.92 (1.27) 10.99 (2.25)

Density 0.242 (0.018) 0.199 (0.019) 0.101 (0.021)

Fraction of reciprocal links (in %) 54.80 (2.93) 65.92 (2.42) 48.43 (4.65)

Weighted clustering coefficient 1.06 (0.10) 1.35 (0.12) 0.79 (0.22)

Rescaled clustering coefficient 2.50 (0.33) 3.28 (0.28) 2.39 (1.29)

Weighted mean path length 0.64 (0.09) 0.71 (0.05) 1.88 (0.33)

Rescaled mean path length 1.21 (0.09) 1.40 (0.11) 1.40 (0.36)

Weighted Small World ratio 1.69 (0.28) 1.89 (0.17) 0.43 (0.12)

Rescaled Small World ratio 2.06 (0.23) 2.36 (0.24) 1.92 (1.54)

Note: In the lower panel, average values (standard deviations in parentheses) are reported.

Unilateral partnership Reciprocal matching Popularity contest

Figure 1: Characteristic networks with different alliance formation rules

31As before, this figure is in keeping with earlier studies.
32In doing so and given the types of networks we obtain in our model, we concentrated our comparison

on the largest connected components only. This is because in the popularity contest scenario, there are
potentially several disconnected components with a relatively moderate total number of links. This gives
rise to very sparely connected random networks and thus very low clustering coefficients. Whereas in
the first two matching rules (unilateral and reciprocal) this approach leads to only marginal differences
in the rescaled values, the difference for the popularity contest approach is dramatic. The implication
of this approach is that the network with popularity contest is not necessarily small worldly as a whole
but its largest connected component is.
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The characteristic networks generated in our ABM have rescaled small world ratios
about twice as high as the one from a corresponding random network. This is primarily
because of the much denser local structures generated in our model and not the shorter
paths (whereas random networks have systematically shorter paths than constructed
networks, their clustering coefficients are two to three times smaller).33 In general, this
implies that even in the absence of network-based structural and strategic motives, net-
works that emerge from bilateral partnership based on knowledge considerations with
endogenous absorptive capacity demonstrate small world properties.

The 3-D graphs on the right in Figure 2, also obtained from a single simulation run,
display the ‘matrices of cooperation’ (also refered to as weighted adjacency matrices) for
the different matching rules. This refers to the number of partnerships aggregated over
the 100 periods, distinguishing whether a particular alliance was ‘initiated’ by partner
i: in such a case the partnership is attributed to i’s raw - left axis. We see a much
larger number of alliances in the unilateral partnership formation resulting also in a
larger density. In contrast, in the reciprocal partnership scenario, the alliances are more
symmetrically dispersed in the matrix resulting in a higher reciprocal rate of partnerships.
To illustrate their difference, we compare these two networks in terms of the amount of
profits generated by firms over the time interval under consideration. It is seen that
although on average firms in the unilateral setting generate more (474 versus 448), this
comes at the cost of a larger disproportion between the firms. The coefficient of variation34

in the unilateral setting is 5.95 (versus 5.63 in the reciprocal partnership setting).
The popularity contest scenario results in the smallest mean and coefficient of vari-

ation: 377 and 5.3, respectively. As earlier pointed out, in this scenario there is some
level of competition for alliances among these firms which detrimentally affects aggregate
performance (though particular firms perform well). Here only a moderate number of
firms form an alliance more than ten times, and many of those firms cooperate only with
each other. Those firms performing well, as expected, are the ones allying most (cor-
relation between the aggregated profits and the total number of partnerships ≈ 82%).
The dramatic difference in the number of partnerships cannot be explained by the R&D
budget allocation (correlation is merely ≈ 32%), but rather the network location of those
firms (correlation with weighted betweeness centrality is ≈ 74%).

4.2 Different knowledge regimes

To provide a more systematic insight about the network characteristics and the contin-
gent effects of firms’ position (both in the network and the knowledge space), we analyze
results by varying the magnitude of voluntary and involuntary spillovers. In particular,
we fix δn = 0.05 varying the voluntary spillovers and then similarly alter involuntary ones
by fixing δc = 0.2. The results are produced for ten restarts35 and reported in medians
together with 5-95% quantiles to account for the variance in those results. The logic is as
follows. Alliance formation in our model is solely for knowledge sharing, and partner se-
lection is driven not by social capital but mainly by absorptive capacity. Firms therefore
tend to select partners from whom they expect to gain the largest amount of knowledge

33Note, however, that the result for the popularity contest approach is not that stable, and in certain
restarts the small world ratio of the generated network can be close to that of the benchmark.

34Simply the standard deviation divided by the mean.
35A single restart of the current ABM for a given parameter setting requires from 130 to 250s using

Matlab 7.11 and Pentium IV 3.3 GHz (depending on the matching rule applied).
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Figure 2: Descriptive information on the network with different formation rules
Notes for Figure 2: On the left upper plots firms are given on the X-axis, while aggregated profits over 100 periods are
on the Y-axis. Colors in the stacked bars indicate attribution of the profits to a particular period. On the lower left plots
of the respective matching rule again firms are on the X-axis, while the total number of alliances firm have participated
in are on the Y-axes. Similarly, the color on the stacked bars represent a particular period a partnership was taking place
in. On the right plots the weighted adjacency matrices are given: the X-axis (left side of the 3-D plot) indicates a firm
successfully ’offering’ an alliance, while Y-axis - the company accepting it. Z-axis illustrates the total number of alliances
between the firms.
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at the lowest cost (Bala and Goyal, 2000). Thus, changes in the quantity of knowledge
available through partnership (voluntary spillovers) should affect partnership formation.
Moreover, the knowledge gained from an alliance is combined with externally available
knowledge (involuntary spillovers) as inputs into the innovation process. Consequently,
changes in the quantity of involuntary spillovers should also affect alliance formation.
Taken together, changes in those spillovers reflect in aggregate network structure and
performance as well as the contingent effects of firms’ network position on their inno-
vativeness. Such changes are supposed to occur at different times in the history of an
industry. Typically, when an industry is young, knowledge is more tacit and requires
cooperation to gain access. Thus, a higher intensity of voluntary spillovers can be ob-
served. In contrast, in a mature industrial setting, knowledge is more codified and thus
firms do not necessarily need to cooperate to gain access to external knowledge (higher
involuntary spillovers).

4.2.1 Network structures in different knowledge regimes

Figures 3-5 show the effects of involuntary spillovers (δn) on the aggregate network struc-
ture and performance. The effects of voluntary spillovers are shown in Figures 6-8. In all
cases, we report first the dynamics in the small world ratios (subplot (a)). In subplot (b)
we illustrate the dynamics in the length of cooperation (or duration of alliances). Here we
count all the cooperations between any two firms actually taking place, measure how long
they were lasting without discontinuation - irrespective of whether an alliance was formed
on the ‘initiative’ of one or the other firm - and take the average. The same plot shows
the trend in the total number of alliances in each period. Subplot (c) shows the trend
in aggregated profits generated within the network. Recall that the absorptive capacity
within the context of cooperation (acij) is different from that which is directed on exter-
nal knowledge (aciek), due to different distances between the firm and these knowledge
sources. How these two capacities respond to changes in the quantities of knowledge is
shown in subplot (d). In subplot (e) the trend in % of reestablished cooperations is shown.
This is defined as the share of cooperations during a given period which did not exist
in the immediate preceding period, but existed during one of the three periods before
that, i.e. i and j form an alliance in period t, but not in period t − 1, while they also
had an alliance at least once between t − 2 and t − 4.36 Finally, in all of Figures 3-8,
subplot (f) shows the relative benefits (i.e. amount of knowledge generated from inven-
tive R&D as well as voluntary and involuntary spillovers) and costs of cooperation. The
costs are calculated not as the denominator in equation (8), but as the difference between

(kti)
generated in cooperation

and Πi, i.e. by how much knowledge generated in cooperation has
been reduced due to outgoing spillovers to the partner.

First we discuss how different δn affect aggregate network characteristics and perfor-
mance (Figures 3-5). In general, the networks retain their small world properties for
different amount of involuntary spillovers. Clearly, the networks with unilateral and re-
ciprocal matching are more small worldly, mostly because changes in δn do not affect the
average mean path length and clustering in these networks (subplots (a) and (b), Figures
15-17 in Appendix B).

36The choice of exactly three periods here is meant to be a trade-off: to consider on the one hand
a potentially larger time horizon (since only one period is too short to account for), and on the other
hand to avoid too much of double counting (since the larger the time horizon, the higher the chance that
within it a cooperation might have been discontinued and re-formed several times).
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Figure 3: Network characteristics for different δn and unilateral partnership
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Figure 4: Network characteristics for different δn and reciprocal partnership
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Figure 5: Network characteristics for different δn and popularity contest

Specifically, an increase in the magnitude of involuntary spillovers from firms located
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close enough (in particular, within the radius discussed in Section 2) has no substantial
impact on the rescaled small world ratio (being ≈ 2). In comparison, the network with
popularity contest is less small worldly. Only δn ≈ 0.1 (i.e. 10% of knowledge from
surrounding firms ‘spilling over’ at no cost to a given firm) allows to reach a small world
ratio comparable to the other two networks. For smaller δn the rescaled ratio sometimes
also reaches this value, but this result is not robust.

In general, alliance durations are relatively short and not very responsive to changes
in δn. The values range from ≈ 1.35 periods in the unilateral matching to ≈ 1.45 periods
in the reciprocal matching and ≈ 2.5 periods in the popularity contest. These figures are
generally consistent with empirically observed alliance duration averages of between 1
and 5 years (Rosenkopf and Schilling, 2007). The average duration of cooperation maps
directly onto the total number of alliances. The generally short durations imply increas-
ing number of partnerships as δn increases. Shorter durations in the unilateral matching
context correspond to higher alliance rates (and, by extension, a highly dense and clus-
tered network) while comparatively longer durations lead to relatively lower alliance rates
in the popularity contest scenario. A related measure in this respect is reestablished co-
operations (subplot (e)). Now, reversely, the popularity contest network has the lowest
share of about 10%. Since partners tend to stay longer together in this context, the pos-
sibility for alliances between them to re-occur is comparatively lower than in the other
two networks. Moreover, there are fewer alliances in the popularity contest network. In
the other two matching rules, repeated partnerships are close to 30%, with the reciprocal
partnership having a marginally higher share.

It is worth noting that in the popularity contest network alliance formation increases
consistently across the entire range of δn and more than doubles. The marked increase
may be explained by the fact that for low δn in this scenario cooperations are ‘initiated’
by the most ‘popular’ firms in the population which benefit from their central position
most and invest funds in absorbing both voluntary and involuntary spillovers from more
distinct (in the knowledge space) partners, while majority of other agents prefer the
standalone scenario by absorbing only involuntary spillovers. This is confirmed by the
look on the average distance between partners in cooperation (subplot (d) in Figures 15-
17 in Appendix B): for δn = 0.03 this distance is twice as high in the popularity contest
network than in the other two. However, as involuntary spillovers rise, firms located in
the ‘periphery’ of the knowledge space get an incentive to invest more in absorbing new
knowledge and engaging in R&D cooperation, and the average distance falls.37

Increasing alliance rates, especially at low levels of δn, can also be explained by the
fact that when involuntary spillovers are small, firms rely more on cooperation partners
as sources of additional knowledge for innovation. But as δn rises, firms start to pay
more attention to involuntary spillovers while maintaining their access to knowledge from
alliances. Consequently, the number of alliances in any given period tends to level out at
higher levels of δn. This may also be the reason for the slightly lower clustering coefficients
and mean path lengths observed for higher δn in Figures 15-17 in Appendix B.

This trend is even better observed by looking at the dynamics in learning capaci-
ties (subplot (d)). The absorptive capacity directed towards external knowledge (aciek)
is seen to rise consistently in all the matching scenarios while the absorptive capacity

37In the other scenarios, this distance increases in δn as there are more spillovers to absorb and firms
more equally engage in cooperation. In the unilateral matching this distance is slightly higher as firms
‘offering an alliance’ may ex parte impose a partnership if they find it profitable not requiring any
reciprocity.
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within alliances (acij) slightly falls in the unilateral and reciprocal matching networks
and increases only in the popularity contest approach as more and more firms start to co-
operate.38 These results imply that when involuntary spillovers increase, firms’ capacity
to appropriate them also increase. This is quite logical since, in the scenarios observed
here, the level of voluntary spillovers is fixed; firms may, therefore, shift their learning
attention towards involuntary spillovers which are consistently increasing.

Nevertheless, aggregate profits increase (subplot (c)) mostly due to increasing amounts
of involuntary spillovers assimilated. Profits due to inventive R&D reduce as firms tend
to invest less in invention (subplot (e) of Figures 15-17 in Appendix B). The contribution
of voluntary spillovers assimilated in the R&D profit (darkest area in subplot (f)) as well
as the costs related to R&D cooperation remain relatively the same (slightly fall in the
first two scenarios and increase in the last one). This is to be expected since δc is fixed
and firms do not necessarily become better at appropriating spillovers from cooperation.

Now we consider how changes in voluntary spillovers (δc) affect aggregate network
structure and performance (Figures 6-8). We find that higher voluntary spillovers -
which increase the speed of learning and convergence in the knowledge space according
to (9) - cause the networks to become somewhat less small worldly: the weighted small
world ratios reduce by nearly half.39 However, the rescaled measures which compare our
networks to the random benchmarks do not change much as voluntary spillovers increase
(subplot(a)) though in the popularity contest network, this result is not robust. The small
world properties of these networks appear to be more sensitive to changes in voluntary
spillovers than to involuntary ones.

When voluntary spillovers are small, alliance durations are generally much longer (also
in comparsion to the regime of involuntary spillovers) but fall rapidly as the spillovers
increase. This is primarily due to increased pace of learning which makes continuous
cooperation with the same partner less profitable over time. Thus, alliances are more
often discontinued and firms either find other partners or innovate on their own. This
reflects in the reducing total number of alliances since, in reality, it takes time for firms
to adjust their investments appropriately and to find other suitable partners. The share
of reestablished cooperations remains rather stable: it only slightly falls in the unilateral
matching, while a marginal increase can be observed in the popularity contest (subplot
(e)). This could be because, as earlier demonstrated with the characteristic networks
(Figure 2), cooperation intensity is lower in the popularity contest scenario, and many
cooperating firms repeatedly ally only with each other. Thus, there is an increased
likelihood that previously discontinued alliances are re-formed in this scenario.

Another pronounced effect of the learning rate is on the dynamics in absorptive ca-
pacity (subplot (d)). Learning from involuntary spillovers increases when δc is high and
remains stable above the learning that occurs from voluntary spillovers. Combined with
what was observed earlier in the case of δn, this suggests that firms tend to put more
effort into absorbing spillovers when they are high. More of this learning takes place from
involuntary spillovers because the costs are much lower than for voluntary ones.

38Note here that estimating average absorptive capacity in cooperation ACij we ignore periods when
firms do not form an alliance in order not to downsize the actual absorptive capacity and highlight its
level in cooperation periods.

39Figures 18-20 show also that weighted clustering reduce and mean path length increase marginally.
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Figure 6: Network characteristics for different δc and unilateral partnership
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Figure 7: Network characteristics for different δc and reciprocal partnership
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Figure 8: Network characteristics for different δc and popularity contest

Moreover, acij slightly falls for some intermediate levels of δc and rises afterwards.
This can be explained by changes in cognitive distance. As shown in subplot (d) of Fig-

22



ures 18-20 in Appendix B, average cognitive distance between partners first falls in δc
since learning implies that firms move closer in the knowledge space. As δc reaches its
middle range (δc ≈> 0.4), average distance increases. This may be a result of increasing
absorptive R&D (subplot (e) of Figures 18-20 in Appendix B), where firms reach fur-
ther in the knowledge space to find cooperation partners with novel knowledge. In fact,
firms first reduce investments in absorbing external knowledge (with smaller distance
less investments are required) but then increase them back to roughly the same level.
This causes acij to rise. The combined dynamics here further illustrates the ambigu-
ous relationship between cognitive distance and absorptive capacity that we analyzed in
Egbetokun and Savin (2012).

It is worth noting that aggregate profit reaches its maximum at an intermediate level of
δc in all matching scenarios (subplot (c)). This happens because firms’ learning capacities
allow them to benefit from the combination of shorter distances to partners and increasing
investments in inventive R&D. However, at high levels of δc, aggregate profit drops in
spite of the benefits from inventive R&D and involuntary spillovers as well as increasing
assimilated voluntary spillovers observed in subplot (f). The reason for this is that the
costs of cooperation rise consistently and become more dominant as cooperation becomes
more intense. The inverted ‘U’-shaped dynamics draws attention to the potential pitfalls
of cooperation as emphasised in the empirical literature. Intense cooperation, whether
in terms of repeatedness or persistence, limits the potential for recombinant novelty,
thereby reducing innovative profits. Again, networks with popularity contest consistently
demonstrate the worst aggregate performance which is due to lowest number of alliances
(which, in turn, is a result of competition).

4.2.2 Relationship between firms’ performance and network position

A widely held belief in the literature on alliances and firm networks is that the diffusion
of knowledge in networks characterised by short path lengths is more efficient. Also, it is
thought to be beneficial for firms to occupy influential positions - such as having high be-
tweenness centrality which allows them to act as knowledge brokers - in networks. These
results are normally explained in terms of social capital. Our model, in which networking
is entirely knowledge-driven and any kind of social capital is excluded from consideration,
yet shows results which are consistent with the empirical regularities. The value in this
is that knowledge and technological fit, rather than just social capital, contribute to the
observed performance effects of inter-firm cooperation. An important extension derived
from the results here is how the relationship between network structure and innovative-
ness varies in response to changes in the characteristics of the knowledge space. In this
section we discuss the relationship between an individual firm’s performance40 and the
structure of the network. Figures 9-11 contain the results for varying levels of involuntary
spillovers and Figures 12-14 for varying levels of voluntary spillovers.

In all cases, we report first the correlation between profits and betweenness centrality
(subplot (a)). In subplot (b) we illustrate the correlation between absorptive capacity to
a partner and betweenness centrality. The same plot shows the correlation of absorptive
capacity to external knowledge and betweenness. Subplot (c) shows the correlation be-
tween profits and number of partnerships. In subplot (d) the correlation between profits
and mean path length is shown. The correlations between the two different absorptive
capacities and mean path length are given in subplot (e). Finally, in all of Figures 12-14,

40Recall that performance refers to the amount of R&D profit that the firm generates in each period.
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subplot (f) shows the correlation between profits and absorptive capacity.
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Figure 9: Correlations with firm performance for different δn and unilateral partnership
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Figure 10: Correlations with firm performancefor different δn and reciprocal partnership
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Figure 11: Correlations with firm performance for different δn and popularity contest
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First, we consider changes in the level of involuntary spillovers (Figures 9-11). In
subplot (a), betweenness is positively correlated with performance, suggesting that occu-
pying a brokerage position pays off for the firm. At least in the unilateral and reciprocal
matching networks, the highest correlations coincide with very low values of δn. The cor-
relation then reduces greatly but remains positive as δn increases. The extreme values of
δn correspond to different stages of an industry’s life cycle. Typically, in the early stages,
involuntary spillovers are low. In this context, being in a brokerage position improves
access to tacit knowledge. In the later stages when knowledge is mostly codified and
freely available, although being in a brokerage position is good, it becomes less relevant.

This is quite logical because, in such scenarios, networks are less clustered and bro-
kers tend to become redundant to gain access to spillovers which are freely available. The
only real constraint that each firm faces then is its capacity to absorb and not necessarily
the absence of a broker in its ego-network. The correlation of profit with mean path
length (subplot (d)) tells a consistent story. High values imply late arrival of knowledge
and potentially lower innovation performance. However, when freely available knowl-
edge becomes more abundant, the severity of this effect reduces significantly. Simply
put, a combination of high betweenness and short path length becomes less critical for
performance in mature industries wherein involuntary spillovers are generally high.

The total number of alliances is positively correlated with performance at all levels of
δn but the strength of the correlation reduces as δn increases (subplot (c)). In particular,
the correlation of a firm’s performance with ‘directed’ partnerships (that is, when it
initiates the partnership) is consistently lower than the ‘undirected’ partnerships (that is,
when it either initiates or accepts a partnership). This is consistent with the empirical
finding that too many partnerships can be problematic (Uzzi, 1997; Ahuja and Lampert,
2001), mostly for social capital reasons. In contrast, our result here is driven by changes
in the underlying knowledge regime. When intra-industry spillovers are high, it is less
efficient to maintain a large portfolio of alliances. As we have noted earlier, this situation
is characteristic of the later stages of an industry when firms might be more dispersed
and localised spillovers are less useful (Potter and Watts, 2011).

Also, as expected, absorptive capacity is positively correlated with performance (sub-
plot (f)). The reducing correlation of acij further emphasizes the view that at higher
levels of involuntary spillovers, learning from cooperation becomes less important. Par-
ticularly interesting is to observe the correlations of absorptive capacity with betweenness
(subplot (b)) and mean path length (subplot (e)). The correlations somewhat reflect the
relationship between profits and these network measures. It seems that firms having
favourable network positions (high betweenness and short paths) are motivated to build
up absorptive capacities. This implies that firms adjust their learning (particularly from
partners) depending on their position.

Now we turn to the effect of changes in voluntary spillovers (Figures 12-14). First we
observe from the correlation in subplot (a) that betweenness is highly positively correlated
with performance. The correlation does not change much with variations in δc. This
suggests that brokerage positions are consistently favourable in a regime characterised
by increasing voluntary spillovers. In such regimes, tacitness is high and cooperation is
considered to be essential (von Hippel, 1989). Occupying brokerage positions thus confers
some controlling power on firms. Again, it is crucial to note that this result arises not
from social capital but out of knowledge-driven alliance formation. In this sense, a high
betweenness value can be interpreted as being located in a clustered part of the knowledge
space and having influence in the knowledge diffusion process.
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Figure 12: Correlations with firm performance for different δc and unilateral partnership
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Figure 13: Correlations with firm performance for different δc and reciprocal partnership
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Figure 14: Correlations with firm performance for different δc and popularity contest

Mean path length is negatively correlated with performance (subplot (b)) meaning
that low accessibility impairs innovativeness. In contrast to involuntary spillovers, this
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relationship here does not vary much for different voluntary spillovers. In sum, a combina-
tion of high betweenness and short path length are consistently important for innovation
performance in a highly tacit knowledge regime.

The performance effects of the number of partnerships (subplot (c)) fluctuates as δc
rises. It is highest at some intermediate values of δc, falling otherwise. This seems to
reflect an empirically observed problem associated with alliances. As Ahuja (2000) ar-
gued, at high levels of embeddeddness, the marginal costs of every additional linkage
will outweigh the marginal benefits. Absorptive capacity is consistently positively asso-
ciated with profits. This correlation does not change much with changes in the amount
of voluntary spillovers (subplot (f)). As observed with involuntary spillovers, the corre-
lations of absorptive capacity with betweenness and mean path length somewhat reflect
the relationship between profits and the network measures. Taken together with the
earlier observation, these results indicate that firms display heterogeneity in building up
absorptive capacity depending on the network positions they occupy.

4.3 Robustness checks

To analyse robustness of the results discussed above, a number of alternative settings are
examined.41 First, in the simulation we have set the marginal returns to both inventive
and absorptive R&D as equal.42 It is appealing, however, to try out scenarios where this
does not hold (that is, ψ 6= ξ). To this end, we set either ψ or ξ equal to 0.75 leaving all
other parameters unchanged and repeat the ABM simulation comparing results with the
baseline scenario (the one described before).

What we find is the for ξ = 0.75 investments in inventive R&D become naturally more
lucrative (ρs rise close to 90%), firms’ absorptive capacities in all the scenarios reach on
average lower values as in the baseline setting (between 0.2 and 0.6), which makes part-
nerships less efficient and their number drops by almost one half. The latter results in
lower weighted small world ratios (due to lower clustering coefficients). However, rescaled
small world ratios remain robust and are consistently above one at least in the unilateral
and reciprocal partnership formation rules. Similarly, patterns of correlations identified
in the baseline scenario between R&D profits and network positions (betweenness and
mean path length) and also the positions and firms’ absorptive capacities remain stable.
40%-60%), which results in somewhat higher average absorptive capacity values (partic-
ularly, in the popularity contest matching) - between 0.7 and 0.8 - and larger numbers of
R&D alliances in all the scenarios considered (about 25% higher than in the baseline set-
ting). Small worlds ratios of the emerging networks remain robust: while rescaled values
consistently exceed one (even in the popularity contest matching), the weighted values
are slightly higher (due to higher clustering). The patterns of correlations both between
firms’ network positions and profits, and network positions and learning capacities remain
stable.

Second, we have assumed that firms have perfect knowledge about cognitive distance
between them and others. In other words, firm i knows how far it is from j in the
knowledge space and j also has the same information. To see, how crucial this assumption
is, we introduce some uncertainty in this knowledge by adding some uniformly distributed
error term ǫ reaching in its absolute maximum 50% of the distance between two firms,

41Detailed results are available upon request, but are not included in the paper for the sake of brevity.
42In doing this we were aiming to obtain more general results not giving any preference to one of the

investment directions.
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ǫ ∈ [−1
2
di·;

1
2
di·].

43 This estimation error is added to the distances both to voluntary
and involuntary spillovers (i.e. to diek as well) during the mathing scenarios and, hence,
affects the partner choice and the investment decision. However, the R&D profits are
then estimated with actual distances.

What we observe is that the main findings (on the small world properties, interde-
pendencies between firms’ network positions and profits/learning capacities) remain re-
markably robust (not only qualitatively, but quantitatively). Among the most noticeable
changes are:

• clearly lower quality of expectation about other firm’s investment decision (corre-
lation between Ei(ρj) and ρj is about 50% only). This could have been expected
since the uncertainty in the distances’ evaluation affects the investment decision
and, hence, the latter becomes less predictable;

• some lower average absorptive capacities of firms (0.4-0.6 for unilateral and recipro-
cal matching, 0.2-0.4 for popularity contest). Again, failing to estimate the distance
exactly naturally leads to under-/over-investments in absorptive R&D and, hence,
lower absorptive capacities (recall the inverted ‘U’-shaped function in (7));

• some lower aggregate R&D profits of firms (by 10-20% maximum compared to the
baseline scenario) which is primarily due to lower absorptive capacities.

It is worth to mention that increasing ǫ further (up to 100% of the distance between
two firms), the emerging networks loose their small world properties, while firms’ profits
plummet further down. Thus, the ability to approximate the distance with a sufficient
precision is found to be a very important competence firms must have to be efficient.

In brief, one can conclude that the main findings remain robust for different settings,
although naturally it becomes impossible to try out all the different parameter combi-
nations given the complexity of the model and the number of parameters included. A
possible further step along this line would be to estimate some of the model parameters
as described, for instance, in Gilli and Winker (2003); Winker and Gilli (2004). However,
due to lack of suitable and readily available data, this is left for further research.

5 Conclusion

As an important determinant of learning, absorptive capacity plays a key role in firm-
level innovativeness. Its role in the formation of R&D partnerships, and the resulting
networks, is however, not well understood. This paper starts with the observation that
earlier work on alliances has heavily focused on social capital explanations and that
recent works which attempt to overcome this limitation seem to understate the role and
the complexity of the absorptive capacity phenomena neglecting an important source of
heterogeneity between firms resulting from it. We develop and simulate an agent-based
model in which social capital is absent and alliances are formed based on knowledge
fit depending on endogenous absorptive capacity. Three different matching scenarios
are tested, one of which - the popularity contest - presents a simplified representation

43In this way, the higher the distance between the two firms, the larger the potential error in estimating
the cognitive distance between them.
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of competition.44 The remarkable result from the modeling exercise is that well-known
empirical characteristics of networks are replicated by this ABM. What this tells is that
disregarding the knowledge dimension in trying to explain the emergence, evolution and
performance effects of networks gives, at best, a partial picture of reality.

The networks generated in the model display small world properties which respond to
different extents to changes in the underlying knowledge regimes. The effects of these net-
works on performance vary depending on whether the knowledge space is characterised by
intense cooperation and high voluntary spillovers (regime of high tacitness) or by relative
dispersion and high involuntary spillovers (regime of high codification). In particular, in
a regime of high tacitness, it seems to be more profitable for firms to occupy some kind
of brokerage (high betweenness) and easily accessible (short path length) positions. This
effect is less pronounced in a regime of high codification. Thus, at different stages of
an industry’s history, firms require different network strategies to achieve and maintain
competitiveness through innovation.

A particularly important result relates to the role of absorptive capacity in network
evolution. We observed a consistently strong and positive correlation between firms’
absorptive capacity and their network centrality. This implies that being in a favourable
network position relies on a higher level of absorptive capacity than being on a periphery.
The consistently negative relationship between absorptive capacity and mean path length
tells a consistent story. Efficient knowledge diffusion within a network requires that firms
build up sufficient levels of absorptive capacity. To maximise their benefits, therefore,
firms tend to adjust their absorptive capacity depending on their network positions. This
heterogeneous behaviour is pronounced at extreme spillover levels.

Echoing recent studies (Cowan et al., 2007; Baum et al., 2010), our model further
advances the possibility that empirically observed properties of inter-firm networks may
be due to the characteristics of the knowledge space rather than purely social capital.
Beyond this, however, we identify a time-varying characteristic of the knowledge space
which helps to explain the network properties - that is, variations in the amount of
knowledge spillovers. Network structures observed in mature industries characterised by
high amounts of involuntary spillovers affect firm-level performance differently from the
structures observed in early-stage industries characterised by high amounts of voluntary
spillovers. By extension, network-based policy mechanisms (such as clustering initiatives)
need to take into account the stage of an industry’s development.

Our study may serve as a basis for a large number of extensions. Among those, one
may set firms’ R&D budgets dependent on their past profits, instead of time invariant
and randomly allocated. Besides, we hope that the results of this modeling exercise will
guide a fresh wave of empirical investigations. In partiular, analysis of strategic alliances
in industries where networking is pervasive (such as biotechnology, pharmaceuticals and
information and communication technologies) may benefit from the results stated above.

44What we generally find in this way is that competition reducing the number of alliances detrimentally
affects firms’ innovativeness. On the complexity of modeling competition in this type of models see, e.g.,
Baum et al. (2010, p. 2108).
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Appendices

A Formal Definitions on Network Analysis

The definitions of the networks and its characteristics used in this study are consistent
with the latest studies in this research area (see, e.g. Baum et al., 2010). However, some
minor differences are possible. This section is meant to clarify them.

A.1 Networks

The simulated population of firms N and the L links (or ‘partnerships’, or ‘alliances’
throughout the paper) over 100 periods represent the resulting network. The two firms
(nodes) are connected if there exists a link lij in the network L. The more links to distinct
partners firm i has, the larger its neighbourhood (firms to whom i is directly connected)
NeLi = {ij ∈ L, i 6= j}, which is sometimes denoted as degree (the number of links to
distinct partners held by i: li). The average degree of a network, therefore, is simply
an average over all nodes’ degrees. Another related measure in this context is density

measured as the sum of all links presented in the network L divided by the number of all
possible ties (repeated alliances do not count here), i.e.

DensityL =

∑

lij ∈ L

N(N − 1)/2

with N(N − 1)/2 being the total possible number of (undirected) links in the network.

A.2 Unweighted measures

Considering network characteristics we are most interested in the following three:

• The clustering coefficient measured as an average over neighbourhood clustering of
each firm in the network, where the neighbourhood clustering of firm i is the pro-
portion of neighbours who are neighbours of each other, i.e. are directly connected:

ci =

∑

ljh ∈ L : j, h ∈ NeLi
li(li − 1)/2

.

• The mean path length is the average of all pairwise shortest distances between two
nodes in a given network (computed by means of the Dijkstra’s algorithm). The
more the distinct nodes are located on the shortest path, the larger the resistance
of the path. To cope with infinite distances (if the population of firms is split in two
distinct networks), we equalize them to the maximum distance within the network
containing the node and adding one more unit to the distance, i.e. making the
distance largest available within the given network.

• The betweenness centrality of firm i in the network L is the proportion of the shortest
paths between any two other nodes in the network which pass through i (ph,i,j) to
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total number of shortest paths between these two nodes (ph,j):

bi =

∑

h,j 6=i ph,i,j ∈ L

ph,j
.

A.3 Weighted measures

To take into account the number of times each partnership was over the last 100 periods,
we construct a cumulative matrix of firms’ past alliances W (an example of such matrix
with the distinction between direction of links is illustrated in Figure 2). Hence, each
element of the matrix has a weight 0 ≤ wi,j ≤ 100, with ∀i 6= j,

∑

wi,j capturing the
strength of the link, i.e. its weighted degree.

Using the matrix W all three network characteristics described in Section A.2 can
be ’weighted’. For the weighted clustering coefficient there is a large variety of ways of
doing this (a brief but comprehensive review is provided by Saramäki et al. (2007)). In
this study we implemented the version described in Onnela et al. (2003), which is similar
to the one used in Baum et al. (2010) (e.g., by taking into account weights of all links
of triangles in which firm i is involved). In particular, weighted clustering coefficient of
each node is defined as the geometric average of subgraph link weights:

cwi =
1

li(li − 1)

∑

j,h

(ŵijŵihŵjh)
1/3 ,

where ŵij are node weights normalised by the maximum weight in the network L: ŵij =
wij/max(w). Thus, cwi ∈ [0, 1] due to the normalisation and if ŵij ∈ [0, 1] an unweighted
clustering coefficient can be recovered. Furthermore, contribution of each triangle to cwi
is proportional to the weight of each link in the triangle.

As for weighted mean path length, the Dijkstra’s algorithm finds the least resistance
paths with the distinction that the each link’s resistance equals the inverse weight, w′

i,j =
1/wi,j, indicating the lowest resistance by the most frequently activated partnership.

Finally, the weighted betweenness centrality again uses each link’s resistance set equal
to the inverse weight.
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B Further Results
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Figure 15: Network characteristics for different δn and unilateral partnership
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Figure 16: Network characteristics for different δn and reciprocal partnership
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Figure 17: Network characteristics for different δn and popularity contest
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Figure 18: Further network characteristics for different δc and unilateral partnership
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Figure 19: Further network characteristics for different δc and reciprocal partnership
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Figure 20: Further network characteristics for different δc and popularity contest
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Figure 21: Further correlations with firm performance for δn and unilateral partnership
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Figure 22: Further correlations with firm performance for δn and reciprocal partnership
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Figure 23: Further correlations with firm performance for δn and popularity contest
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Figure 24: Further correlations with firm performance for δc and unilateral partnership
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Figure 25: Further correlations with firm performance for δc and reciprocal partnership
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Figure 26: Further correlations with firm performance for δc and popularity contest
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