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An automated  model-based  spindle  detection  algorithm  is proposed.
It models  the  amplitude–frequency  spindle  distribution  with  a  bivariate  normal  distribution.
It automatically  adapts  to  each  individual  subject  and  derivation.
It was  tested  in seven  healthy  children  and  six  adult  patients  suffering  from  different  pathologies,  and  performs  similarly  or better  than  sleep  experts.
Normal modelling  enhances  spindle  detection  quality  compared  to fixed  amplitude  and  frequency  thresholds.
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a  b  s  t  r  a  c  t

Manual  scoring  of  sleep  spindles  can be  very  time-consuming,  and achieving  accurate  manual  sco-
ring on  a long-term  recording  requires  high  and  sustained  levels  of vigilance,  which  makes  it a  highly
demanding  task  with  the associated  risk  of  decreased  diagnosis  accuracy.  Although  automatic  spindle
detection  would  be  attractive,  most  available  algorithms  are  sensitive  to variations  in spindle  amplitude
and  frequency  that  occur  between  both  subjects  and  derivations,  reducing  their  effectiveness.

We  propose  here  an  algorithm  that models  the  amplitude–frequency  spindle  distribution  with  a  bivari-
ate normal  distribution  (one  normal  model  per  derivation).  Subsequently,  spindles  are  detected  when
their  amplitude–frequency  characteristics  are  included  within  a given  tolerance  interval  of  the  corre-
sponding  model.  As  a consequence,  spindle  detection  is  not  directly  based  on  amplitude  and  frequency
thresholds,  but  instead  on  a  spindle  distribution  model  that is  automatically  adapted  to  each  individual
subject  and  derivation.

The  algorithm  was  first  assessed  against  the  scoring  of  one  sleep  scoring  expert  on EEG  samples  from
seven  healthy  children.  Afterward,  a  second  study  compared  performance  of two  additional  experts

versus  the  algorithm  on a dataset  of  six  EEG  samples  from  adult  patients  suffering  from  different  patholo-
gies, to submit  the  method  to  more  challenging  and  clinically  realistic  conditions.  Smaller  and  shorter
spindles  were  more  difficult  to evaluate,  as  false  positives  and false  negatives  showed  lower  ampli-
tude  and  smaller  length  than  true  positives.  In both  studies,  normal  modelling  enhanced  performance
compared  to  fixed  amplitude  and  frequency  thresholds.  Normal  modelling  is therefore  attractive,  as it
enhances  spindle  detection  quality.
. Introduction
Sleep spindles’ detection is of major importance for staging
leep as well as in the field of sleep research. A spindle is com-
only defined as a group of rhythmic waves characterized by
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progressively increasing, then gradually decreasing amplitude, that
may  be present in low voltage background EEG, superimposed to
delta activity, or temporally locked to a vertex sharp wave and to
a K complex (De Gennaro and Ferrara, 2003). Spindles are one of
the hallmarks of Non-Rapid Eye Movement (NREM) stage 2 sleep,
both in adults and children (Iber et al., 2007; Grigg-Damberger

et al., 2007). They are affected by normal ageing, by pathologi-
cal ageing (De Gennaro and Ferrara, 2003; Petit et al., 2004), as
well as by brain pathology; therefore, the spindles could be used
as a marker of normal brain functional development (Fogel and
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mith, 2011; Petit et al., 2004). Furthermore, they have been pro-
osed as ideal candidates to induce, in the neocortex, long-term
ynaptic changes which are necessary for learning and memory
Destexhe and Sejnowski, 2001; Peigneux and Smith, 2010), even
fter a daytime nap (Schmidt et al., 2006). Accordingly, recent evi-
ence in adults suggests that spindles are highly correlated with

ntellectual ability (IQ tests) and with an overnight improvement in
erformance after learning new material (Fogel and Smith, 2011).

Sleep spindles rapidly develop during the first three months
f age. Sizeable maturational changes can be observed through-
ut the developmental phase in terms of frequency, amplitude,
nd amount. These changes reputedly reflect the development of
halamocortical structures and the maturation of the physiologi-
al system that produces spindles (De Gennaro and Ferrara, 2003),
ndicating that spindles are longitudinal markers for the onto-
enic evolution of brain functioning. Conversely, modifications in
leep and spindle variables are observed with age (De Gennaro
nd Ferrara, 2003). Sleep spindles may  thus represent, at the elec-
rophysiological level, an ideal mechanism that reflects long-term
ynaptic changes in the neocortex (Fogel and Smith, 2011). There-
ore, modulations and alterations in sleep spindle activity should
e explored in childhood developmental disorders with associated
ognitive impairments and in brain pathologies (Reeves and Klass,
998; Shibagaki and Kiyono, 1983), that could also be associated
ith impaired sleep-dependent consolidation processes (Urbain

t al., 2011; Van Bogaert et al., 2012; Chan et al., 2011).
Manual scoring of spindles is time-consuming for recordings

hat typically show 1000 spindles (Acir and Güzeliş , 2004). Achiev-
ng accurate manual scoring on long-term recordings requires

 high level of vigilance, resulting in a highly demanding task
hat augments the risk of decreased accuracy in the diagnosis,
specially for sleep-related studies, for which precise informa-
ion (such as spindle’s amplitude, frequency, and length) is often
equired. Beside the laborious aspect of the task, visual analysis
nvolves some subjectivity (inter-human agreement is estimated
o be around 80–90% (Campbell et al., 1980), and degree of consent
s 70 ± 8% (Zygierewicz et al., 1999)). A reliable spindle detection is
herefore attractive, as it would enhance the speed, accuracy, and
nter-rater agreement of spindle scoring.

Various spindle detection algorithms have been previously pro-
osed. Recent ones are based on methods that include fuzzy logic
Huupponen et al., 2000a, 2003), neural network (Shimada et al.,
000; Huupponen et al., 2000b; Acir and Güzeliş , 2004; Ventouras
t al., 2005; Güneş et al., 2011), bandpass filter (Clemens et al., 2005;
uupponen et al., 2007), fast time frequency transform (Knoblauch
t al., 2003a, 2003b), Fourier transform (Huupponen et al., 2007;
uman et al., 2009), wavelet transform (Duman et al., 2009), Gabor

ransform (Schönwald et al., 2003) and matching pursuit (Durka
t al., 2005; Schönwald et al., 2006; Ktonas et al., 2009).

Fewer studies have investigated spindle detection in chil-
ren (Grigg-Damberger et al., 2007; Causa et al., 2010). However,
ssessing automated spindles detection, specifically in childhood,
eems important as spindles show modification in amplitude,
requency, length, density, interspindle interval and topological
istribution from infancy to adolescence (Nagata et al., 1996;
hinomiya et al., 1999; Scholle et al., 2007); therefore, automated
lgorithms should be able to adapt to those variations. Published
pindle detection algorithms in children and in infants are based
n empirical-mode decomposition and Hilbert–Huang transform
Causa et al., 2010), expert procedure and fuzzy logic (Held et al.,
004, 2006), peak identification (Estévez et al., 2002), merge neural
as model (Estévez et al., 2007), and neuro fuzzy approach (Heiss

t al., 2002).

The majority of the proposed algorithms are – directly or indi-
ectly – based on amplitude–frequency analysis, thus banking
n spindle definition and mimicking visual analysis. One of the
ce Methods 214 (2013) 192– 203 193

major difficulties encountered with these detection methods is
the setting of suitable thresholds for the amplitude and the fre-
quency. Spindle frequency is traditionally defined as 12–14 Hz
(Rechtschaffen and Kales, 1968; Grigg-Damberger et al., 2007), but
may  often extend to both higher and lower frequencies. There-
fore, the ‘classical’ 12–14 Hz spindle definition is believed to be
too narrow (Jankel and Niedermeyer, 1985). The difficulty in find-
ing the optimum frequency bounds has produced a large number
of proposed values, among them: 11.5–15 Hz (Fish et al., 1988),
11.5–16 Hz (Zeitlhofer et al., 1997), 11–15 Hz (Ktonas et al., 2009),
11–16 Hz (Clemens et al., 2005), 10.5–16 Hz (Ventouras et al., 2005;
Huupponen et al., 2007), and 10–16 Hz (Zygierewicz et al., 1999;
Huupponen et al., 2000a; Estévez et al., 2002). Beside the often
cited 12–14 Hz frequency range proposed by the National Institute
of Neurological Diseases and Blindness of the U.S. Department of
Health, Education, and Welfare (Rechtschaffen and Kales, 1968),
various organizations have suggested other values to score spin-
dles: 11–16 Hz by the American Academy of Sleep Medicine (Iber
et al., 2007), 11–15 Hz by the International Federation of Clini-
cal Neurophysiology (Noachtar et al., 1999), and 12–16 Hz by the
Japanese Society of Sleep Research (Hori et al., 2001). Finally, the
Paediatric Task Force published a visual scoring of sleep and arousal
in infants and children (Grigg-Damberger et al., 2007), but did not
propose a definite spindle frequency range, underlying the variety
of criteria found in the literature. Similarly, the spindle’s minimum
amplitude is difficult to determine, independently of the chosen
definition of the amplitude (Fish et al., 1988). Previous researchers
have set arbitrary lower amplitude thresholds at 8, 10, 12, and
14 �V (Fish et al., 1988), 10 �V (Estévez et al., 2002; Ventouras et al.,
2005), 15 �V (Zygierewicz et al., 1999), and 25 �V (Zeitlhofer et al.,
1997).

Universal amplitude and frequency intervals are difficult to
define for spindles because of the large variability across subjects
and derivations. Indeed, there is a large variability in both ampli-
tude (Huupponen et al., 2000a; Clemens et al., 2005) and frequency
(Zeitlhofer et al., 1997) across subjects and in both amplitude and
frequency across derivations (Zeitlhofer et al., 1997). Therefore,
it seems difficult to design a spindle detection algorithm without
adapting to this variability.

Consequently, we propose to consider that both amplitude and
frequency ranges vary between subjects and derivations, and to tai-
lor thresholds accordingly. We  designed an algorithm that models
the amplitude–frequency spindle distribution with a bivariate nor-
mal  distribution (one normal model per derivation). Subsequently,
spindles are detected when their amplitude–frequency character-
istics are included within a given tolerance interval (TI) of the
corresponding model. As a consequence, spindle detection is not
directly based on amplitude and frequency thresholds, but instead
on a spindle distribution model that is automatically adapted to
each individual and each derivation. Furthermore, the TI may be
adjusted for more sensitive or selective detection.

Taking this idea one step further, spindle detection may be con-
sidered probabilistic in nature.  In this regard, a given spindle has
a probability of detection, which may  be high or low depending
on its amplitude, frequency, morphology, background activity, and
other attributes. An identical approach has previously been pro-
posed for EEG spikes (Wilson et al., 1996). For instance, an event
with a shape similar to a spindle, but with a low amplitude (com-
pared to its background) or with a particularly high/low frequency,
could be accepted as a spindle by some specialists and not by oth-
ers, whereas a clear spindle would be accepted by all specialists.
Our approach could also be seen as a probabilistic estimation of

spindle events as a function of their amplitudes and frequencies.

To evaluate the ability of our algorithm to detect spindles, we
have analyzed two data sets. The algorithm was first trained and
tested against the scoring of one expert on EEG samples that we
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btained in seven healthy children (Study 1). The objective was
o evaluate the ability of the algorithm to detect spindles for this
ategory. Afterward, a second study compared performance of two
dditional experts versus the algorithm on six EEG samples from
dult patients suffering from different pathologies (Study 2). The
urpose was to submit the method to more challenging conditions,
ince pathologies may  affect the shape of the spindles. Recording
onditions in this database were suboptimal but closer to common
linical situations (i.e. only three derivations were available, samp-
ing frequency was lower, artefacts were more frequent, and noise
evels were higher).

. Materials and methods

.1. Recordings

.1.1. Study 1
A group of 7 healthy children were included in the present anal-

sis (4 girls and 3 boys, with a mean age of 10.1 years, ranging
rom 8.5 to 11.6 years). All subjects underwent scalp EEG with
50–256 Hz sampling frequency and 16-bit resolution. 10–20 elec-
rode placement was used (with 32 electrodes). Data from children

 and 2 were used to train the algorithm. The study protocol was
pproved by the local Committee (Hôpital Erasme Ethical Protocol
2008/338).

.1.2. Study 2
Six polysomnographic recordings from adult patients (3 men

nd 3 women aged between 31 and 53 years) with various
athologies (restless legs syndrome, insomnia, apnoea/hypopnoea
yndrome) were obtained from the DREAMS project database,1 pre-
iously used in various clinical and research investigations, and
ore specifically in spindle detection (Devuyst et al., 2006, 2011).

n these recordings only 3 derivations were available and sampling
requency ranged from 50 Hz to 200 Hz.

.2. EEG sample selection

.2.1. Study 1
A paediatric sleep expert (D.V.) performed sleep staging. One

xtract of each record, corresponding to the first occurrence of
tage-2 sleep, was chosen for this study. Sleep staging was  per-
ormed according to Grigg-Damberger et al. (2007).  The extract
urations ranged from 8.8 min  to 29.8 min  (16.3 ± 8.0 min), with
n overall number of spindles of about 900.

.2.2. Study 2
A segment of 30 min  was extracted from each whole-night

ecording.

.3. Instructions given to the experts and the algorithm

For Study 1, the expert was asked to mark all the spindles that
e could find in the 7 extracts by analyzing all derivations of the
ecording. For Study 2, the samples were given independently to
wo experts for spindles scoring (data provided with the DREAMS
roject database).
The instructions given to the algorithm were identical to the
nes given to the experts, i.e. the algorithm was  programmed
o detect spindles in all derivations of the recording. However,

1 Stéphanie Devuyst and Thierry Dutoit, TCTS Laboratory, University of MONS
nd  Myriam Kerkhofs, CHU de Charleroi Sleep Laboratory, Université Libre
e  Bruxelles. Freely available at http://www.tcts.fpms.ac.be/∼devuyst/Databases/
atabaseSpindles/.
ce Methods 214 (2013) 192– 203

derivations with a mean amplitude lower than 5 �VRMS (root mean
square) were considered disconnected and therefore discarded.

2.4. Description of the algorithm

The detection algorithm presented in this paper follows these
three major steps:

a) amplitude–frequency extraction,
b) spindle distribution modelling, and

(c) spindle detection.

Those three steps are detailed in the next subsequent sections.

2.5. Amplitude–frequency extraction

The signal was segmented using a 0.5 s moving window shifted
by 125 ms  steps along the EEG record. The window length was
selected to be (i) small enough to detect short spindles and to divide
the signal into quasi-stationary segments, and (ii) large enough to
correctly estimate spindle amplitude and frequency (Barlow, 1985).

For each window:

- the RMS  amplitude of the signal was calculated;
- the FFT spectrum was  calculated with a Hamming window. Zero

padding was  used to obtain a 0.1 Hz resolution. This method
has previously shown reliable spindle frequency estimation
(Huupponen et al., 2006). The main frequency of the signal was
evaluated as the one showing the highest power in the 5–35 Hz
frequency range.

An illustration of the RMS  amplitude and main frequency esti-
mation is given in Fig. 1.

2.6. Spindle distribution modelling

Fig. 2a shows, in green, the spindle segments (i.e. the 0.5 s seg-
ments of the signal coinciding with the spindles scored by the
expert) in terms of amplitude and frequency for child 1. To draw
the figure, for each segment, the derivation with the highest energy
in the 12–14 Hz bandpass, at the time coinciding with the segment,
was chosen. The amplitude–frequency values were extracted, for
the chosen derivation and corresponding time instant, and used
to display each point of the figure. The 12–14 Hz frequency range
(shown with blue lines in Fig. 2a) seemed to be too narrow, at least
for this child, as this frequency range does not include all the spin-
dle segments. Fig. 3 (bottom) illustrates, for the same child, the
histogram of the spindle segments for a given derivation. Again, it
can be seen that the spindle segments are not all included in the
12–14 Hz frequency range. This is not surprising as various authors
consider this frequency range to be too strict for spindle detection
(Jankel and Niedermeyer, 1985).

Hence, the segments included in the 12–14 Hz frequency range
were supposed to be part of a larger population, corresponding
to spindle segments. Therefore the statistics underlying spindle
model should include the segments in the 12–14 Hz frequency
range but should also consider that they represent a truncated
set of the global histogram. The shape of the distribution of spin-
dle segments, illustrated in Figs. 2a (in green) and 3 (bottom),
motivated us to choose a bivariate normal distribution to model
the amplitude–frequency behaviour of the spindles. Normal dis-
tribution of spindle amplitude and frequency has been previously

reported (Zeitlhofer et al., 1997).

To build such a model, signal segments were first analyzed
according to their amplitude–frequency characteristics. S1 seg-
ments were defined as segments for which the main frequency

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
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Fig. 1. Illustration of RMS  ampli

anged from 12 to 14 Hz with a RMS  amplitude higher than one
tandard deviation from the mean. This spindle definition is directly
erived from the ‘classical’ spindle definition (Rechtschaffen and
ales, 1968; Grigg-Damberger et al., 2007) since (i) the proposed

requency range is used and (ii) a spindle should be distinguish-
ble from the background to be visually scored. Therefore, these
ignal segments are most likely parts of spindle segments. Fig. 2a
hows S1 segments (in red) in terms of amplitude and frequency
nd Fig. 3 (top) illustrates the histogram of these segments for a
iven derivation.

Based on the S1 histogram, Maximum-Likelihood Estimation
MLE) (Pfanzagl, 1994) was used to estimate the normal model
arameters. Again, since the segments with an amplitude and/or

 frequency below or above the corresponding thresholds are
xcluded from S1, S1 is considered as being a truncated set of the
pindle segments. In this regard, truncated normal distributions
ere used for MLE. Fig. 3 suggests that the resulting model (Fig. 3,
iddle) fit more closely the scoring of the expert (Fig. 3, bottom)

ompared to segments obtained with fixed thresholds (Fig. 3, top).
Subsequently, a second set of segments, labelled S2, was based
n the spindle normal model. This second set was  constituted by
he segments belonging to the 90% TI of the amplitude–frequency
ormal model of the corresponding derivation. A 90% TI was  chosen
o focus on the 90% central population (discarding the 10% extreme

ig. 2. Amplitude–frequency representation of events for child 1. Green: spindle segmen
cored by the expert. To draw the figure, for each segment, the derivation with the hig
as  chosen. The amplitude–frequency values were extracted, for the chosen derivation 

pindle events scored by the algorithm. (a) Segments belonging to the 12–14 Hz bandpa
rom  the mean (i.e. S1 segments). (b) Segments belonging to the 90% TI of the amplitude
nterpretation of the references to colour in this figure legend, the reader is referred to th
nd main frequency estimation.

values) and to better correspond to the scoring of the expert. Fig. 2b
shows S2 distribution (in red) and compares it to the scoring of
the expert (in green). Again, the figure suggests that the segments
derived from the model (Fig. 2b) tend to fit more closely the sco-
ring of the expert than the segments derived from fixed thresholds
(Fig. 2a).

Figs. 2 and 3 also show that the majority of spindle segments
are found within a frequency range of approximately 12–16 Hz.
However, the expert scored some segments with much lower fre-
quencies (as low as 5 Hz). This is not surprising as, for instance, it
is difficult to visually define the beginning and the end of a spindle
with a 125 ms  resolution (i.e. the chosen window shift), and there-
fore, some segments may  be included although they do not belong
to a spindle. The proposed method allows those segments to be dis-
carded, focusing only on segments belonging to spindles to build
its model.

2.7. Spindle detection

Spindle detection is based on the S2 segments. Subsequent

segments were merged together into S2 segment arrays. Two S2
segment arrays were merged together if the time that separated
them was  shorter than the length of the longest array. However,
arrays more than 0.5 s away from each other were not merged.

ts, corresponding to the 0.5 s segments of the signal coinciding with the spindles
hest energy in the 12–14 Hz bandpass, at the time coinciding with the segment,
and corresponding time instant, and used to display each point of the figure. Red:
ss (shown with blue lines) with an amplitude higher than one standard deviation
–frequency normal model of the corresponding derivation (i.e. S2 segments). (For
e web version of the article.)
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Fig. 3. Illustration of S1 histogram (top), the corresponding normal distribution
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 given derivation of child 1.

In order to be considered as a spindle detection event, a spindle
rray has:

 to be constituted of segments whose amplitude and frequency
are included in the 90% TI of the model of the corresponding
derivation (i.e. belonging to S2);

 to be at least 0.5 s long (as required in the definition of the spindle
(Rechtschaffen and Kales, 1968; Iber et al., 2007)).

Furthermore, in Study 1, spindle arrays have to appear in at
east two derivations to be considered as spindle detection events.
s only three derivations were available in Study 2, spindles were
onsidered even if they appeared in only one derivation.

Identical spindle detection was performed with the S1 events,
.e. before normal modelling, to evaluate the benefit of the normal

odelling procedure.

.8. Sensitivity to the initial frequency range

The normal modelling is based on a segment distribution limited
o the 12–14 Hz frequency range (i.e. S1), as it clearly contains spin-
les. As spindle frequency is traditionally defined at least within
he 12–14 Hz frequency range (Rechtschaffen and Kales, 1968;
rigg-Damberger et al., 2007), it seemed important to choose this

requency range for a first study. Since the method takes into
ccount the truncated aspect of S1 segments, the initial frequency

ange (in this case 12–14 Hz) should have little influence on the
tatistical model. Nonetheless, it could still have some influence on
he model’s estimations. For instance, Figs. 2b and 3 suggest that
ce Methods 214 (2013) 192– 203

the models could show lower mean spindle frequencies than the
expert.

To evaluate the impact of the initial frequency range on the
algorithm performance, all possible frequency ranges included in
10–16 Hz were computed (with 1 Hz step and 2 Hz minimum inter-
val between the lower and upper frequencies).

2.9. EMG artefact and alpha wave rejection

For Study 2, EMG  artefact and alpha wave rejection were imple-
mented given the low quality of the recordings. EMG  artefact
rejection was based on a previous method (Devuyst et al., 2011). To
make the distinction between spindles and EMG  artefacts, the spin-
dles power as related to the total power was taken into account. It
is defined as:

Relative spindle power =
∫ 15

11
S(f, t)df

∫ 40
0.5

S(f, t)df
(1)

where S(f,t) is the spectrogram of the signal.
Epochs during which relative spindle power was inferior to a

certain threshold were removed. Devuyst et al. (2011) proposed a
threshold of 22%. In this study, threshold values from 0% to 50%
(with 1% step) were evaluated.

Alpha wave rejection was  also implemented, based on a previ-
ous method (Huupponen et al., 2003). Epochs with a duration of 3 s
or more with a frequency below 12.5 Hz were rejected as probable
alpha activity.

We  assessed the improvement of both EMG  artefact rejection
and alpha wave rejection by successively adding those steps in the
spindle detection algorithm while evaluating their impact on the
detection.

2.10. Statistical analysis of automatically recognized spindles

For Study 1, the detection was  tested against the scoring of the
expert. For Study 2, the detection was  evaluated against the union
of the scoring of both experts, as proposed before for that database
(Devuyst et al., 2011).

Various types of statistical analysis have been previously pro-
posed in the literature. Some are based on the presence of one or
more spindles in an epoch (Duman et al., 2009), which seems less
accurate than the evaluation of spindle detection itself. In this work,
statistics based on spindle detection events were applied. Similarly,
considering the statistics based on spindle detection events, vari-
ous definitions of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) are given, depending on the minimum
overlap between a scored and a detected spindle. In this work, a TP
was counted only if the scoring of the expert and the algorithm
overlapped (i.e. if there was  a time interval during which both
scored and detected spindles occurred). A FN or a FP was counted
otherwise, if either the expert alone or the algorithm alone scored
a spindle, respectively. In this regard, the statistics may  be con-
sidered quite strict, as they are based on spindle detection events
rather than on an epoch, and as no time interval is allowed between
a scored and a detected spindle in order to register a TP.

Various indicators were chosen to evaluate the algorithm and to
compare our results to those reported in previous works: the true
positive rate (or sensitivity), the false positive rate, the true negative
rate (or specificity), and the detection correlation coefficient. The

true positive rate is defined as:

True positive rate = TP
TP + FN

(2)
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t measures the extent to which the algorithm is capable of detec-
ing spindles. The false positive rate is defined as:

alse positive rate = FP
FP + TN

(3)

here FP + TN is equal to the number of all non-spindle seconds
n the recording. It measures the proportion of false alarms of all
etections. The specificity is defined as:

pecificity = TN
TN + FP

(4)

here TN is equal to the number of all non-spindle seconds in the
ecording where no FP was present. It measures the proportion of
egatives that were correctly identified.

Furthermore, the detection correlation coefficient (Wilson et al.,
996), defined as:

etection correlation coefficient =
√

Sensitivity · Selectivity (5)

as used to give an overall estimation of the agreement between
he algorithm and the expert. The selectivity (also labelled positive
redictive value or precision) is defined as:

electivity = TP
TP + FP

. (6)

A Receiver Operator Characteristics (ROC) curve was  also used,
o assess how the true-positive rate of the algorithm can be traded
gainst its false-positive rate. It was obtained by increasing the TI
rom 0 to 99.9% (100 points, logarithmically spaced).

TP, FP, and FN were further analyzed to characterize the lim-
ts of our method. The amplitude and the main frequency of TP, FP,
nd FN were calculated. The derivation used to calculate the ampli-
ude and the frequency of each spindle was the one showing the
ighest energy in the 12–14 Hz bandpass (for positives events, i.e.
P and FP, only derivations for which a spindle was detected were
onsidered). The difference between the amplitude of the spindles
etected by the algorithm and the amplitude expectation (location
f the peak) of the normal model of the corresponding derivation
as calculated for TP, FP, and FN. Similarly, the difference between

he main frequency of the spindles detected by the algorithm and
he frequency expectation of the normal model of the correspond-
ng derivation was also calculated. Means and standard deviations
f these differences were calculated. In this way, relative position-
ng of detected spindle amplitude and frequency with the model
ould be assessed in each group (TP, FP, and FN). Similarly, means
nd standard deviations of TP, FP, and FN lengths were calculated.
ine quality, defined as the relative power of the signal in a ±2 Hz
requency band, was also calculated. This indicator reflects the sine
hape and rhythmic aspect of the spindle; a spindle with a perfect
ine shape at a single frequency would show a sine quality of 100%.
he overlap between the scoring of the expert and the one of the
lgorithm was calculated for TP. The overlap is defined as:

verlap = tExp+Alg

tExp+Alg + tExp + tAlg
(7)

here tExp + Alg is the time period when spindles are jointly scored by
he expert and the algorithm, tExp is the time period when spindles
re scored by the expert alone and tAlg is the time period when
pindles are scored by the algorithm alone.

Finally, the inter-rater agreement was evaluated for the experts

f the second study, through the average of all pairwise expert
ersus expert true positive rate, false positive rate, specificity,
etection correlation coefficient and overlap values, as proposed
y Wilson and Emerson (2002). Ta
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ig. 4. Receiver Operator Characteristic (ROC) curve. Average true positive rate and
verage false positive rate are given for a TI ranging from 0 to 99.9% (100 points,
ogarithmically spaced).

. Results

.1. Algorithm performance in healthy children (Study 1)

Table 1 compares, in the first study, the true positive rate, false
ositive rate, specificity, detection correlation coefficient, and over-

ap for spindles detected with and without normal modelling for
ach child (i.e. based on S2 and S1 segments, respectively). Normal
odelling enhanced overall detection performance, as the average

etection correlation coefficient was increased by 4.6% using this
ethod.
For each child, there was a large increase in the true positive

ate (22.1% higher on average), which was achieved at the cost of
 higher false positive rate (4.1% higher on average), and a lower
pecificity (4.3% lower on average). Focusing on TP, the overlap
etween the algorithm and expert’s scoring was also higher (10.3%
n average) when modelling was used.

.2. True-positive, false-positive, and false-negative analysis
Study 1)

Spindle TP, FP, and FN were further analyzed in Tables 2–4,
espectively. Table 2 indicates that both TP amplitudes and TP fre-
uencies were lower than the mean of the corresponding derivation

n the model (0.9 �VRMS and 1.1 Hz on average, respectively). This
ay  be due to the analysis performed on whole spindles, rather

han solely on S2 events, and therefore also including signal por-
ions that were not taken into account by normal models. Compared
o Table 2, Tables 3 and 4 indicate that both FP and FN showed lower
mplitudes and smaller lengths than TP. As expected, smaller and
horter spindles were more difficult to evaluate. Sine quality and
requency values suggest no specific trend.

.3. Receiver Operator Characteristic curve (Study 1)
The ROC curve, in Fig. 4, shows that 75% and 95% of true posi-
ive rates were achieved with corresponding false positive rates of
ess than 5% and 13%, respectively. Furthermore, the algorithm is Ta
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Table 3
False-positive detection analysis in Study 1. Amplitude, frequency, sine quality, defined as the relative power of the signal in a ±2 Hz frequency band, and the length are given. The difference between the amplitude and the
frequency  of detected spindles and, respectively, amplitude and frequency expectation of the normal model of the corresponding derivation is also given.

Child Extract
duration
(min)

Mean Standard deviation

Amplitude
(�V)

Spindle
amplitude−amplitude
expectation of the
model (�V)

Frequency
(Hz)

Spindle
frequency−frequency
expectation of the
model l (Hz)

Sine
quality

Length
(s)

Amplitude
(�V)

Spindle
amplitude−amplitude
expectation of the
model (�V)

Frequency
(Hz)

Spindle
frequency−frequency
expectation of the
model l (Hz)

Sine
quality

Length
(s)

1 8.8 17.7 −6.0 12.6 −0.7 0.7 0.9 1.7 3.7 0.8 0.9 0.1 0.3
2  14.8 17.3 −3.8 11.7 −1.3 0.6 1.1 2.8 2.6 1.1 1.1 0.1 0.6
3 29.8  11.8 −1.9 12.0 −0.8 0.7 0.9 2.7 2.4 1.0 1.0 0.1 0.4
4 25.1  16.5 −3.1 11.8 −1.1 0.6 0.9 6.9 2.6 1.4 1.4 0.1 0.4
5 9.2  14.8 −1.3 11.5 −1.1 0.6 1.1 2.0 2.2 1.1 1.0 0.1 0.6
6  13.8 13.0 −1.6 11.9 −0.9 0.7 1.0 2.1 2.0 0.9 0.8 0.1 0.5
7 12.7  19.0 −2.6 11.7 −0.8 0.7 0.9 4.1 3.4 1.2 1.2 0.1 0.4

Avg. 16.3  15.7 −2.9 11.9 −1.0 0.6 1.0 3.2 2.7 1.1 1.1 0.1 0.4

Table 4
False-negative detection analysis in Study 1. Amplitude, frequency, sine quality, defined as the relative power of the signal in a ±2 Hz frequency band, and the length are given. The difference between the amplitude and the
frequency  of detected spindles and, respectively, amplitude and frequency expectation of the normal model of the corresponding derivation is also given.

Child Extract
duration
(min)

Mean Standard deviation

Amplitude
(�V)

Spindle
amplitude−amplitude
expectation of the
model (�V)

Frequency
(Hz)

Spindle
frequency−frequency
expectation of the
model l (Hz)

Sine
quality

Length
(s)

Amplitude
(�V)

Spindle
amplitude−amplitude
expectation of the
model (�V)

Frequency
(Hz)

Spindle
frequency−frequency
expectation of the
model l (Hz)

Sine
quality

Length
(s)

1 8.8 21.3 −5.4 12.7 −0.7 0.6 1.1 7.7 8.0 2.0 2.0 0.1 0.6
2  14.8 18.8 −2.8 12.1 −0.9 0.5 1.2 5.4 4.7 1.5 1.5 0.0 0.5
3  29.8 11.3 −1.1 12.3 −0.7 0.7 0.8 2.3 2.8 1.6 1.6 0.1 0.3
4  25.1 18.7 −2.1 12.4 −0.5 0.6 1.0 19.5 19.8 2.3 2.3 0.1 0.5
5  9.2 19.8 3.4 12.4 −0.4 0.6 0.7 8.7 8.3 3.0 2.9 0.1 0.2
6  13.8 10.4 −4.8 12.1 −0.8 0.6 1.1 3.3 3.8 1.6 1.6 0.1 0.5
7 12.7  16.4 −4.6 11.1 −1.5 0.6 1.0 3.9 4.1 1.6 1.6 0.1 0.3

Avg. 16.3  16.7 −2.5 12.1 −0.8 0.6 1.0 7.2 7.3 1.9 1.9 0.1 0.4
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Fig. 5. Impact of the initial frequency range on the algorithm performance (detec-
tion  correlation coefficient, and true and false positive rates). All possible frequency
ranges included in 10–16 Hz are shown (with 1 Hz step and 2 Hz minimum interval
b

i
i
v

3

c
p
r
l
f
b
c

In Study 2, the algorithm could not achieve a meaningful model
etween the lower and upper frequencies).

ntrinsically adaptable: the true positive rate can be augmented by
ncreasing the TI at the cost of a higher false positive rate, and vice
ersa.

.4. Sensitivity to the initial frequency range (Study 1)

The impact of the initial frequency range on the detection out-
ome (the detection correlation coefficient, and the true and false
ositive rates) is shown in Fig. 5. The impact on the detection cor-
elation coefficient was small (70–74% range) providing that the
ower cut-off frequency was less than 13 Hz and the upper cut-off
requency was higher than 14 Hz. The true positive rate tended to

e higher, at the cost of a higher false positive rate, when the lower
ut-off frequency was decreased.
ce Methods 214 (2013) 192– 203

3.5. Algorithm performance in challenging recording conditions
(Study 2)

Table 5 shows the algorithm’s performance for the second
study (without EMG  artefact and alpha wave rejection). Normal
modelling enhanced the overall performance in detection, even
more than in the first study. Indeed, the average detection correla-
tion coefficient increased by 20.6% with this method (13.2% when
discarding patient 4; see below). As expected, this performance was
lower than for the first study (e.g. the detection correlation coeffi-
cient dropped from 70.6% to 62.1% on average), since recordings
were more challenging. The algorithm was then improved with
EMG  artefact and alpha wave rejection (see Table 6). A relative
spindle power threshold of only 4% showed the best detection cor-
relation coefficient (69.0% on average), leading to a performance
close to the one achieved in Study 1 (70.6% on average). The alpha
wave rejection had no impact on the detection. This could be due to
the underlying spindle model that focused on the patient specific
spindle frequency, hence rejecting alpha wave in an inherent way.
Inter-rater agreement (see Table 7) showed that the performance of
the experts was inferior to the one of the algorithm (e.g. the experts’
detection correlation coefficient was  only 44.2% on average).

The algorithm failed to converge for patient 4 (i.e. aberrant neg-
ative RMS  amplitudes were included in the 90% TI range). A close
examination of this patient’s recording disclosed the largest arte-
facts, which implied a large variation on the RMS value of the
samples used to generate the model (on average 5.6 times larger
than for the other patients), eventually leading to aberrant mod-
els. The poor quality of EEG recording in this patient also made
the visual scoring difficult, as the experts only agreed on 8.7% of
the spindles (6 spindles out of 69) and the detection correlation
coefficient was only 18.1%.

4. Discussion

We  have developed an algorithm dedicated to the detection of
spindles that adapts to intersubject and intrasubject variations in
amplitude and frequency through normal modelling. Our analy-
ses show that normal modelling enhances performance in terms of
true positive rates, false positive rates, specificity, detection corre-
lation coefficients, and overlap, compared to fixed amplitude and
frequency thresholds. The algorithm is quite insensitive to the input
frequency range used to model the spindle distribution, which is a
major advantage as there is no consensus on a spindle frequency
range.

Recordings from healthy children were used in the first study.
Few data have been reported on automated spindle detection in
children although they are of recent interest in the field of sleep
research, which motivated our choice. Since spindles show impor-
tant modifications in amplitude and frequency during maturation,
the advantage of our algorithm includes an adaptation to those
variations.

In the second study, our results were validated in more challeng-
ing conditions. Providing the addition of an EMG  artefact rejection
method, results were closely similar to those obtained in the first
study (i.e. average detection correlation coefficients were 70.6% in
the first study and 69.0% in the second study).

In both studies, some recordings were more difficult to score
than others, leading to poorer performances. For instance, in Study
1, recordings 1 and 6 showed a true positive rate lower than 70%,
and recordings 2 and 5 showed false positive rates higher than 7%.
for patient 4. This patient’s recording had a high level of arte-
facts and indeed was quite difficult to be scored by experts as they
only agreed on 8.7% of the spindles. With such a low agreement
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Table  5
Statistical evaluation of the algorithm for Study 2.

Subject Before normal modelling After normal modelling

True positive
rate (%)

False positive
rate (%)

Specificity (%) Detection
correlation
coefficient (%)

Overlap (%) True positive
rate (%)

False positive
rate (%)

Specificity (%) Detection
correlation
coefficient (%)

Overlap (%)

1 33.6 0.3 99.8 55.0 63.2 82.8 3.8 97.0 72.7 64.3
2 40.3  0.5 99.6 55.9 61.2 68.8 3.6 97.1 56.1 57.6
3  25.0 0.3 99.8 40.2 50.8 77.3 7.0 92.6 40.9 58.3
4 1.6  0.4 99.7 4.5 51.7 – – – – –
5  32.0 0.9 99.4 46.5 65.7 80.6 2.5 98.3 72.9 64.9
6  25.6 0.3 99.8 46.9 64.0 65.8 2.0 98.7 67.9 66.8

Avg.  26.4 0.5 99.7 41.5 59.4 75.1 3.8 96.7 62.1 62.4

Table 6
Statistical evaluation of the algorithm enhanced with EMG  artefact rejection, for Study 2.

Subject Before normal modelling After normal modelling

True positive
rate (%)

False positive
rate (%)

Specificity (%) Detection
correlation
coefficient (%)

Overlap (%) True positive
rate (%)

False positive
rate (%)

Specificity (%) Detection
correlation
coefficient (%)

Overlap (%)

1 31.3 0.3 99.8 52.9 62.5 76.9 2.8 97.7 72.7 64.7
2  40.3 0.3 99.8 58.1 61.2 63.6 2.2 98.3 59.9 64.2
3 22.7  0.3 99.8 38.9 51.3 75.0 0.9 99.2 71.1 60.5
4  1.6 0.3 99.8 5.1 51.7 – – – – –
5  30.1 0.8 99.5 46.0 65.8 75.7 1.9 98.6 72.9 64.9
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6  25.6 0.3 99.8 46.9 64.0 

Avg. 25.3  0.4 99.8 41.3 59.4 

ate between experts, their scoring could not be retained as a
gold standard’ for an accurate evaluation of the algorithm’s perfor-

ance. Therefore, recordings that include unclear spindles should
e analyzed with caution before running the algorithm: when
xperts do not agree on numerous spindles (Campbell et al., 1980;
ygierewicz et al., 1999), the algorithm cannot, a fortiori, perform

 high quality detection. In this regard, the user should be given the
pportunity to evaluate the quality of the recording which results
n the quality control of the spindle detection. For instance, the vari-
tion in amplitude of samples eligible for spindles could be used as

 quality indicator; a large value would suggest that artefacts are
resent in the spindle bandpass. Since S1 samples are defined as
egments belonging to spindles according to the ‘classical’ spindle
efinition (Rechtschaffen and Kales, 1968; Grigg-Damberger et al.,
007), the standard deviation of S1 segment amplitudes could be
sed as such indicator. This choice would be convenient, because

t would also give an estimation of the quality of the normal model
sed in our algorithm, since it is based on S1 samples. Furthermore,

 stopping criterion could be added to the algorithm to avoid build-
ng a model when the level of artefacts is believed to be too high.
or instance, a stopping criterion ranging between 6 and 9 �VRMS

ould have stopped the algorithm for all the derivations of patient

 in Study 2 (i.e. the patient for which algorithm could not achieve
 meaningful model) while performing the detection for all the
erivations of the remaining patients (in both studies).

able 7
tatistical evaluation of the experts for Study 2.

Subject True positive rate (%) False positive rate (%) 

1 44.7 3.0 

2  62.8 1.2 

3  55.7 1.1 

4  18.8 1.6 

5 57.5  1.8 

6  53.3 2.2 

Avg.  48.8 1.8 
64.1 1.7 98.9 68.3 65.3

71.1 1.9 98.6 69.0 63.9

The heterogeneity of datasets and the means of assessing perfor-
mance make the direct comparisons with other published spindle
detection algorithms difficult. However, some comparisons were
possible with works that published at least two  statistic indicators
common to the ones chosen in this paper.

Huupponen et al. (2000a) proposed an algorithm with a true
positive rate ranging between 73.4% and 84.9% and a false positive
rate ranging between 2.3% and 5.4%, hence with performance sim-
ilar to our algorithm for the first study and slightly more sensitive
and less selective for the second study. However, they evaluated
their algorithm using the following criterion: “one second before
or after a scored spindle or 1 s after a false-positive, no false-
positives were counted.” If such a criterion was used to evaluate
our algorithm, it would have shown a 4.3% false positive rate for
the first study and 1.7% for the second one, hence tending to be
lower than the one from Huupponen et al. (2000a). The same group
proposed another algorithm (Huupponen et al., 2007) with a true
positive rate ranging between 51.2% and 86.5% and a false posi-
tive rate ranging between 26.4% and 46.0%. Their definition of the
false positive rate differed from ours and from the one used in
their previous work, as the false positive rate is set to the ratio

of FP to the sum of TP and FP. Using this definition, our algo-
rithm shows a false positive rate of 35.5% for the first study and
32.9% for the second one, therefore demonstrating similar perfor-
mance.

Specificity (%) Detection correlation
coefficient (%)

Overlap (%)

97.2 41.3 61.8
99.0 62.7 67.8
98.9 33.7 63.1
98.3 18.1 68.6
98.3 56.2 68.4
98.1 53.1 66.5

98.3 44.2 66.0
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Ventouras et al. (2005) proposed an algorithm with a true posi-
ive rate ranging between 80.2% and 92.9% and a specificity ranging
etween 86.9% and 95.0%. Clemens et al. (2005) proposed an algo-
ithm that showed true and false positive rates of 89.7% and 21.4%.
chönwald et al. (2006) evaluated another algorithm using 1 s
pochs, which showed a true positive rate and a specificity equal to
0.6%. Therefore, these three published algorithms are more sensi-
ive but less selective than ours.

Duman et al. (2009) chose to assess performance based on the
resence of one or more spindles in a 30 s epoch, with a higher
rue positive rate (96.17%) and a specificity (95.54%) similar to the
rst study but lower than the second one. Furthermore, statistics
ere based on the presence of one or more spindles in an epoch,

ather than on spindle detection itself, so it is likely that FP and FN
alanced each other.

Finally, Devuyst et al. (2011) proposed an algorithm that was
ested on the database used in the second study, and showed a
ensitivity of 70.2%, a false positive rate of 1.38% and a specificity of
8.6%. In this regard, this study obtained similar performance levels
ompared to our algorithm. However, it should be noted that they
id not exclude any patient from the dataset.

To our knowledge, only three algorithms that have assessed
pindles detection in children and infants have been published so
ar. Causa et al. (2010) proposed an algorithm with 92.2% sensitivity
nd 90.1% specificity, hence more sensitive but less selective than
urs. Estévez et al. (2007) proposed an algorithm, tested on a single
nfant, with 96.3% accuracy and an 89.7% detection rate. Held et al.
2004) proposed an algorithm, tested on two infants, with 87.7%
xpert agreement and 91.9% precision. Comparison with those two
ast algorithms seems more difficult since performance indicators
iffer and since the number of subjects used for assessment is low.

All together, the performance obtained in the present work
s quite comparable to previously published algorithms. In some
ases, it tends to be more selective at the cost of a lower sensitivity
or the chosen TI (i.e. 90%). Higher sensitivity may be reached by
owering the TI at the cost of lower selectivity, as shown in Fig. 4.

A normal distribution was chosen to model the spindle dis-
ribution in amplitude and frequency, as this type of distribution
as been previously reported (Zeitlhofer et al., 1997). However, as
ther studies have reported a non-Gaussian spindle distribution
Schönwald et al., 2003, 2006), further studies should investigate
he impact of other types of distribution on the detection.

In conclusion, we have described an algorithm that automat-
cally adapts to differences in spindle amplitude and frequency
etween subjects (intersubject spindle variation) as well as within

 single subject (intrasubject spindle variation) – hence exhibiting
mproved performance metrics, without the need of a priori knowl-
dge from an expert. Our algorithm compares positively with other
pindle detection algorithms and could be used in common med-
cal practice. Furthermore, as normal modelling is inherent to the
lgorithm, it automatically determines the statistical parameters of
pindle amplitude and frequency, which is of great help in various
esearch applications.
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