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Abstract

We study the low-energy collective excitations in the inner crust of the neutron star, where a

neutron superfluid coexists with a Coulomb lattice of nuclei. The dispersion relation of the modes

is calculated systematically from a microscopic theory including neutron band structure effects.

These effects are shown to lead to a strong mixing between the Bogoliubov-Anderson bosons of

the neutron superfluid and the longitudinal crystal lattice phonons. In addition, the speed of the

transverse shear mode is greatly reduced as a large fraction of superfluid neutrons are entrained by

nuclei. Not only does the much smaller velocity of the transverse mode increase the specific heat of

the inner crust, it also decreases its electron thermal conductivity. These results may impact our

interpretation of the thermal relaxation in accreting neutron stars. Due to strong mixing, the mean

free path of the superfluid mode is found to be greatly reduced. Our results for the collective mode

dispersion relations and their damping may also have implications for neutron star seismology.
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I. INTRODUCTION

The crust of a neutron star represents only about 10% of the star’s radius and 1% of its

mass but is expected to play a key role in various observed astrophysical phenomena such as

pulsar glitches, quasiperiodic oscillations in soft-gamma ray repeaters (SGRs), and thermal

relaxation in soft x-ray transients [1]. The outer crust is primarily composed of pressure

ionized atoms arranged in a regular crystal lattice and embedded in a highly degenerate

electron gas. With increasing density, electrons become relativistic and the rapid growth

of their Fermi energy drives nuclei to become neutron-rich due to electron captures (see

e.g. Ref. [2]). Eventually, at a density ∼ 4 × 1011 g/cm3, some neutrons drip out of nuclei

(see e.g. Ref. [3, 4]). This defines the boundary between the outer crust and the inner

crust. “Dripped” neutrons in the inner crust are expected to become superfluid below a

critical temperature of the order of ∼ 1010 K (see e.g. Ref. [5]). Despite the absence of

viscous drag, the neutron superfluid can still be coupled to the crust due to non-dissipative

entrainment effects arising from elastic Bragg scattering of dripped neutrons by the crystal

lattice [6, 7]. Recent calculations have shown that in some regions of the inner crust only

a very small fraction of dripped neutrons participate in the superfluid dynamics [8, 9].

Consequently, the vibrations of the crystal lattice are expected to be strongly coupled to the

collective excitations of the neutron superfluid [10–12]. Collective excitations are particularly

important for understanding thermal and transport properties of accreting neutron stars

with temperatures in the range T = 107 − 109 K [13].

In this paper, we study low-energy collective modes with large wavelengths compared to

the typical internuclei distance. The existence of two longitudinal modes in the inner crust

and the role of entrainment in determining the dispersion relations were first studied in

Ref. [14] using a hydrodynamic approach. In this pioneering study, long-range perturbations

on the superfluid flow induced by the lattice of nuclei were neglected. Here we show that they

play a crucial role. The low-energy constants that depend on the microscopic properties of

the inner crust are calculated in a consistent approach that properly incorporates the long-

range correlations leading to entrainment effects, first discussed in Ref. [8]. We find that

entrainment of superfluid neutrons by crustal nuclei greatly reduces the velocity of the two

transverse (shear) modes, and this in turn enhances their contribution to the low temperature

specific heat of the inner crust. Entrainment effects also induce a strong mixing between
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the longitudinal lattice phonons and the Bogoliubov-Anderson (BA) bosons [15, 16] of the

neutron superfluid, splitting these modes into a high velocity global sound mode and a low

velocity mode characterized by a relative motion between the neutron superfluid and the

electron-ion plasma. These results should be also relevant for studies of global neutron star

seismic modes with frequencies in the range 20 − 1000 Hz, which could be excited during

violent events such as giant flares in SGRs and binary neutron-star mergers.

In the following section we define our notations and present order of magnitude esti-

mates of the relevant length and momentum scales. In Sec. III we describe the low-energy,

long-wavelength, collective excitation modes and their velocities. The microscopic model

of Ref. [9] is employed in § IV to obtain quantitive values for these velocities. Damping of

these modes is briefly considered in Sec. V. In the Sec. VI we study how entrainment affects

the inner crust specific heat, its thermal conductivity, and its thermal relaxation time scale.

We finally conclude in Sec. VII.

II. BASIC NOTATIONS AND PHYSICAL SCALES

In what follows, we will assume that the inner crust of a neutron star is a perfect crystal.

Each crustal layer will consist of a body-centered cubic lattice containing only one type of

nuclide and will be characterized by Z, the total average number of protons in the Wigner-

Seitz (W-S) cell of the crystal lattice (a truncated octahedron); Acell the total cell average

number of nucleons; A, the cell average number of nucleons bound inside nuclei; and A⋆,

the cell average number of nucleons entrained by the solid crust. As shown in Ref. [9], A⋆

is generally much larger than A and close to Acell due to the Bragg scattering of unbound

neutrons by the periodic potential of the crystal lattice, which manifests itself in neutron

band structure effects.

We will indicate by n = np + nn the total average baryon number density, which is the

sum of the average proton density np and average neutron density nn. Neutrons entrained by

nuclei are effectively bound. Their density will be noted as nb
n. By analogy with conduction

electrons in ordinary solids, neutrons that are not entrained will be referred to as conduction

neutrons and their density will be noted as nc
n. As shown in Ref. [9], the density nc

n is

generally much smaller than the density nf
n of “free” or “dripped” neutrons. Because of

3



Galilean invariance, we have

nn = nb
n + nc

n . (1)

These densities are related to Z, A⋆, and Acell by

nb
n =

A⋆ − Z

Acell
n , (2)

and

np =
Z

Acell
n . (3)

The ion number density nI is determined by

nI =
n

Acell
. (4)

As discussed in Refs. [10–12], the mass density associated with lattice vibrations is given by

ρI = m (np + nb
n) = A⋆mnI , (5)

where m is the nucleon mass (neglecting the small difference between neutron and proton

masses), whereas the total mass density (neglecting the electron contribution) is

ρ = mn = Acell mnI . (6)

The typical length scale associated with the solid crust is the ion-sphere radius defined

by

rI =

(
3

4πnI

)1/3

≈ 75

(
Acell/1000

ρ12

)1/3

fm (7)

where ρ12 = ρ/(1012g cm−3). The characteristic angular frequency and wave number of

lattice vibrations is the ion angular plasma frequency

ωp =

√
4π(Ze)2nI

A⋆m
=

√
4πe2n2

p

(np + nb
n)m

(8)

and the Debye wave number

qD = (6π2nI)
1/3 ≈ 2.4

rI
≈ 0.03

(
ρ12

Acell/1000

)1/3

fm−1 , (9)
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respectively. The ion plasma temperature is defined by Tp = h̄ωp/kB (kB being the Boltz-

mann constant).

The ultrarelativistic electrons found in the inner crust of neutron stars with density

ne = ZnI, are almost uniformly distributed [17] and are characterized by their Fermi wave

number

kFe = (3π2ne)
1/3 =

(
Z

2

)1/3

qD ≈ 7

rI

(
Z

50

)1/3

≈ 0.1

(
ρ12 Z/50

Acell/1000

)1/3

fm−1 . (10)

Small deviations of the electron distribution from uniformity are characterized by the elec-

tron Thomas-Fermi screening wave number

qTFe =

√
4πe2

∂ne

∂µe

=

√
4α

π
kFe ≈ 0.1 kFe ≈

0.7

rI

(
Z

50

)1/3

(11)

where µe = h̄c kFe is the electron chemical potential and α ≡ e2/h̄c ≈ 1/137 the fine structure

constant.

III. LOW-ENERGY DYNAMICS OF THE NEUTRON-STAR INNER CRUST

The equations governing the low-energy dynamics of a nonrelativistic neutron superfluid

immersed in an elastic crust have been derived in Refs. [11, 12, 18]. The corresponding

normal modes of oscillation can be found by considering small perturbations of the densities

and currents from their equilibrium values and solving the resulting linearized hydrodynamic

equations. The first two of these equations arise from the conservation of neutron and proton

numbers

∂δnn

∂t
+ nc

n∇∇∇ · δvnvnvn + nb
n∇∇∇ · δvpvpvp = 0 , (12)

∂δnp

∂t
+ np∇∇∇ · δvpvpvp = 0 , (13)

where δnn and δnp are the perturbed neutron and proton densities, respectively while δvnvnvn

and δvpvpvp are the perturbed neutron and proton velocities, respectively. In the following we will

consider oscillations characterized by wave vectors q ≪ qTFe so the crustal matter remains

electrically neutral locally and np = ne. Treating the neutron-star crust as an isotropic solid

and using i, j, k for coordinate space indices, the momentum conservation can be expressed

5



as

mnc
n

∂δvni
∂t

+ ρI
∂δvpi
∂t

+ nn∇iδµn + L∇iδnn − K̃∇iujj − 2S∇j

(
uij − δij

1

3
ukk

)
= 0 , (14)

where uij is the strain tensor, δµn the perturbed neutron chemical potential, S the shear

modulus, and K̃ the bulk modulus of the electron-ion system

K̃ = n2
p

(
∂µp

∂np
+

∂µe

∂ne

)
, (15)

and the coefficient L given by

L = np
∂µn

∂np
, (16)

takes into account the coupling of the neutron superfluid to the strain field. The condition

for neutron superfluidity is embedded in Josephson’s equation

∂δvnvnvn
∂t

+
1

m
∇∇∇δµn = 0 . (17)

The normal modes have the form of plane waves that vary in space and time as exp[i(qqq ·
rrr − ωt)], where qqq is the wave vector and ω the angular frequency. In an isotropic medium,

the normal modes may be separated into transverse and longitudinal ones. In the long

wavelength limit q → 0, the normal modes all have a soundlike dispersion relation, with

ω = vq, v being the mode speed. The speed of the two transverse lattice modes is given

by [10, 11]

vt =

√
S

ρI
. (18)

Due to interactions between neutron and proton densities and currents, the BA bosons of

the neutron superfluid with velocity vφ are mixed with the longitudinal lattice phonons with

velocity vℓ. Neglecting the coupling of the neutron superfluid to the strain field, the resulting

dispersion relation is given by [11, 12]

(ω2 − v2φ q2)(ω2 − v2ℓ q2) = g2mix ω2 q2 , (19)

where the strength of the mixing is characterized by the parameter

gmix = vφ

√
nb
n

np + nb
n

nb
n

nc
n

, (20)
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first introduced in Ref. [12]. The velocity of the BA mode is

vφ =

√
nc
n

m

∂µn

∂nn

, (21)

whereas the velocity of the longitudinal mode of the lattice is

vℓ =

√
K̃ + 4S/3

ρI
. (22)

In the neutron-star crust, the electron contribution to the bulk modulus dominates, and the

ion contribution can be safely neglected (see, e.g., Sec. 7.1 of Ref. [1]). As a result, vℓ is

approximately given by [19]

vℓ ≈
ωp

qTFe

=

√
np

np + nb
n

np

m

∂µe

∂ne

. (23)

Solving Eq. (14) we find that the eigenmode velocities are given by

v± =
V√
2

√√√√
1±

√

1−
4v2ℓ v

2
φ

V 4
, (24)

where

V =
√

v2ℓ + v2φ + g2mix . (25)

The speed of the transverse lattice phonon in Eq. (18) is unaffected by mixing and is

approximately given by [20]

vt ≈ 0.4
ωp

qD
≈ 0.12

(
Z

50

)1/3

vℓ . (26)

Note that due to entrainment effects, the expressions (21), (23) and (26) for the veloc-

ities of the BA bosons and lattice phonons differ from those obtained considering either a

neutron superfluid alone or a pure solid crust, respectively. The self-consistent inclusion of

entrainment is an important new element of this study.

In the normal phase, any relative motion between the neutron liquid and the crust will

be damped by collisions so in the hydrodynamic regime ions, electrons and neutrons will

be essentially comoving. In this case, the Josephson’s equation have to be replaced by the

condition δvnvnvn = δvpvpvp. As a result, only one longitudinal mode corresponding to ordinary

hydrodynamic sound persists and its velocity is given by

cs =

√
K + 4S/3

ρ
, (27)
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where K is the total bulk modulus of the crust. It is related to the bulk modulus K̃ of the

electron-ion system by

K = K̃ + 2nnL+ n2
n

∂µn

∂nn
. (28)

Since S ≪ K (see, e.g., sec. 7.1 of Ref. [1]), the sound velocity can be approximately written

as

cs ≈
√

∂P

∂ρ
≈

√
np

n

np

m

∂µe

∂ne
+

nn

n

nn

m

∂µn

∂nn
. (29)

The transverse mode velocity is given by

vt =

√
S

ρ
. (30)

While the existence of two weakly damped longitudinal modes is unique to the superfluid

phase, entrainment is fairly insensitive to superfluidity provided the pairing gap ∆ ≪ µn [21],

which is the case in most of the inner crust [22–24].

IV. MICROSCOPIC MODEL FOR THE INNER CRUST OF A NEUTRON STAR

The evaluation of the velocities of the collective modes requires the knowledge of the

susceptibilities defined by ∂ne/∂µe and ∂nn/∂µn, and number densities np and nb
n for each

given baryon density n. At densities above ∼ 106 g cm−3, electrons can be treated as an

ideal relativistic Fermi gas so

∂ne

∂µe
≈ 3ne

µe
. (31)

Electric charge neutrality requires ne = np so both np and ∂ne/∂µe are uniquely determined

by the composition of the inner crust (i.e., the variation of the electron density ne with n),

taken from Ref. [3]. The inner crust was assumed to be made of “cold catalyzed matter”,

i.e., matter in full thermodynamic equilibrium at zero temperature. Nuclei were supposed to

be spherical, an assumption that is generally satisfied in all regions of the inner crust, except

possibly near the crust-core interface where so-called nuclear “pastas” might exist (see, e.g.,

Sec. 3.3 in Ref. [1] for a brief review). The composition of the crust was obtained from a

nonrelativistic Skyrme effective nuclear Hamiltonian solved using the fourth-order extended
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Thomas-Fermi method with proton quantum shell effects added via the Strutinsky-Integral

theorem. Neutron quantum shell corrections, which were shown to be much smaller than

proton quantum shell corrections [25, 26], were neglected. This so-called ETFSI method is a

high-speed approximation to the self-consistent Skyrme-Hartree-Fock equations [27]. These

calculations were carried out with the Skyrme force BSk14 underlying the HFB-14 atomic

mass model [28], which yields an excellent fit to essentially all experimental atomic mass

data with a root mean square deviation of 0.73 MeV. At the same time, an optimal fit to

charge radii was ensured. Moreover, the incompressibility Kv of symmetric nuclear matter at

saturation was required to fall in the experimental range 240± 10 MeV [29]. The symmetry

energy J and its slope L play a crucial role for determining the structure of neutron-star

crusts [30]. The values predicted by the force BSk14, J = 30 MeV, and L = 44 MeV,

respectively, are consistent with various constraints inferred from both experiments and

astrophysical observations [31]. For these reasons, the force BSk14 is expected to be well-

suited for describing the nuclei in the inner crust of a neutron star. In addition, the BSk14

force was constrained to reproduce various properties of homogeneous nuclear matter as

obtained frommany-body calculations using realistic two- and three- nucleon interactions. In

particular, the force BSk14 was fitted to the equation of state of neutron matter, as calculated

by Friedman and Pandharipande [32] using realistic two- and three-body forces. Incidentally,

this equation of state is in good agreement with more recent ab initio calculations [33–36]

at densities relevant to the neutron-star crusts, as shown in Fig.1. Therefore, the properties

of the neutron liquid in the inner crust of a neutron star are well described by the Skyrme

force BSk14. The crustal composition obtained in Ref. [3] is summarized in Table I.

As discussed in detail in an accompanying paper [9], neutron band-structure calculations

are needed to determine nc
n. Here, we note that the key ingredient is the single-particle

(s.p.) dispersion relation εαkkk (α being the band index and kkk the Bloch wave vector) given

by the solution of the Schrödinger equation with the periodic mean-field potential obtained

self-consistently from the ETFSI method. The superfluid density was then found from the

equation

nc
n =

m

24π3h̄2

∑

α

∫

F

|∇∇∇kkkεαkkk|dS(α) , (32)

where dS(α) is an infinitesimal area element of the piecewise Fermi surface associated with

the α band. As described in Ref. [9], in most regions of the inner crust only a small
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FIG. 1: Energy per baryon in pure neutron matter as calculated by the Skyrme force BSk14 [28]

(solid line) and as obtained from next-to-next-to-next-to-leading order in chiral effective field the-

ory [36] (shaded area).

fraction of dripped neutrons contributes to the superfluid density due to Bragg scattering

so nc
n ≪ nf

n or, equivalently A⋆ ≈ Acell. Note that unbound (bound) neutrons with density

nf
n (respectively, nn − nf

n) are characterized by s.p. energies εαkkk lying above (respectively

below) the largest value of the periodic mean-field potential. Results are summarized in

Table I.

The neutron chemical potential is determined by the neutron band structure from the

equation

nn =

∫ µn

−∞

dεD(ε) , (33)

where D(ε) is the density of neutron s.p. states defined by

D(ε) =
∑

α

∫
d3kkk

(2π)3
δ(ε− εαkkk) , (34)

where the kkk-space integration is taken over the first Brillouin zone. Differentiating Eq. (33)

with respect to µn thus yields the neutron number susceptibility

∂nn

∂µn
= D(µn) +

∫ µn

−∞

dε
∂D(ε)

∂µn
. (35)

Because nuclei in the inner crust are neutron saturated, the neutron susceptibility is essen-

tially independent of the neutron bound states except possibly in a small region close to
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n (fm−3) ρ (g cm−3) Z Acell A A⋆

0.0003 4.98 × 1011 50 200 170 175

0.001 1.66 × 1012 50 460 179 383

0.005 8.33 × 1012 50 1140 198 975

0.01 1.66 × 1013 40 1215 170 1053

0.02 3.32 × 1013 40 1485 180 1389

0.03 4.98 × 1013 40 1590 173 1486

0.04 6.66 × 1013 40 1610 216 1462

0.05 8.33 × 1013 20 800 87 586

0.06 1.00 × 1014 20 780 85 461

0.07 1.17 × 1014 20 714 76 302

0.08 1.33 × 1014 20 665 65 247

TABLE I: Ground-state composition of the inner crust of a neutron star (Z,Acell, A as defined in

Section II), as obtained in Ref. [3], for various baryon densities n/mass densities ρ. The effective

number of bound nucleons A⋆ was calculated including band structure effects in Ref. [9]. The

density nb
n of effectively bound neutrons can be obtained from Eq. (2). The density of conduction

neutrons can be found from Eq. (1).

neutron drip. For the reasons explained in Ref. [37], the density D(ε) of neutron unbound

states in a given region of the inner crust is well approximated by the density of s.p. states in

uniform neutron matter for the corresponding density nf
n of dripped neutrons. Using these

approximations, the velocity of the BA mode in the inner crust can be expressed as

vφ =

√
nc
n

nf
n

vfφ , (36)

where vfφ is the velocity of the BA mode in pure neutron matter at the density nf
n associated

with the crustal layer under consideration. This latter velocity is given by [38]

vfφ =
v2F
3

(1 + F0)

(
1 +

F1

3

)
, (37)

where vF is the Fermi velocity in pure neutron matter at the density nf
n while F0 and

F1 are the corresponding dimensionless Landau parameters, whose expressions for Skyrme

interactions can be found in Ref. [39]. We have evaluated vfφ using the same Skyrme effective

interaction BSk14 as that used to determine the equilibrium composition of the crust.
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n (fm−3) gmix (10−2c) vφ (10−2c) vℓ (10
−2c) cs (10−2c) vt (10

−2c) v− (10−2c) v+ (10−2c) λ−/λℓ λ+/λℓ

0.0003 2.11 1.11(1.22) 5.13(5.21) 5.35 0.58(0.59) 1.02 5.56 32.3 1.09

0.001 2.60 1.34(2.56) 3.69(5.40) 4.46 0.42(0.61) 1.08 4.58 9.12 1.28

0.005 3.79 1.64(3.93) 2.60(5.76) 4.78 0.29(0.65) 0.89 4.80 3.98 2.02

0.01 4.34 1.77(4.49) 2.39(5.95) 5.18 0.25(0.62) 0.81 5.20 3.63 2.40

0.02 5.22 1.42(5.21) 2.26(6.28) 5.84 0.24(0.66) 0.55 5.84 4.80 2.74

0.03 5.95 1.62(5.97) 2.31(6.78) 6.55 0.24(0.71) 0.57 6.56 4.59 3.01

0.04 6.67 2.18(6.69) 2.44(6.36) 7.39 0.26(0.67) 0.72 7.39 3.76 3.29

0.05 6.73 4.21(7.69) 2.83(7.35) 8.30 0.24(0.61) 1.44 8.31 2.16 3.84

0.06 6.73 5.86(8.65) 3.31(7.72) 9.28 0.28(0.64) 2.09 9.29 1.72 4.45

0.07 6.20 7.76(9.66) 4.26(8.51) 10.3 0.35(0.71) 3.21 10.3 1.45 5.06

0.08 6.34 8.98 (10.9) 4.87(9.48) 11.4 0.40(0.79) 3.84 11.4 1.37 5.50

TABLE II: Properties of collective modes in the inner crust of a neutron star. The velocities (vφ,

vℓ, cs, vt, v−, and v+) and the mixing parameter gmix are defined in Section III; c is the speed of

light. Values in parenthesis are obtained by neglecting entrainment. The ratios of the mean free

path of the longitudinal modes to that of the unmixed longitudinal lattice phonon are shown in

the last two columns.

The speeds of the collective modes in the inner crust of a neutron star are shown in

Fig. 2, and listed in the Table II. Entrainment modifies the spectrum: vφ, vℓ, and vt

are all significantly reduced (compare dotted and dashed curves), and mixing leads to a

strong splitting between the longitudinal eigenmodes (note the difference between speeds of

the lowest and highest eigenmodes). With increasing density, a strong suppression of the

plasma frequency due to entrainment leads to rapid decrease in the velocity of transverse

and longitudinal lattice phonon modes. Mixing between longitudinal modes leads to a high

velocity eigenmode with velocity v+ and a low velocity mode with velocity v−. The v−

mode is predominantly the superfluid phonon (BA) mode near neutron drip and transforms

to a mode with a large lattice component at the crust-core boundary. The mode with

velocity v+ is a pure lattice mode at neutron drip and transforms to being a mode which is

predominantly a superfluid mode at the crust-core interface.

With increasing temperatures, the neutron superfluidity may disappear in some regions

12



10
12

10
13

10
14

ρ [g cm
-3

]

0

0.02

0.04

0.06

0.08

0.1

0.12
Sp

ee
ds

 [
c]

superfluid bosons
longitudinal lattice phonons
lowest mixed mode
highest mixed mode

10
12

10
13

10
14

ρ [g cm
-3

]

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Sp
ee

ds
 [

c]

FIG. 2: (Color online) Speeds (in units of the speed of light c) of the longitudinal (left panel) and

transverse (right panel) collective excitations in the inner crust of a neutron star. Dotted curves

show results with neither mixing nor entrainment, dashed curves include effects due to entrainment

only and solid curves include in addition the effects due to mixing.

of the crust. In these regions, the two longitudinal modes will merge and give rise to ordinary

sound as discussed at the end of Sec. III. Note, however, that the values for the speeds of

collective excitations indicated in Table II are expected to remain essentially the same for

temperatures T <∼ 1010 K. Indeed, as shown in Ref. [3], thermal effects have a minor impact

on the equilibrium composition of neutron-star crusts in this temperature range. However,

the crust of a real neutron star may not necessarily be in full thermodynamic equilibrium,

as discussed, e.g., in Sec. 3.4 of Ref. [1]. This could affect the spectrum of collective modes.

V. DISSIPATION

Lattice phonons couple strongly to electrons and easily excite electron-hole pairs in the

dense electron gas. This Landau damping of lattice phonons has been studied in Ref. [40]

and an approximate result of the lattice phonon mean free path was obtained. The mean

free path of a thermal phonon that contributes to thermal conductivity was found to be

λlph =
6π

Ze2 γ v̄

1

qD

F (Tp/T )

Λph−e

≃ 72.5

(
40

Z

)2/3 (
F (Tp/T )

v̄ Λph−e

)
rcell , (38)

where

F (Tp/T ) = 0.014 +
0.03

exp (Tp/(5T )) + 1
, (39)
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Λph−e = ln

(
2

γ

)
− 1

2

(
1− γ2

4

)
and γ = qD/kFe , (40)

and v̄ is average velocity of the lattice phonon. Note that for simplicity we have neglected

corrections due to the Debye-Waller factor and the nuclear form factor to the Coulomb

logarithm Λph−e. Such corrections tend to increase the mean free path and Eq. (38) therefore

must be viewed as a lower limit.

Our interest here is to investigate the mean free path of the superfluid phonon mode

in the inner crust. In Ref. [41] it was shown that phonon-phonon and phonon-impurity

scattering were negligible compared to the dissipation that arose due to mixing with the

lattice phonon. The superfluid phonon mean free path, without the inclusion of entrainment

effects, was found to be much larger than that of the lattice phonons because mixing due to

the density interaction was weak. In the following, we include effects due to entrainment,

which is now known to be the dominant contribution to the mixing parameter gmix, and

we show that the mean free path of the superfluid mode is greatly reduced due to strong

mixing. Incorporating this into the dispersion relation in Eq. (19) we obtain

(ω2 − v2φ q2)(ω2 − 2iΓℓ ω − v2ℓ q2) = g2mix ω2 q2 , (41)

where Γℓ = vℓ/λℓ and λℓ is the mean free path of the lattice phonon in the limit of weak

damping (Γℓ ≪ vℓq). In general, λℓ 6= λlph as the latter is an average mean free path

more closely related to the mean free path of the transverse thermal phonon. Nonetheless

it provides an order of magnitude estimate.

Mode mixing induces an indirect coupling between the superfluid BA bosons and elec-

trons. Because the longitudinal modes contain an admixture of superfluid and lattice

phonons, the damping of lattice vibrations due to electron-hole excitations naturally leads

to a finite damping of both modes. In a small region of the crust in the vicinity of the

neutron-drip transition where g2mix ≪ v2ℓ − v2φ the modes are not strongly mixed, and using

the fact that vℓ ≫ vφ, we can obtain from Eq. (41) the analytic relation

λφ ≈ v3ℓ
g2mix vφ

λℓ =

(
vℓ
vφ

)3
nc
n(np + nb

n)

(nb
n)

2
λℓ ≫ λℓ , (42)

between the mean free paths of the superfluid and lattice modes. In other regions mixing is

strong and damping associated with each eigenmodes is found by solving Eq. (41). Although

an analytic solution exists, it is cumbersome to write down explicitly. We present numerical
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values for the ratio of the mean free paths λ+/λℓ and λ−/λℓ where λ± are the mean free

paths of the eigenmodes in the last two columns of Table II. It is meaningful to calculate

these ratios without specifying λℓ because it is independent of λℓ in the weak damping

limit. From the table we see that the mean free path of the mode with a large superfluid

component is large near neutron drip, but decreases rapidly due to mixing when vℓ ≃ vφ. In

the bulk of the inner crust both modes have comparable mean free paths and this behavior

qualitatively differs from that observed in Ref. [41] where entrainment was neglected and

mixing was found to be weak except in a narrow region close to resonance.

VI. IMPLICATIONS

X-ray observations of accreting neutron stars in low-mass x-ray binaries have recently

proved to be very useful for probing neutron-star interiors. The accretion of matter onto

the surface of the neutron star triggers thermonuclear fusion reactions. Under certain cir-

cumstances, these reactions can become explosive, giving rise to x-ray bursts and super-

bursts [42]. The ignition conditions of these thermonuclear flashes depend sensitively on the

thermal properties of the crust. Valuable information on neutron star crusts can also be ob-

tained from the thermal x-ray emission in quiescence following a long outburst of accretion

during which the crust has been driven out of its thermal equilibrium with the core [43].

The thermal relaxation between the accreting and quiescent stages has been monitored for

the four quasipersistent soft x-ray transients KS 1731−260 [44], MXB 1659−29 [45], XTE

J1701−462 [46], and EXO 0748−676 [47]. Numerical simulations of these phenomena have

shown that the cooling is very sensitive to the properties of the neutron-star crust [43, 48, 49].

In particular, the thermal relaxation time of the crust is approximately given by [50, 51]

τ ∼ (∆R)2
(
1− 2GM

Rc2

)−3/2
CV

κ
(43)

where ∆R is the crust thickness, R is the radius, and M is gravitational mass of the neutron

star, while CV and κ are the average heat capacity and thermal conductivity in the density

range between ∼ 0.1n̄cc and n̄cc where n̄cc = 0.08 fm−3 is the crust-core transition density.

The thermal relaxation of hot newly born neutron stars could also shed light on the crust

properties. However, such very young neutron stars have not been observed yet, being

presumably obscured by their expanding supernova envelope.
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FIG. 3: (Color online) Left panel: Debye temperatures ΘD of the longitudinal collective excita-

tions using the same notations as in Fig. 2. Dotted curves show values with neither mixing nor

entrainment, dashed curves include effects due to entrainment only and solid curves include in

addition the effects due to mixing. Right panel: Debye temperature ΘD of the transverse collective

modes (lines with filled squares) and ion plasma temperature Tp = (h̄/kB)ωp (lines with diamonds).

Dotted (dashed) curves show values without (with) entrainment. In both panels, the light blue

band delimits the range of T below which nuclei crystalize (using Γc = 180 to 220).

The inner crust heat capacity is the sum of contributions from the quasiparticle excita-

tions of the electron gas and neutron liquid, and from the collective excitations described

above. In what follows, we describe these contributions to the volumetric crustal heat ca-

pacity. Treating electrons as a relativistic Fermi gas, their heat capacity is simply given by

(kBT ≪ µe)

Ce
V =

1

3

µ2
e

(h̄c)3
kBT . (44)

The heat capacity of non-superfluid degenerate neutrons (for kBT ≪ µn) is similarly given

by

Cn
V =

1

3
π2D(µn)kBT , (45)

where D(µn) is well approximated by the density of states in uniform neutron matter at

the density nf
n [37]. This neutron contribution is enormous and will always dominate in

the layers where neutrons are normal. Once superfluidity sets in, however, Cn
V is strongly

suppresssed and becomes negligible when the temperature is much lower than the critical
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FIG. 4: (Color online) Heat capacity of electrons (e), transverse lattice phonons (tph) and lon-

gitudinal excitations (− and +) in the inner crust of neutron stars at T = 107 K, with mixing

and entrainment effects (solid lines) and without (dotted lines). In the absence of mixing, the

longitudinal modes are the Bogoliubov-Anderson superfluid phonons (sph) and the longitudinal

lattice phonons (lph). For comparison, is also shown the normal neutron contribution (n), but it is

strongly suppressed by superfluidity except in the shallowest and densest parts of the inner crust

where the neutron 1S0 pairing gap becomes vanishingly small.

temperature T n
c [23, 24]. Given the density dependence of the neutron 1S0 gap there are

only two regions, just above the neutron drip point and possibly in the deepest part of the

crust, where Cn
V is relevant (see, e.g., Ref. [13]).

The heat capacity associated with a collective excitation having a dispersion relation of

the form ω = vq is given by

Ccoll
V =

3np

Zx3
D

∫ xD

0

dx
x4ex

(ex − 1)2
, (46)

with xD = ΘD/T , ΘD = (h̄/kB) qDv being the Debye temperature of the collective mode.

At low temperatures, T ≪ ΘD such that xD ≫ 1, one has the standard Debye result

Ccoll
V ≃ 2π2

15

(
kBT

h̄v

)3

= nI
4π4

5

(
kBT

h̄qDv

)3

(47)

while at high temperatures, T ≫ ΘD when xD ≪ 1, one obtains the classical result Ccoll
V =

nI. At low-enough temperatures (T ≪ ΘD and T ≪ T n
c ) the heat capacity of the crust is,
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FIG. 5: (Color online) Same as Fig. 4 for T = 108 K.
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FIG. 6: (Color online) Same as Fig. 4 for T = 109 K..

hence, approximately given by

CV ≃ 1

3

µ2
e

(h̄c)3
kBT +

2π2

15

(
kBT

h̄v̄

)3

, (48)

with

1

v̄3
=

2

v3t
+

1

v3−
+

1

v3+
. (49)

We plot in Fig. 3 the Debye temperatures of the four collective modes and the various

contributions to CV are displayed in Figs. 4,5, and 6 for three typical temperatures of

astrophysical interest. While at T = 109 K the v− mixed mode and the two degenerate
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transverse modes are in the classical regime, all modes are well into the quantum regime at

T = 108 K and T = 107 K. This suggests that entrainment and mixing will not affect the

thermal relaxation of newly-born isolated neutron stars but could be important for accreting

neutron stars.

Figures 4, 5, and6 show that the heat capacity of non-superfluid neutrons would largely

dominate over all collective modes, but becomes insignificant once neutron superfluidity sets

in, i.e., in most of the inner crust. Overall, the transverse lattice mode contribution Ct
V to the

heat capacity, dominates at T = 109 K and 108 K, while electrons dominate at 107 K due to

the linear temperature dependence of Ce
V compared to the T 3 dependence for Ct

V . C
t
V in not

affected by entrainment at T = 109 K, since the transverse modes are in the classical regime,

but at T = 108 K and 107 K it is increased by almost one order of magnitude in most of the

crust. Notice that at T = 108 K without entrainment Ct
V would be comparable to Ce

V while

it clearly dominates once entrainment is taken into account. Moreover, the heat capacity

of the longitudinal mode is increased by several orders of magnitude by entrainment, and

mixing. In particular, the contribution of the lowest mixed mode becomes even comparable

with Ce
V at high temperatures.

Because entrainment modifies the spectrum of collective excitations, it also affects the

heat transport in the crust. The thermal conductivity is generally governed by electrons.

Changes of phonon velocities alter the electron-phonon process hence also the electron ther-

mal conductivity. The conductivity is mainly limited by the Umklapp process, in which an

electron simultaneously Bragg scatters off the lattice, and emits a transverse phonon [52, 53].

Since the scattering rate scales as v−3, where v is the phonon velocity, and vℓ ≫ vt, processes

involving longitudinal phonons are typically negligible. This observation also permits us to

reliably estimate the changes in the electron mean free path due to entrainment. First, we

note that the electron-phonon scattering rate depends on the electron Fermi momentum kFe,

the ion plasma frequency ωp and vt (see Ref. [13] for a discussion). Since vt ∝ ωp/qD, it

follows that effects due to entrainment on the scattering are entirely incorporated through

its effects on ωp. It therefore suffices to employ an existing fitting formula developed in

an earlier work but with a suitably reduced value of ωp due to entrainment. In Fig. 7 we

plot the electron thermal conductivity with and without entrainment effects included. As

anticipated, the conductivity decreases with entrainment simply reflecting the fact that it is

easier to excite lower velocity transverse phonon modes.
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FIG. 7: Electron thermal conductivity κe in the neutron-star crust, with (solid) and without

(dashed) entrainment effects included, at five densities n = 0.0003, 0.001, 0.01, 0.02, and 0.08 fm−3

as labeled on the curves. The minimum of κe occurs at T ∼ 0.1Tp, marked by a square on the

corresponding curve; κe ∝ T−1 in the quantum regime, T ≪ Tp, while it only weakly increases

with T in the classical regime at higher temperatures.

Having described the impact of entrainment on reducing the electron thermal conductivity

and increasing the lattice specific heat, we now discuss their combined effect on the thermal

time scale, Eq. (43). We plot CV /κ in Fig. 8 for five different temperatures. For T = 109 K,

the impact of entrainment is negligible since T is comparable or larger than ΘD of the

transverse modes, as already pointed out previously. As the temperature is decreased,

entrainment leads to a significant enhancement in CV /κ, hence also in τ : at ρ = 1013 g cm3

and for T = 108 K, τ can be increased by more than one order of magnitude. For T = 107 K,

the lowest temperature considered here, the effect of entrainment is smaller, being moderated

by the dominance of the electron contribution to CV .

Although electrons dominate heat conduction under normal conditions, phonons can

contribute either at high temperature when Ccoll
V ≥ Ce

V or when large magnetic fields suppress

electron conduction transverse to the field [40, 41]. In the inner crust, the lattice and

superfluid phonons contributions were estimated in Ref. [40] and Ref. [41], respectively.

From kinetic theory and in the case where phonon conduction is diffusive (rather than

convective), the thermal conductivity is given by

κcoll =
1

3
Ccoll

V v λ , (50)
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FIG. 8: Ratio of the heat capacity CV to the electron thermal conductivity κe at five temperatures,

as labeled. CV includes the ion as well as the electron contributions, the neutron part is neglected.

Continuous lines show values when entrainment, through its modification of Tp, is taken into

account, while in the values for dotted lines it is neglected.

where Ccoll
V is the heat capacity, v is the velocity, and λ is the mean free path of each collective

mode. Entrainment alters the thermal conductivity through these three factors. The larger

specific heat associated with lower velocity transverse modes implies that their contribution

to the heat conduction is proportionately enhanced. In addition, since λ ∝ 1/v, the smaller

vt acts to further increase the conductivity, and the combined effect is to increase the earlier

estimate of Ref. [40] by the factor (A⋆/A)3/2.

The effects on the superfluid phonon contribution is more complex because mixing is

strong throughout the inner crust except in the vicinity of neutron drip. It is only mean-

ingful to discuss heat diffusion due to eigenmodes, and, in general, there are two competing

effects due entrainment. At first entrainment lowers the velocity of the mode with a larger

superfluid component and increases its heat capacity, but with increasing density this in-

crease is overcome by strong mixing which dramatically reduces the mean free path. Since

λ+ and λ− are of the same magnitude as λℓ, and because v+ ≫ vt and v− ≫ vt their con-

tribution to heat transport is typically negligible. This new result implies that superfluid

modes may play a smaller role in heat transport in magnetars than anticipated in Ref. [41],

and it is likely that the enhanced heat conduction due to the transverse mode will dominate

in much of the inner crust.
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VII. CONCLUSIONS

A large fraction of dripped neutrons in the inner crust of a neutron star are entrained by

nuclei and move with them, due to coherent (Bragg) scattering of neutrons by the crystal

lattice [8, 9]. This nondissipative entrainment induces a strong coupling between the su-

perfluid and lattice dynamics and is shown to affect the spectrum of low-energy collective

excitations of the inner crust. Superfluid and longitudinal lattice phonons are found to be

very strongly mixed, and the speed of transverse lattice modes is greatly reduced thus lead-

ing to a significant enhancement of the crustal specific heat at temperatures above ∼ 108 K.

This, combined with entrainment induced reduction in the electron mean free path, entails

an increase of the heat diffusion time in the crust, especially for temperatures in the range

107− 108 K encountered in quasi-persistent soft x-ray transients. This warrants the need to

take into account entrainment effects in the interpretation of the observed thermal relaxation

in these accreting neutron stars.

Shear modes in neutron-star crusts with velocity in the range vt ≃ 10−3−10−2 c have been

proposed to play a role in the interpretation of quasiperiodic oscillations (QPOs) observed

in giant flares from SGRs [54]. The fundamental frequency of the global shear mode is given

by Ω0 ≃ v̄t/2πR, R being the neutron-star radius and v̄t an appropriate average of the shear

velocity in the inner crust, where the mode energy mainly resides [55]. Since entrainment

lowers vt by a factor of about 2− 3 in most of the inner crust, our results suggest that Ω0 is

too small to account for the observed QPO frequencies in the giant flares [56]. It is also likely

that the existence of the low-velocity longitudinal eigenmode in the coupled superfluid-solid

inner crust may be relevant to interpret global oscillation modes.

However, there are several issues that deserve further attention before one can draw

quantitative conclusions from our study. The possible presence of nuclear “pastas” in the

deep regions of the inner crust, which has been neglected here, would reduce the effects

of Bragg scattering [6] and change the temperature dependence of the specific heat at

low temperatures [57] due to the low dimensionality of these configurations. Besides, the

composition and the properties of neutron-star crusts may differ from those of cold-catalyzed

matter that we have considered in this work. We anticipate that quantum and thermal

fluctuations of nuclei about their equilibrium positions, crystal defects, impurities, and,

more generally, any source of disorder would presumably reduce the number of entrained
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neutrons. Quantitative estimates of all these effects is beyond the scope of this work.
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