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A new class of probability distributions, the so-called connected double truncated gamma
distribution, is introduced. We show that using this class as the error distribution of a linear
model leads to a generalized quantile regression model that combines desirable properties of
both least squares and quantile regression methods: robustness to outliers and differentiable
loss function.

Keywords: quantile regression, log-concave density, penalization, soft thresholding, outlier,
long-tail.

1. Introduction

The least squares estimation of the parameters of a model, connected with a Gaus-
sian error distribution, has been the most favorite method of fitting models for sev-
eral decades. Part of the interest in the Gaussian error and least squares estimates
comes from their convenient mathematical properties. However, in many situations
considering the error as if it is Gaussian is very unrealistic and a famous quote
in statistics suggests: “Normality is a myth”. Many efforts have therefore been
made to extend this concept. In this case gaining more realistic results requires the
solution of a more difficult problem.
One of the very first competitors of the least squares (LS) method is the least

absolute deviations (LAD) method. LS corresponds to minimizing the ℓ2 norm of
the error while LAD uses the ℓ1 norm instead. As it is well-known, in case of a
single variable, mean is the minimizer of the LS expected loss, while median is the
minimizer of the LAD expected loss. As a result of its corresponding distribution,
LAD is more robust to outliers. However, the ℓ1 norm is not differentiable which
makes the numerical minimization task involved more cumbersome when many
variables are involved.
Quantile regression (QR) of [13] is an extension of the traditional LAD regression

to an asymmetric version. However, the non-differentiability of the corresponding
loss function presents a problem and finding a robust error distribution that is easy
to work with in practice is a challenging problem.
The so-called curse of dimensionality also presents a serious problem in recent

statistical literature. This term was introduced by Richard Bellman [3],
and has various interpretations in different fields. The common property
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between all of them is that they refer to high dimensional data. Here,
by curse of dimensionality, we mean that the number of variables in the
model is much larger than the number of observations. This requires
efficient estimation in high dimensional parameter space. As a result sparse
modeling has become prominent in recent years, and [7] have mentioned sparse
models as one of the frontiers of statistical research in the 21st century.
In this context, sparsity refers to having many zeros in the estimated vector of
parameters. In other words, a model selection is done at the same time as the model
fitting. Sparsity can be introduced in the model via a penalty function added to
the loss function. The most famous type of sparse models is the Lasso introduced
by [21]. Lasso adds the ℓ1-norm of the parameters vector to the LS loss function.
The resulting model is sparse but it is not robust to outliers or asymmetric error.
After choosing a good model and a suitable penalty, solving the penalized prob-

lem, is also a challenging aspect. Lasso can be interpreted as a convex minimization
problem with a differentiable loss function and a separable non-differentiable
penalty. Minimization problems of this specific type can be solved efficiently, even
in case of a large number of variables [2]. Using the non-differentiable LAD loss
instead of the LS loss, together with a ℓ1 norm penalty, leads to a more difficult
minimization problem.
In this paper we introduce a differentiable log-concave probability distribution

with heavier tails than the Gaussian distribution and (possibly) with skewness. In
fact, the proposed distribution has tails that are at least as heavy as the tails of the
error probability distribution used in QR. We therefore also propose a generalized
version of the traditional QR, with a convex and differentiable loss function. When
used to model errors in a sparse regression problem, several of the nice properties
of Lasso, i.e. convexity and differentiability of the loss function, will be preserved
and the minimization algorithm of [2] can be used.
The symmetric version of the new class of distributions, so-called connected

double truncated gamma, is introduced in Section 2. Many of the properties of
this class will be discussed. Section 3 will present the asymmetric version of the
density. It will be shown how this distribution can be connected with a generalized
QR. Section 4.1 is dedicated to introducing the model for generalized QR and its
penalized version. An algorithm to solve the penalized problem fast and easily is
given in Section 4.2. Finally, the paper is concluded in Section 5.

2. The symmetric connected double truncated gamma distribution

In this section a new class of probability distributions is introduced. The cor-
responding loss function will produce a generalized quantile regression. The dis-
tribution is called symmetric connected double truncated gamma distribution
(SCDTG). Many of its properties will be studied. An asymmetric version will be
introduced in Section 3.
We first introduce some notations and formulas that will frequently be used

throughout the text. Firstly

Γ(s) =

∫ +∞

0
us−1e−udu and Γ(s, r) =

∫ +∞

r
us−1e−udu (1)

are the usual gamma and upper incomplete gamma functions. We will also use the
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CDF of a gamma random variable with parameter α at point x:

Gα(x) =

∫ x

0

1

Γ(α+ 1)
uαe−udu. (2)

Thus the incomplete gamma function can be computed by:

Γ(s, r) = (1−Gs−1(r))Γ(s). (3)

Furthermore the incomplete gamma function satisfies the following equation

Γ(α+ i+ 1, α) =

(
p∏

l=0

(α+ i− l)

)
Γ(α+ i− p, α)

+e−α
p∑

l1=0

(
l1−1∏

l2=0

(α+ i− l2)

)
αα+i−l1

(4)

for p = 0, 1, 2, . . .. The proof is straightforward using Γ(s, x) = (s− 1)Γ(s− 1, x) +
xs−1e−x.

2.1 Construction and general properties

A random variable X has Laplace distribution if its density has the form: f(x) =
1
2e

−|x|. The distribution is called Laplace, since it is connected with LAD regres-
sion introduced by Laplace (early work on LAD regression was done by Ruggiero
Boscovich; see [20] and [8]). Looking at its construction, its other name, double
exponential, is more useful. The exponential distribution is a special case of the
gamma distribution f(x) = 1

Γ(α+1)x
αe−x, x ≥ 0 for α = 0 (see e.g. [11]). Therefore,

a sort of symmetric double gamma density (with PDF equal to 1
2Γ(α+1) |x|αe−|x|)

would provide a generalized version of double exponential for x ∈ R and hence,
quantile regression.
However we desire a unimodal distribution with log-concave density (hence not

only unimodal but also strongly unimodal). Strong unimodality was introduced by
[9]: a distribution is strongly unimodal if it is unimodal and its convolution with
any other unimodal distribution is unimodal as well. In a very interesting result
Ibragimov [9] could prove that a distribution is strongly unimodal if and only if
its corresponding density is log-concave.
For α = 0 (exponential distribution) there is no problem in this respect, since

the mode of this distribution is at zero. In general the gamma distribution max-
imum is located at x = α which is non-zero of any α > 0. Therefore, the PDF

1
2Γ(α+1) |x|αe−|x| would have two modes, one at x = α and one at x = −α, which

is not desirable. The construction of the SCDTG tries to solve this problem by
following these steps:

(1) truncate gamma from below at x = α: f(x) ∝ xαe−x, x ≥ α
(2) Construct double truncated gamma distribution: f(x) ∝ |x|αe−|x|, |x| ≥ α
(3) Shift each side by α toward zero to connect the two sides: f(x) ∝ (α +

|x|)αe−(α+|x|)

(4) Find the normalizing constant: f(x) = 1
2Γ(α+1,α) (α+ |x|)αe−(α+|x|)

Figure 1 (top) shows these steps graphically. We call the result the symmetric
connected double truncated gamma distribution.
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The SCDTG is different from to the bilateral Gamma distribution
of [12]. The latter is the distribution of X1 − X2 when X1 and X2 are
independent and have Gamma distribution.

Probability density function

A random variable X has symmetric connected double truncated gamma distri-
bution with parameter α is written as X ∼ SCDTG(α), if its density function is
fα(x) as follows:

fα(x) =
1

2Γ(α + 1, α)
(α+ |x|)αe−(α+|x|) (5)

where α ≥ 0 is the shape parameter. Figure 1 (bottom-left) shows the density for
different values of α in comparison with Laplace and Gaussian PDF.

Cumulative distribution function

For the CDF we have Fα(x) = P (X ≤ x) =
∫ x
−∞ fα(u)du, and one may derive:

Fα(x) =





Γ(α+ 1, α− x)

2Γ(α+ 1, α)
if x < 0,

1− Γ(α+ 1, α + x)

2Γ(α+ 1, α)
if x ≥ 0.

(6)

If working with upper incomplete gamma function is difficult, one may use the CDF
of gamma distribution instead by using formula in (3). Figure 1 (bottom-middle)
shows the CDF plots in comparison with the Laplace (α = 0) and Gaussian CDF.
The much heavier tail for larger α’s is obvious.

Quantile function

As is the case for the gamma distribution, finding an explicit form of the quantile
function is not possible, since one needs to compute the inverse of upper incomplete
gamma function. However, using the connection with the gamma CDF and its
inverse (which is available in all standard software packages) one may find the
quantile function:

F−1
α (px) = xp,α =





α−G−1
α (1− 2pxΓ(α+ 1, α)

Γ(α+ 1)
) if px < 1

2 ,

G−1
α (1− 2(1 − px)Γ(α + 1, α)

Γ(α+ 1)
)− α if px ≥ 1

2 .

(7)

where G−1
α is the quantile function of a gamma CDF with shape parameter α.

Figure 1 (bottom-right) shows the quantile function for some different α’s in com-
parison with the Laplace and Gaussian cases. Using inverse transform sampling
method, one may easily use formula (7) to generate random numbers from SCDTG:

(1) generate u from Uniform(0,1)
(2) x = F−1

α (u)
(3) take x as a random number generated from SCDTG with the parameter α.
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Figure 1. Top: connected double truncated gamma distribution construction. Bottom: PDF (Left), CDF
(Middle) and quantile (Right) functions Gaussian and SCDTG for α = 0, 1, 3, 5

Moments

As fα(x) is symmetric around zero (i.e. it is an even function), all its odd moments
are equal to zero. For the even moments (k = 0, 2, 4, . . .) one has:

E(Xk) =
1

Γ(α+ 1, α)

k∑

i=0

(
k

i

)
αk−i(−1)iΓ(α+ i+ 1, α). (8)

This result is proven by splitting the integral in two parts:

E(Xk) =

∫ +∞

−∞
xkfα(x)dx

=
1

c

(∫ 0

−∞
xk(α− x)αe−xdx+

∫ ∞

0
xk(α+ x)αe−xdx

) (9)

where c = 1/2Γ(α+1, α). Calling the first integral I1 and the second integral I2 we
make the change of variables y = α− x in I1 such that: I1 =

∫∞
α (α− y)kyαe−ydy.

Using the change of variable y = α + x in I2, we have: I2 =
∫∞
α (y − α)kyαe−ydy.

As for any even k we know that (α− y)k = (y−α)k, such that: I1+ I2 = 2I1. Now
using the binomial expansion we find:

E(Xk) =
1

Γ(α+ 1, α)

∫ ∞

α

(
k∑

i=0

(
k

i

)
αk−i(−y)i

)
yαe−ydy
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and by changing integral and the summation, we have:

E(Xk) =
1

Γ(α+ 1, α)

k∑

i=0

(
k

i

)
αk−i(−1)i

(∫ ∞

α
yα+ie−ydy

)

=
1

Γ(α+ 1, α)

k∑

i=0

(
k

i

)
αk−i(−1)iΓ(α+ i+ 1, α)

which proves formula (8).
Using property in (4) for p = i− 1 in formula (8) gives the following expression:

E(Xk) =

k∑

i=0

(
k

i

)
αk−i(−1)i

×




i−1∏

l=0

(α+ i− l) +
e−α

∑i−1
l1=0

(∏l1−1
l2=0(α+ i− l2)

)
αα+i−l1

Γ(α+ 1, α)




(10)
again for k even.

Characteristic function

The characteristic function (i.e. Fourier transform) of a density, as its name sug-
gests, can characterize that density. X ∼ SCDTG(α) if and only if its characteristic
function φX(t) = E(eitX) has the following form:

φX(t) =
1

2Γ(α + 1, α)

(
e+iαt

(1 + it)α+1
Γ(α+ 1, α(1 + it))

+
e−iαt

(1− it)α+1
Γ(α+ 1, α(1 − it))

) (11)

where we have used the analytic continuation of the incomplete gamma to complex
numbers.

Properties of the log-density

If X ∼ SCDTG(α), then log fα(x) is:

log fα(x) = − log 2Γ(α,α + 1) +

{
α log(α− x)− (α− x) if x < 0,
α log(α+ x)− (α+ x) if x ≥ 0.

Obviously log fα(x) is a continuous function. Its derivative is:

∂

∂x
log fα(x) =





−α

α− x
+ 1 if x < 0,

α

α+ x
− 1 if x ≥ 0.

For any α > 0 the left and right derivatives at x = 0 are equal. We conclude that
for α > 0 the function log fα is differentiable on the whole real line. As expected,
for α = 0 (the Laplace case), it is not differentiable at zero.
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Figure 2. log-PDF of SCDTG with α = 15 and α = 100 and Stable distribution with α′ = 1 and
α′ = 1.5. The location parameter of the latter is 0, the scale parameter is 1 and the skewness
parameter is 0 (symmetric case)). The log-density of the Stable distribution was calculated
using parametrization-0, in Definition 1.7, p. 8 of [16].

The second derivative of log fα is:

∂2

∂x2
log fα(x) =





−α

(α− x)2
if x < 0,

−α

(α+ x)2
if x ≥ 0.

which is negative ∀x ∈ R. Therefore, fα(x) is log-concave.
The boundedness of −∂2

x logα f(x) implies that −∂x logα f(x) is Lipschitz con-
tinuous. If we set L the smallest Lipschitz constant of −∂x logα f(x), then L = 1/α
for α > 0.

Tails

We have already discussed the CDF of SCDTG(α) which, for a larger α, will
have a larger probability in the tails. An interesting point to investigate would be
how useful such a weight is. Figure 2 shows the log-PDF of the Stable distribution
(see e.g. [18]) for α′ = 1.5 and α′ = 1 (which are not log-concave) and SCDTG for
α = 15 and α = 100 (which are log-concave). As one may see, in log-concave cases
as the tails of the curve of log fα(x) go higher, its peak comes a lot lower. The
reason of such behavior lies in the log-concavity of the SCDTG density. Since for
such densities there is no point of inflection in the log-density, bringing the tails
higher means making the peak lower, which means having a flatter density. As one
may see the log-PDF of SCDTG(100) is nearly a horizontal line compared to a
log-density with points of inflection such as stables ones.
For example the symmetric stable distribution with α′ = 1 (and location pa-

rameter 0, scale parameter 1 and skewness parameter 0) is the standard
Cauchy distribution. It has two inflection points at −1 and +1. These two points
act like joints for the density. This means that the peak of the curve can stay high,
while the tails also come higher at the point of inflection. As one may see, while a
log-density with α′ = 1 has much longer tails than a log-density with α′ = 1.5 (and
identical location, scale and skewness parameter), their peaks are almost
the same.
This discussion would suggest that, using a log-concave density with longer tail

(larger α in our case) would not necessarily perform better than a log-concave
density with shorter tails (smaller α in our case) for modeling data in presence of
larger outliers. If one is interested in really heavy-tails, log-concave densities are
not enough. For this reason we may call such log-concave densities long-tail instead
of heavy-tail.
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3. The asymmetric connected truncated double gamma distribution

Consider f(x) a density symmetric around x = 0. Given two positive real numbers
τ1 and τ2 (τ1, τ2 > 0) the skewed density fτ1,τ2(x) is defined as follows:

fτ1,τ2(x) =
2τ1τ2
τ1 + τ2

{
f(τ1x) if x < 0,

f(τ2x) if x ≥ 0.
(12)

Obviously, for τ1 = τ2 = 1, fτ1,τ2 is the same as f(x) and for any τ1 = τ2, fτ1,τ2 is
still symmetric. Larger τ1 will produce a right skewed density, while larger τ2 would
lead to a left skewed one. Choosing f(x) as the Laplace density and τ1+τ2 = 1, fτ1,τ2
would be equal to the asymmetric Laplace distribution which is used in quantile
regression. In this sense if we use SCDTG distribution of previous section as f(x)
we would have a generalization of the asymmetric Laplace and hence a generalized
quantile regression. Unlike the traditional quantile regression, this general version
has a differentiable loss function for any α > 0. It also shows heavier tails than the
asymmetric Laplace.
Consider F as the CDF of f in (12), the corresponding CDF of fα,τ1,τ2 can be

obtained as:

Fτ1,τ2(x) =





2τ2
τ1 + τ2

F (τ1x) if x < 0,

τ2 − τ1
τ2 + τ1

+
2τ1

τ1 + τ2
F (τ2x) if x ≥ 0.

(13)

And for the quantile function one finds:

xpτ1,τ2
= F−1

τ1,τ2(px)





1

τ1
F−1(

τ1 + τ2
2τ2

px) if px < τ2
τ1+τ2

,

1

τ2
(
τ1 + τ2
2τ1

px −
τ2 − τ1
2τ1

) if px ≥ τ2
τ1+τ2

.

(14)

For τ1 6= τ2 we find that − log fτ1,τ2(x) is just once differentiable. This won’t cause
any problem for using convex optimization algorithms, since we just need the first
derivative.

Theorem 3.1 If − log f achieves its minimum at x = 0 then − log fτ1,τ2(x) is
convex if and only if − log f(x) is convex.

Proof Set g = − log f and g̃ = − log fτ1,τ2 . Suppose g is convex. It suffices to prove
that

g̃(x) ≤ x2 − x

x2 − x1
g̃(x1) +

x− x1
x2 − x1

g̃(x2)

for x1 ≤ x ≤ x2. We show this inequality in the case x1 ≤ 0 ≤ x2 as the cases
x1 ≤ x2 ≤ 0 and 0 ≤ x1 ≤ x2 follow trivially from the convexity of g.
Suppose x ≤ 0 (the case x ≥ 0 is treated analogously). As g̃ is convex for x ≤ 0,

we have:

g̃(x) ≤ 0− x

0− x1
g̃(x1) +

x− x1
0− x1

g̃(0).
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On the other hand, we have that

g̃(0) =
x2 − 0

x2 − x1
g̃(0) +

0− x1
x2 − x1

g̃(0)

≤ x2 − 0

x2 − x1
g̃(x1) +

0− x1
x2 − x1

g̃(x2)

as g̃ achieves its minimum is x = 0. Combing the last two inequalities, we find:

g̃(x) ≤ 0− x

0− x1
g̃(x1) +

x− x1
0− x1

[
x2 − 0

x2 − x1
g̃(x1) +

0− x1
x2 − x1

g̃(x2)

]

=
x2 − x

x2 − x1
g̃(x1) +

x− x1
x2 − x1

g̃(x2).

The converse follows the same lines. �

Theorem 3.2 − ∂
∂x log fτ1,τ2(x) is locally Lipschitz continuous if and only if

− ∂
∂x log f(x) is locally Lipschitz continuous.

Proof Consider k(x) = − log fτ1,τ2(x) and l(x) = − log f(x), then:

k′(x) =
∂

∂x
(− log fτ1,τ2(x)) =

{
τ1l

′(τ1x) if x < 0,

τ2l
′(τ2x) if x > 0.

Consider x < 0, ‖k′(x)−k′(y)‖ = τ1‖l′(τ1x)− l′(τ1y)‖ ≤ τ1L‖τ1x−τ1y‖ = τ21L‖x−
y‖. Where L is the Lipschitz constant of l′. Therefore, Lτ21 is the Lipschitz constant
for k′. The same is true for x > 0. In this case the Lipschitz constant for k′

will be Lτ22 . Therefore, one finds for the Lipschitz constant of k′(x) the value
max(Lτ21 , Lτ

2
2 ) (for any real x). The converse is shown analogously. �

3.1 The loss function and generalized quantile regression

If we consider the PDF in equation (5) and the PDF in equation (12), then the
random variable X will have asymmetric connected double truncated gamma dis-
tribution with parameters α, τ1 and τ2, written as X ∼ ACDTG(α, τ1, τ2), if its
PDF has the following form:

fα,τ1,τ2(x) =
1

2Γ(α + 1, α)

2τ1τ2
τ1 + τ2

{
(α− τ1x)

αe−(α−τ1x) if x < 0,

(α+ τ2x)
αe−(α+τ2x) if x ≥ 0.

(15)

Therefore, the corresponding loss function, T (x− b) = − log f(x− b), is:

Tα,τ1,τ2(x− b) =

{
α− τ1(x− b)− α log(α− τ1(x− b)) if x < b,
α+ τ2(x− b)− α log(α+ τ2(x− b)) if x ≥ b.

(16)

The following theorem shows how using this loss function will give a generalized
version of the famous quantile regression of [13].

Theorem 3.3 Consider the loss function in (16) with the density fα,τ1,τ2(x), if
τ1 = 1 − τ2 and 0 < τ2 < 1 then limα→0 argminb E(Tα,τ1,τ2(X − b)) = xτ2 where
xτ2 is the 100τ2% quantile of Fα,τ1,τ2(x), the CDF of (15).
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Proof By definition one has (skipping subscript α,τ1, τ2 in f for simplicity):

E(Tα,τ1,τ2(X − b)) =

∫ +∞

−∞
Tα,τ1,τ2(x− b)f(x)dx

=

∫ b

−∞
(α− τ1x+ τ1b− α log(α− τ1x+ τ1b)) f(x)dx

+

∫ +∞

b
(α+ τ2x− τ2b− α log(α+ τ2x− τ2b)) f(x)dx.

Now setting τ1 = 1− τ2 and simplifying integrals, one finds:

E(Tα,τ1,τ2(X − b)) = α−
∫ b

−∞
xf(x)dx+ τ2E(X) + bF (b)− τ2b

−α

(∫ b

−∞
log(α− x+ b+ τ2(x− b))f(x)dx+

∫ +∞

b
log(α+ τ2x− τ2b)f(x)dx

)
.

The derivative of E (Tα,τ1,τ2(X − b)) with respect to b is:

0 =
∂

∂b
E (Tα,τ1,τ2(X − b))

= −τ2 + F (b)− α

∫ b

−∞

(1− τ2)f(x)dx

α− (1− τ2)(x− b)
+ α

∫ +∞

b

τ2f(x)dx

α+ τ2(x− b)

(17)

Now, as

α

∫ b

−∞

(1− τ2)f(x)dx

α− (1− τ2)(x− b)
=

∫ b

−∞

α(1− τ2)f(x)dx

α− (1− τ2)(x− b)

=

∫ b

−∞

(α− (1− τ2)(x− b))(1 − τ2)f(x)dx

α− (1− τ2)(x− b)

+

∫ b

−∞

(1− τ2)(x− b)(1− τ2)f(x)dx

α− (1− τ2)(x− b)

=

∫ b

−∞
(1− τ2)f(x)dx

+

∫ b

−∞

(1− τ2)(x− b)(1− τ2)f(x)dx

α− (1− τ2)(x− b)
,

we find that:

lim
α→0

α

∫ b

−∞

(1− τ2)f(x)dx

α− (1− τ2)(x− b)
=

∫ b

−∞
(1− τ2)f(x)dx+

∫ b

−∞
−(1− τ2)f(x)dx = 0,

and analogously for the α → 0 limit of the second integral in (17).
Letting α → 0 in (17) one finds:

F (b) = τ2 ⇒
∫ b

−∞
F (x)dx = τ2 ⇒ b = xτ2 ,

where xτ2 = 100τ2% quantile of F (x). �
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Solving (17) for α > 0 would give a generalized version of the quantiles as a
measure of centrality.

4. The generalized quantile regression model and its penalized version

In Theorem 3.3 we have seen that using the ACDTG as the error distribution will
produce a generalized version of the quantile regression. Here we will introduce
the model and estimate its parameters. First we may consider the simplest model
which is a line through the origin. It will be extended to a general case later on in
this section.

4.1 Simple regression model through origin

First we consider the simple one variable model y = βx+ ǫ, where y is the response
variable, x is the regressor and ǫ ∼ SCDTG(α). The loss is as follows:

T (β) =

n∑

i=1

|yi − βxi| − α

n∑

i=1

log(α+ |yi − βxi|).

The minimizer of T (β) is called β̂ which is the estimator of the parameter β. Clearly
the above loss function has a term −α

∑
i log(α+ |yi−βxi|) extra, as compared to

the LAD loss function.
As T is differentiable (for α > 0), the minimum of the above function is reached

at the root (with respect to β) of the following equation:

n∑

i=1

β̂x2i − xiyi

α+ |yi − β̂xi|
= 0. (18)

As is well-known, the minimizer of the LS loss function is the root of
∑

i β̂x
2
i−xiyi =

0. Thus, the difference of these two is obvious. Although solving equation (18)
is not as straightforward as solving the LS case, standard methods can solve it
numerically.
We have seen the similarities and differences of this loss function and its mini-

mizer with LS and LAD. To study the performance of this method compared to
LAD and LS, we have performed a simulation study. The model y = 3x + ǫ was
used. The error distribution is made as a 5%-contaminated Gaussian distribution
with the standard deviation (STD) equal to 10% of the STD of βx. For the 5%-
contaminated part, two scenarios are used: firstly, 5% is generated from Gaussian
with mean randomly chosen in the interval [0, 15] and secondly 5% is generated
from Gaussian with mean randomly chosen in the interval [15, 30]. Two sample
sizes have been considered (100 and 20), to study the performance for both large
and small sample sizes. For each case the LS and LAD estimates are computed.
Also the estimator based on the generalized quantile regression is computed for
the α resulting in the best β (assuming we know the real β = 3). In addition,
to study the performance of the generalized version as an approximation of the
traditional quantile regression the value α = 0.0001 is considered. For each case,
500 replications are made. Table 1 shows the results.
As one may see for large or small sample sizes there exists an α for which the

GQR estimates becomes consistent. Also GQR with α = 0.0001 provides an almost
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Table 1. Simulation results for the simple regression estimates β̂ comparing the ordinary least squares (OLS),

least absolute deviations (LAD), generalized quantile regression (GQR, for the best value of α), and approximate

quantile regression (AQR, for α = 0.0001) as an approximation of LAD. The line with (α) gives the value of the

best α found from GQR.

5%- contaminated [0, 15]
sample size 20 sample size 100

Method Mean Median STD Mean Median STD
OLS 2.9975 2.9946 0.0757 2.9280 2.9313 0.2251
LAD 2.9983 2.9913 0.0909 2.9975 2.9972 0.0394
GQR 3.0000 3.0000 0.0001 3.0000 3.0000 0.0001
(α) (10.2007) (10.2800) (5.6195) (7.9164) (6.7100) (5.9778)
AQR 2.9983 2.9913 0.0909 2.9975 2.9972 0.0394

5%- contaminated [15, 30]
sample size 20 sample size 100

Method Mean Median STD Mean Median STD
OLS 3.0061 3.0053 0.0774 3.1397 3.1712 0.4911
LAD 3.0055 3.0056 0.0972 3.0034 3.0014 0.0413
GQR 3.0000 3.0000 0.0001 3.0000 3.0000 0.0001
(α) (9.7420) (9.4300) (5.9614) (6.7390) (4.8700) (5.7760)
AQR 3.0055 3.0056 0.0972 3.0034 3.0014 0.0413

exact approximation of the QR estimates. As we have discussed, it seems for a larger
outlier, some smaller (not very small) α’s give better results.

4.2 The general model

Using ACDTG as the error distribution leads to a generalized version of the tra-
ditional quantile regression. If we consider the response variable y, the regressors
X = (x1, . . . , xp), and the linear model y = Xβ + ǫ, with ǫ ∼ ACDTG(α, τ1, τ2),

then to find β̂ using a sample of size n, one may solve the following problem:

β̂ = argmin
β

n∑

i=1

T ((y −Xβ)i) (19)

where T is the loss function in (16). As in traditional quantile regression, the
loss function in (16) is applied to the error; thus, the resulting regression
model is robust to outliers but not necessarily robust to leverage points.

The sparse penalized model

As it was already remarked, nowadays high dimensional problems are very com-
mon. This may lead to problems, especially when the number of variables is much
larger than the number of observations (i.e. ill-posed problems). A way of dealing
with these problems is penalizing the loss function in a way that leads to a sparse
model vector β̂. Lasso of [21], which penalized the LS loss function with the ℓ1-
norm of the parameters vector is the most famous solution of this type. Here we
may consider the ℓ1-penalized GQR. It is defined as follows:

β̂ = argmin
β




n∑

i=1

Tα,τ1,τ2 ((y −Xβ)i) + λ

p∑

j=1

|βj |


 (20)
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where λ ≥ 0 is the penalization parameter (which should also be determined). A

larger λ leads to a more sparse β̂ and λ = 0 is the non-penalized problem.
There are different approaches for selecting the appropriate penaliza-

tion parameter λ for a penalized model. One may use Akaike’s informa-
tion criterion (AIC) [1], the Bayesian information criterion (BIC) [19],
Mallows’s Cp, [14], or its outlier robust version, [17], cross validation,
[15], and its generalized version [10]. An extensive overview of most of
the existing model selection techniques is given in [5].

Solution method

In formula (20) one has a convex differentiable loss function with a convex (non-
differentiable) penalty function. In such setting one can use techniques of convex
optimization. In [2] an efficient algorithm (so called fast iterative soft threshold
algorithm: FISTA) was introduces to solve just such a problem. FISTA consists of
the following simple steps:

• Input: L̃, a Lipschitz constant of ∇ (
∑

i Tα,τ1,τ2 ((Xβ − y)i))

• Step 0: take ω(1) = β(0) ∈ Rp, t(1) = 1

• Step k (k ≥ 1): Compute:

β(k) = pL̃(ω
(k)), t(k+1) =

1 +
√

1 + 4t(k)
2

2

ω(k+1) = β(k) +

(
t(k) − 1

t(k+1)

)
(β(k) − β(k−1)).

(21)

In this algorithm pL̃(ω) is defined as

pL̃(ω) = Sλ/L̃

(
y − 1

L̃
∇T (ω)

)
(22)

where Sσ is the (non linear) soft thresholding operator:

Sσ(β) =





β − σ if β > σ
0 if |β| ≤ σ
β + σ if β < −σ

(23)

for σ ≥ 0, see e.g. [6]. If L is the Lipschitz constant for ∇T , then L̃ = ‖X ′X‖2L,
where ‖X ′X‖2 is the spectral norm of X ′X, i.e., its largest eigenvalue. As we have
computed the derivative of T (∇T ) and also the Lipschitz constant for it, applying
FISTA to our problem is straightforward.
The FISTA algorithm was implemented in Matlab. It is a simple algo-

rithm and it may be implemented in any other programming environ-
ment such as e.g. R.

Simulation study

In order to study the performance of FISTA for ℓ1-penalized GQR, a simulation
study (the same as the one for one variable model) is done. Here we consider an
85%-sparse parameters vector with 150 components. Its non-zero components are
generated from a Gaussian distribution with zero mean and standard deviation
7. They are randomly allocated to 15% nonzeros of the parameters vector. Two
sample sizes are taken: n = 20 and n = 100. Thus, we always have more variables
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Figure 3. Simulation results for the penalized regression estimates comparing the Lasso, the generalized
quantile regression GQR (for the best α) and the approximate quantile regression AQR (with fixed α =
0.0001)

than observations, once with a large sample size and once with a very small sample
size.
Here we consider a more sophisticated error than for the simple regres-

sion model of Section 4.1. Several error distributions are used: Gaussian,
Laplace and Student’s-t with 3 degrees of freedom. Numerical experi-
ments are performed where the contamination percentage is equal to
5%, 10%, and 15%. The location parameter of the contaminated part is
chosen randomly in the intervals [0, 100] or [100, 200], and its scale pa-
rameter is set as 10% or 30% of the standard deviation of y. Studying
all these possibilities separately would produce 36 different cases; the
presentation of the results would require a lot of space, whether in the
form of tables of graphs. Therefore, instead of considering all the com-
binations separately and performing 100 replications for each of them,
5000 replications were done in total with each replication one of the 36
cases (chosen at random). This way the performance of the proposed
model is examined for many different error types, while the results are
kept simple. The high number of replications (5000) ensures that all of
the 36 cases will occur many times.
The Lasso and GQR (for the best α and for α = 0.0001) models are considered.

The error ǫ on the data y is considered to be known. The penalty parameter λ > 0
is chosen each time such that T (ǫ) ≈ T (eλ), where T is the loss function in (16)
and eλ = y −Xβ is the model residual for the chosen λ. The number of iterations
in the FISTA algorithm is equal to 1000. Figure 3 presents the results.
As one may see in Figure 3, for both sample sizes GQR shows better

performance than Lasso. But when the sample size is small, approxi-
mated quantile regression (i.e. GQR with α close to zero) and GQR
for the best α give almost the same results. By increasing the sample
size, one may easily see the better performance of GQR when the α
is chosen, as compared to a near zero α. This result also can be seen
in the estimated α for small and large sample sizes. For small sample
size, the mean, median and standard deviation of α are obtained as
(0.2109, 0.0001, 0.8863), respectively, while for large sample size they are
(1.7182, 0.1001, 2.0910).

Real data

The simulation study of the previous subsection showed the better
performance of the proposed method. In this subsection we analyze a
real data set and examine the performance of the method. The Current
Population Survey (CPS) is a survey of households conducted by the
Bureau of Census for the Bureau of Labor Statistics in United States.
The data we consider is taken from [4] and consist of a random sample
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of 534 persons from the CPS-1985. Table 2 lists the variables in this data
set.

Table 2. Variables in wage data

Variable Description
Education number of years of education
South 1 = person lives in the South, 0 = person lives elsewhere
Sex 1 = female, 0 = male
Experience number of years of work experience
Union 1 = union member, 0 = not a union member
Age age in years
Race (0, 0) = other, (1, 0) = black, (0, 1) = white
Occupation (0, 0, 0, 0, 0) = other, (1, 0, 0, 0, 0) = management,

(0, 1, 0, 0, 0) = sales, (0, 0, 1, 0, 0) = clerical,
(0, 0, 0, 1, 0) = service, (0, 0, 0, 0, 1) = professional,

Sector (0, 0)= other, (1, 0)= manufacturing, (0, 1)= construction
Marriage 0 = unmarried, 1 = married
Wage wage in dollars per hour (response variable)

For analyzing the effective factors on wage it is interesting to analyze
the effect of different factors on the whole conditional distribution of
wage (lower, average and higher wages) and not only its center. While
it’s not possible to do such analysis using Lasso, with GQR or quantile
regression we have the possibility of using an asymmetric loss function
by choosing different τ ’s. We have therefore studied conditional quartiles
of the wage data (τ = 0.25, 0.5, 0.75), and have performed (non penalized)
GQR and quantile regression [13] with wage as the response variable.
The shape parameter α is found in the same manner as before. In order
to study the prediction precision, three-quarter of the data were used to
train the model, and the rest were used to test the prediction precision.
The RMSE’s for the GQR model are obtained as 5.2033, 4.5495, and 4.7274
for τ = 0.25, τ = 0.5, and τ = 0.75, respectively. While the QR model gives
RMSE’s equal to 5.4369, 4.7794, and 5.0985 for these quartiles. As one may
see in this example, for all τ ’s GQR gives a more precise prediction than
quantile regression. As GQR includes QR as an special case for α = 0,
GQR would always give results at least as good as QR.

5. Conclusions

In this paper a new class of probability distributions, the so-called connected double
truncated gamma distributions have been introduced. Many properties of both its
symmetric an asymmetric versions have been studied.
Using it as the error distribution in a linear model will give a generalized quantile

regression which combines desirable properties of LS and QR, i.e. it has a differen-
tiable convex loss function and it is robust to the outliers and to the asymmetric
error. An efficient fast algorithm is adapted to solve the penalized version of the
linear model, considering the SCDTG and ACDTG error. The immediate use of
such a model is approximating a QR in a fast and efficient manner.
One may extends the PDF in (15) to a density with location and scale parameter
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as well:

fα,τ1,τ2,µ,σ(x) =
1

2Γ(α + 1, α/σ)

2τ1τ2
τ1 + τ2





(α− τ1
x− µ

σ
)αe−(α−τ1

x−µ

σ
) if x < µ,

(α+ τ2
x− µ

σ
)αe−(α+τ2

x−µ

σ
) if x ≥ µ

where σ > 0 and µ ∈ R are scale and location parameters, respectively. Therefore,
ACDTG can be considered as a class of log-concave densities with shape, scale,
location and skewness parameters. Such density would be very flexible to model
different types of data. A later study would be concerned with the distributional
properties of this class with parameters other than only α. Also the idea of con-
nected double truncated distributions can be extended to any other distribution
with its support on R+. A direct example would be the Chi-square distribution.
As is well-known, the Chi-square distribution is connected with the gamma distri-
bution, and one may derive the SCDT-Chi-square(α) with ν degrees of freedom as
follows:

fα,ν(x) =
1

4Γ(ν/2, (ν − 2)/4)

(
ν/2− 1 +

|x|
2

ν/2−1

e−(ν/2−1+ |x|
2 )

)

for x ∈ R.
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