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Abstract

Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level
throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range
communication. Even though different computational approaches have identified subsets of residues that were
qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we
show that our information theoretical method produces quantitatively better results with respect to the experimental data
than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the
different residues involved in the process. We also show that these predictions are consistent within both the human and
mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and
allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of
thses kinds of methods.
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Introduction

PDZ (PSD95/Disc-large/ZO-1) domains [1] are structural

modules, consisting of about a hundred amino acids, common to

many signaling proteins. They have been shown to not only serve

as scaffolds for other proteins but also to possess particular

dynamical properties [2], which are either induced by the direct

interaction with a peptide [3,4,5] or indirectly by the interaction

with neighboring domains [6,7]. These properties demonstrate

that specific forms of intra-protein communication are present

within PDZ domains. Historically, such intra-protein communi-

cation is denoted as allostery when the communication serves a

functional role [8]. Allostery traditionally has been explained using

either the induced-fit model [9] or the more general applicable

conformational equilibria model [10]. Whereas the first provides a

mechanistic explanation, the latter does not require sequential

mechanisms for the propagation of information and production of

allosteric effects. Yet, both these classical models assumed large

structural differences between the different macroscopic states of

the protein, like for instance their bound and unbound forms.

Recently, it has been argued that long-range intra-protein

communication may originate from the changes in internal

dynamics, without altering the average macroscopic conformation,

providing as such information exchange only through entropic

effects [11,12,13,14,15,16].

In order to understand and predict the nature of such intra-

protein communication, structural and dynamical data regarding

proteins or domains in their major states are necessary. In this

sense, the PDZ data gathered by Andrew Lee and colleagues

[3,17,18] provide an important resource that allows fundamental

questions, related to the role of dynamics in the information

propagation throughout a protein, to be answered. Using NMR

and crystallography data of the second PDZ (hPDZ2) domain of

the human protein tyrosine phosphatase 1E (PTP1E), Lee and

colleagues showed that i) binding a RA-GEF2 C-terminal peptide

affects the methyl side-chain dynamics of a restricted set of

residues within the domain [3], ii) mutating particular residues

within that set alters peptide affinity [18], iii) interfering with these

residues has long-range dynamical effects throughout the domain

structure [18], and iv) all these changes are mostly related to side-

chain equilibrium dynamics as opposed to backbone structural

changes [17]. In addition they showed that side-chain dynamics

are mostly conserved within the PDZ domain family [19],

although not every PDZ domain incorporates the same dynamical

changes [5]. This underlines the finding that the PDZ domain

family can be divided into different functional categories related to

their implicit communicative behavior. It is tempting to speculate

that such a functional partitioning is sensible since each PDZ

domain has its own particular role within its encompassing

structural context.

The dynamical hPDZ2 data also provides a unique validation

set for computational methods that aim to predict intra-domain

information exchange from either structural or sequence-related

information. Kong and Karplus [20] used a molecular dynamics

approach, called the interaction correlation analysis, to determine

the residues involved in transmitting binding information to other
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parts of the hPDZ2 domain. They identified a wide range of effects

including two signaling pathways, linking residues in the binding

pocket and the L1 loop to distal locations in the domain structure.

Recently, Gerek and Ozkan [21] applied their perturbation

response scanning method to also analyze the hPDZ2 domain,

proposing effects for regions closely situated to the top of the

binding site. These alternative regions differed from the family-

wide regions identified for the PDZ domain family at large [22]

and varied in their overlap with the experimental data of Lee and

colleagues. As such, one can question the quality of the current

predictions with respect to the experimental data produced so far.

Using the publically available structural data on hPDZ2

[23,24], combined with the experimental results [3,17,18,25], we

determine here the quality of the previously published computa-

tional approaches and compare these to the results produced

through an information theoretical approach that we proposed

earlier [26]. We demonstrate that the previous predictions for

hPDZ2 either suffer from a high false positive rate, or, even worse,

are close to the results one obtains for a random predictor. We

show that our information theoretical approach reaches higher

levels of accuracy with respect to the experimental data.

Additionally, we determine the main information exchange

patterns from the network of dynamical changes and examine

their relationship with the signaling pathways proposed in [20,21].

Finally, we show that dynamical changes induced by binding a

peptide to the mouse variant of this domain (mPDZ2), which has

been shown to experience larger structural changes [4,27], cover

the same collection of residues as those identified for the human

variant.

Results

Predicting dynamic changes in the set of methyl-group
containing residues

To determine the residues throughout the hPDZ2 structure

affected by peptide binding, we quantify the change in conforma-

tional coupling between residue side-chains within the major states

of the domain, i.e. the bound and unbound states [26] (see

Materials and Methods): In a first step, a Monte-Carlo sampling

process was used to determine the conformational freedom of each

residue, represented by a probability mass function over a fine-

grain discrete set of side-chain conformations for each protein

state. In a second step, these probability mass functions were used

to calculate the mutual information (MI) between every residue

pair, again for both protein states. A high MI value designates a

high degree of coupling between the side-chain conformations of

two residues, whereas a low value shows the opposite. Slight

modifications with respect to the original method [26] were made

in order to improve the calculation of the MI. The validity of this

approach was recently confirmed in [28]. In the final step, the

absolute differences between the MI values of the bound and

unbound form were calculated (DMI), producing a matrix of

mutual information changes (e.g. Figures 1A and Figure S1 in

Text S1). Residue pairs displaying the higher absolute DMI value

are involved in the dynamical changes induced by the peptide on

the domain or protein structure.

Our analysis of these DMI values focuses first on the changes in

the conformational couplings of methyl-group containing residues,

as these results can directly be compared to the experimental data

[3]. As such we extract from the matrix including all pairwise DMI

values (see Figure S1 in Text S1) a sub-matrix (see Figure 1A)

containing only the DMI values for all the pairs of methyl-group

bearing residues of hPDZ2. In the next section we examine the

prediction results for all residues. Note that in the current analysis

we do not differentiate between negative and positive DMI values,

focussing only on the magnitude of change and not the direction.

In Figure S7 in Text S1, the raw (non-normalized) values

corresponding to those shown in Figure 1A are reported.

Examining the sub-matrix in Figure 1A, one can see that the

majority of the 38 methyl-group bearing residues are unaffected

or only marginally affected by the binding event. Nevertheless,

some residue pairs show DMI values significantly above

background level, indicating particular peptide-induced confor-

mational effects between residues. Using, as before, a clustering

approach that extracts the network of most affected residue pairs

(see Materials and Methods), we identified a set of dynamically

affected residues, including residues located both at short and

long distances from the binding pocket. The residues in this set

are in agreement with those shown to be affected on the basis of

experimental data [3] (see also Table 1). Figures 1B and 1C

display our predictions mapped upon the hPDZ2 structure and

sequence, showing the agreement with the known binding site

(BS) residues L18, I20, V22, V26, V30 and L78 (predicting 6 out

of 6 residues), as well as the majority of residues in the two distal

surfaces identified in [3]: DS1 with 4 out of 6 residues identified

(V61, L66, T81, V85), and DS2 with 1 identified residue out of 2

(V40).

Interestingly, additional methyl-group containing residues are

identified by our method, located in either BS (T28, V75), DS1

(T77) or DS2 (V37) (see Figure 1C). Others are located in a

completely different domain region (V9, L11, L87, L89), which lies

at the opposite of the binding cavity and which we propose to call

distal surface 3 (DS3) corresponding to the residues coloured in

green in Figure 1B and Figure 1C. Our method also predicts I35

to be affected by peptide binding. This residue, which is

highlighted in purple in Figures 1B and 1C, is buried in the core

of the domain and directly interacts with the BS residues V22 and

L78 (in red) and with residues L66 and A69 in DS1 (in blue),

therefore acting as a potential connector between these regions

within hPDZ2.

Author Summary

Intra-protein communication has recently attracted an
increasing interest from the scientific community, because
of its important functional consequences: allostery and
signalling. Unravelling how information is processed and
transferred within a protein structure requires the study of
the dynamical effects of, for instance, binding events,
which may be captured experimentally by NMR relaxation
experiments. Given the complexity of this experimental
analysis, computational approaches, often based on
molecular dynamics simulations, have been proposed for
predicting these dynamical effects, using protein structural
information as input. We examine here the accuracy of
these predictors in the context of a well-studied domain,
i.e. the second PSD95/Disc-large/ZO-1 domain (or PDZ
domain) of PTP1e, and compare it to our approach that
combines Monte-Carlo sampling of the conformational
space of the side-chains and an information theoretical
analysis. The results we discuss in this manuscript show
clearly that the latter method provides very accurate
predictions when compared to the experimental results,
and has a better predictive quality compared to other
computational approaches. The predictions, which are
consistent between closely related structures, and the
global network perspective provided by this approach,
improve our understanding of intra-protein communica-
tion and allostery in these domains.

Accurate Information Flow Prediction in PDZ2
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Identifying all dynamical changes in the hPDZ2 domain
Together with the set of methyl-group containing residues, our

information theoretical approach identifies at the same time a

number of non-methyl-group containing residues, which may have

an important role in the intra-protein communication of hPDZ2. For

example, residue H71, which has been extensively explored in the

context of the evolutionary conserved network of energetically-

coupled residues [29], displays DMI values comparable to L87 and

L89. Using the same clustering method as before (see Material and

Methods) we extracted the complete set (including both methyl-group

bearing residues and non-methyl-group bearing residues) of affected

residues from the DMI values in Figure S1 in Text S1, which we refer

to as the informative group. This informative group covers the strongest

dynamical effects induced by peptide binding over the entire domain.

To clearly visualize the informative group, we created a network

of residue interactions including only those pairwise local

interactions that have non-random DMI (see Materials and

Methods) from the matrix of all dynamical changes (see Figure

S1 in Text S1) and the crystal structures of hPDZ2 [17]. Figure 2A

shows the resulting network for hPDZ2. On this network, we

highlighted, using light (for methyl-group bearing residues) and

dark (for non-methyl-group bearing residues) green colors (see

Figure 2A), all the residues belonging to the informative group.

The width and color of the edges indicate the strength and

direction (increase or decrease) of the DMI value between the pairs

of residues, using the DMI data similar to that shown in Figure S7

in Text S1. As expected, this weighted network shows that the

majority of the green-highlighted residues become more tightly

Figure 1. Predictions for methyl-group containing residues. A) The matrix of dynamical changes (heat map) for the methyl-group bearing
residues, corresponding to a sub-matrix of the matrix in Figure S1 in Text S1. The matrix shows the absolute DMI, normalized between 0 and 1,
colored from blue (0) to red (1) according to the color scale reported on top. B) Predictions mapped on the crystal structure (PDB-ID: 3LNY). Different
colors are used for the different experimentally identified domain regions [3]. The red, blue and yellow residues correspond to the binding site (BS),
the distal surface 1 (DS1), and the distal surface 2 (DS2) respectively. The residues in green are part of a newly identified distal region (DS3). I35 is
highlighted in purple. The RA-GEF2 peptide is shown in stick representation. C) The predictions for the methyl-group containing residues highlighted
in a sequence alignment of the two homologous domains (hPDZ2 and mPDZ2). The residues highlighted in red, blue and yellow correspond to the
residues experimentally identified as affected by peptide binding in [3]. Residues composing the DS3 are highlighted in green and I35 in purple.
Other predicted residues are squared in black.
doi:10.1371/journal.pcbi.1002794.g001

Accurate Information Flow Prediction in PDZ2
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coupled (red edges) in response to the binding event, while fewer of

them experience a relaxation (blue edges) in their conformational

coupling. Of all residues, I35 experiences the largest number of

decreases in conformational couplings with its structurally

neighboring residues. At the same time, its conformational

coupling with H71 and a number of other residues increases as

a consequence of the binding between the RA-GEF2 peptide and

hPDZ2. It should be noted that, in order to improve the

readability, Figure 2A does not visualize the long-range DMI

values present in Figure S1 in Text S1, such as the change in

coupling between H71 and L87.

The clustering analysis on the DMI matrix visualized in Figure

S1 in Text S1 added eighteen non-methyl-group bearing (dark

green nodes in Figure 2A) residues to the ones discussed in the

previous section (light green nodes in Figure 2A): A group of six

connected residues (D5, F7, Y36, D56, R57, E67) comprises a

region of the hPDZ2 domain that extends approximately

perpendicularly to the binding groove, close to the L1 loop

(Figure 2B). We subsequently refer to this region as distal surface 4

(DS4). These residues, together with H71 and the DS3 residues,

can also be easily identified from the full matrix of dynamical

changes (Figure S1 in Text S1). Other important residues are i)

E47, D49, R51, H53 and K54 that extend DS4 towards helix a1

and the linker connecting this helix with the fourth b-strand (see

DS2–DS4 linker in Figure 2C), and ii) K13, H86 and S17, S21,

N27, S29 that enlarge DS1 and the BS region, respectively (see

also network and alignment in Figure S6 in Text S1). Together

with the other distal surfaces, the DS4 region creates a network

that couples binding-pocket residues to residues in the a1–b4

linker and to DS3 residues located on b1 and b6 (see Figure 2A).

Figure 2. Network of short-range dynamical changes in hPDZ2. A) Residues highlighted in green are predicted on the basis of the complete
matrix of changes in MI (light green for the methyl-group bearing side-chains and dark green for the others). Red edges represent an increase in MI,
while blue edges represent a decrease in MI. The thickness of the edges represents the magnitude of change. Peptide residues and their contacts
with the domain residues are highlighted in orange and the links connecting the peptide residues with the structure are not weighted. Yellow-dotted
line illustrates an example of a long-range dynamical effect between LEU87 and HIS71. The network visualization follows the organic layout as
implemented in Cytoscape [44]. B) The non-methyl bearing residues composing the continuous surface DS4, are highlighted in red on the ribbon
structure of hPDZ2. C) The non-methyl bearing residues composing the continuous surface that links the two distal surfaces DS2 and DS4, are
highlighted in red on the ribbon structure of hPDZ2.
doi:10.1371/journal.pcbi.1002794.g002
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This network combines dynamical effects located in the binding

pocket, the domain core, and the bottom surface area of the

domain.

Assessing the predictive quality of the informative group
To assess the predictive quality of our results, we computed

their Receiver Operating Characteristics (ROC) curves (see

Materials and Methods) and compared these to the curves

produced by two null-models. Calculation of the ROC curves

requires classification of the methyl-group containing residues as

either positives (P) or negatives (N) on the basis of the experimentally

determined dynamical data reported in [3,18]. We excluded the

residues for which the data are completely or partially missing

from the quality analysis. On the basis of the classification (see

Table S1 in Text S1), both the False Positive Rate (FPR) and True

Positive Rate (TPR) levels were computed in response to a varying

threshold t, required by the clustering method that we used to

identify the informative group (see Materials and Methods). A high

value of t limits the informative group to a few residues. Reducing

the t value adds more and more elements until all residues are

included in the set. In Table S3 in Text S1 we show the order in

which residues become included in the informative group while

changing t. Each change in t corresponds to a point in the ROC

curves shown in Figure 3A, starting from the matrix of all residues

changes (Figure S1 in Text S1) in red, and starting from the sub-

matrix of methyl-group containing residues (Figure 1A) in blue.

The quality of our predictor is compared to two null-models: i) a

random predictor (light blue) and a predictor that scores the

residues according to their betweenness-centrality (green and grey)

computed from the network of residue contacts as derived from

the X-ray structures of hPDZ2 (see Materials and Methods and

Text S1).

Our predictions deliver significantly better results in terms of the

area under the ROC curves (AUC), when compared to the curves

derived for both the random and betweenness-centrality models

(see Table 1). In case of methyl side-chain only analysis (Figure 3A),

our predictor realizes an AUC of 0.74, compared to the 0.54–0.56

values of the betweenness-centrality predictor.

The difference between the all-residue and methyl-residue

informative groups at low levels of FPR and TPR originates from

the higher rank given by the first predictor to true negative

residues T77 and I35 (see Table S3 in Text S1). This suggests that

these two residues experience high DMI with non-methyl side-

chain residues. Indeed, as one can see in Figure 2A, residue I35

shows significant side-chain effects with a large number of non-

methyl-group residues. Conversely, I20 and V40 are ranked lower

within the all-residue informative group (see Table S3 in Text S1),

suggesting that these experience quite strong DMI with other

methyl side-chain residues and smaller DMI with the non-methyl

ones.

In order to understand the quality of our predictions, we also

examined the accuracy of the two recently published methods [21]

and [20] that also produced predictions for hPDZ2. We computed

the FPR and TPR scores of the two methods based on the data

presented in the two manuscripts (see Table 1). In Figure 3A the

resulting quality assessments are shown as black and purple

squares for the methods described in [21] and [20], respectively.

The quality of the Kong and Karplus predictions is low and close

to that of a random predictor, while the predictor proposed by

Gerek and Ozkan yields a TPR value of 0.79, which is identical to

the value obtained for the information theoretical approach

presented here. However, the Gerak and Ozkan FPR value is

0.73, which makes their results qualitatively similar to the results of

the random and betweenness-centrality models. As such both

methods provide an overall poor accuracy, whereas our method

seems to improve the accuracy considerably.

The ROC analysis also allows us to select a clustering threshold

t corresponding to the best predictor, i.e. the one yielding the

maximal TPR and minimal FPR value, which corresponds to the

point of the ROC curve having the shorter Euclidean distance to

the top-left corner of the plot in Figure 3A. The best predictor for

the hPDZ2 data is obtained for t1 = 0.023 (TPR = 0.79 and

FPR = 0.18) for the methyl side-chain matrix of dynamical

Figure 3. Quality assessment of the different predictors. A) ROC curves of the information theoretical approach considering either the
dynamical changes in the methyl side-chain containing residues only (blue line) or dynamical changes for all the residue types (red line); the black
square represents the performance of the Gerek and Ozkan predictor [21], the purple square represents the Kong and Karplus [20] predictor
performance; grey and green lines represent the performance of a predictor ranking residues according to their betweenness centrality in the
network derived from physical contacts using, respectively, the apo and the bound crystal structures. The two encircled points t1 and t2 correspond
to the best performing predictors. B) The same as A, yet without the alanine residues, which were needed in the previous case for a fair comparison
with the other approaches. We plot again the ROC curves of our approach compared to the baseline predictors in this setting.
doi:10.1371/journal.pcbi.1002794.g003
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changes, and t2 = 0.027 (TPR = 0.64 and FPR = 0.18) for the

entire matrix of dynamical changes (see Figure 3A). These

thresholds were used to produce the visualizations of the data

displayed in Figures 1 and 2. Removing the conformationally

invariant alanine residues from the ROC computation did not

affect the optimal clustering thresholds.

Incorporating the backbone differences in the
predictions

To improve the predictive performance, we investigated the

possibility of exploiting backbone variation information derived

from the available NMR ensembles of hPDZ2. We computed the

residue-specific changes in backbone flexibility (see Materials and

Methods) and displayed those onto the domain (see Figure 4). It is

known from experimental studies that the hPDZ2 domain does

not experience large structural changes [17], as also expressed by a

RMSD of 0.4 Å between equivalent atoms of the crystal structures

of the two states (ligand-free, 3LNX chain A, and ligand-bound,

3LNY). Similarly, variations from the NMR structures between

the two states are below 0.55 Å, when excluding the flexible

regions at the C- and N-termini.

Figure 4 highlights the residues that experience the most

significant changes in backbone flexibility. As expected, the most

affected regions are present in the binding pocket. Our results

indicate that there is a clear change in variation in these regions

relating most likely to a rigidification, in agreement with similar

effects derived from NMR backbone relaxation experiments [3].

Some additional interesting regions also emerge from the data:

residues K54, R51 D49, A46, and G44 within the a1 helix and the

a1–b4 linker experience significant effects. A similar pattern of

residues was identified previously for the mPDZ2 variant upon

binding to the peptide of the human Fas receptor [27]. Figure 4

shows in a Venn diagram the difference in the predictions we

obtained by considering the side-chain dynamics and the

backbone variation information, separately. The underlined

residues are those affected by peptide binding according to the

NMR relaxation experiments.

We then tested the incorporation of the backbone variation

information as a means to improve our approach. Upon

combining this information with the earlier predictions, we

obtained a slight improvement from AUC = 0.74 to AUC = 0.75,

mainly resulted from the improved ranking of the alanine residues

(e.g. A39), which cannot be considered significant. The ROC

curve for this combined predictor is reported in Figure S3 in Text

S1.

Predicting the dynamical changes in mPDZ2
Given the encouraging quality of our predictions on hPDZ2, we

decided to analyze the equivalent PDZ domain of the mouse

homolog PTP-BL (subsequently denoted as mPDZ2). This domain

has a 94% sequence identity with hPDZ2, differing mostly in a few

of amino acids along the b1–b2 and the b3-a1 linkers (see the

alignment reported in Figure 1C and green residues in Figure 5).

Nevertheless, NMR analysis has shown significant differences

between these closely related domains, with mPDZ2 experiencing

larger structural changes in the orientation of the second helix

upon binding to the APC-derived peptide [4], as compared to the

binding effects observed in hPDZ2. To understand the impact of

these differences on the communicative mechanisms and to

identify possible commonalities, we applied our information-

theoretical approach also on the NMR ensembles of mPDZ2,

producing a new matrix of dynamical changes (Figure S4 in Text

S1) and the corresponding network (Figure S5 in Text S1). The

clustering algorithm was used to extract the most affected residues

from the matrix of mPDZ2 using the best threshold t as derived for

the hPDZ domain (vide ante).

Barring inconsequential differences between the two matrices

(Figure S1 and S4 in Text S1), the resulting informative groups for

both hPDZ2 and mPDZ2 are quite similar (see Figure 1C for

methyl-group containing residues only and the alignment in Figure

Figure 4. Changes in backbone flexibility as a result of peptide binding. The variations are mapped on the hPDZ2 crystal structure (PDB-ID:
3LNY). The different colors highlight the level of significance of the change, determined by z-scores. The Venn’s diagram represents the predictions of
methyl-containing residues obtained by our information theoretical approach (side-chains), compared to those obtained by analyzing the backbone
variations (backbone). The underlined residues are those obtained from the experimental results in [3].
doi:10.1371/journal.pcbi.1002794.g004
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S6 in Text S1 for all residues). The methyl side-chain residue

predictions indicate that almost all binding pocket residues and

distal group members (from DS1 to DS3) are shared between

hPDZ2 and mPDZ2. By following the same numbering used for

hPDZ2 according to the sequence alignment shown in Figure 1C,

we show that also for mPDZ2, residue I35 is predicted as a

relevant residue for the domain intra-communication, as is residue

T28. Even though the data for hPDZ2-T28 are missing, mutation

mPDZ-T28 affected binding affinity [4]. Our method also predicts

for mPDZ2 the four residues comprising the DS3 region of

hPDZ2. A pathway of methyl-methyl contacts that links L18 or

L78 in the BS, to V85 and L87 was previously identified [4]. The

same pathway is also present in our network of dynamical changes

(Figure S5 in Text S1).

Comparison of the hPDZ2 and mPDZ2 networks (cf. Figures 2

and Figure S5 in Text S1) shows that they share in addition

thirteen non-methyl bearing residues. The majority of these

residues are those previously identified as DS4 (D5, F7, Y36, D56,

R57), confirming the presence of this information exchange, as

previously also identified in [20]. The other conserved predictions

(see alignment in Figure S6 in Text S1) are: i) H71 in the binding

site, ii) H53, K54 together with E47 and D49 in the a1 helix,

which are part of the same linker region shown in Figure 1C, iii)

K13 in the b1–b2 loop, iv) H86 in b6, and v) N27 in the L1 loop.

Discussion

When a peptide binds to a domain, dynamical changes occur at

the level of the residue side-chains reminiscent of some form of

information exchange possibly distributed over the entire domain

structure. Experimental work on hPDZ2 has shown that these

dynamical effects are indeed present, that manipulating the

residues involved shows affinity changes, and that these effects

may vary between members of the same domain family. Here we

show, through an information theoretical analysis of the depen-

dencies between the side-chain conformations of all domain

residues, that a (sub-)network of dynamical changes can be

predicted from the publically available structures, showing strong

overlap with the experimental data [3]. However, as indicated in

the Results section, additional methyl-group bearing residues are

Figure 5. Similarities and differences in the predicted networks of dynamical changes in hPDZ2 and mPDZ2. Predictions related to the
residues containing methyl-groups on the side-chain at threshold t1 = 0.023. The picture shows two different domain orientations. The first
orientation faces the binding groove; the second one, obtained by rotating the first one about 90 degrees to the right, shows the binding groove left
side. Methyl-group bearing residues predicted for both the domains are shown in white, while differences in the predictions are highlighted in
yellow. Amino acid differences between hPDZ2 and mPDZ2 are highlighted in green on the structure (see also the alignment in Figure S6 in Text S1).
doi:10.1371/journal.pcbi.1002794.g005
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identified for which experimental data do not provide confirma-

tion, as is the case of I35 and T77, or for which relaxation data are

completely or partially missing (see for instance V37, T28, V75

and the residues in DS3). Nevertheless, the potential dynamical

importance of these residues becomes clearer when one also takes

into account the dynamical effects produced by the mutants

H71Y, I35V and I20F as reported in [18]. Mutating the residues

H71 and I20 indicates that both T28 and V37 experience changes

in the local correlation times. The marginal role of H71 in hPDZ2

as discussed in [18] is also observable in the network of all dynamic

effects visualized in Figure 2. In comparison to I20, H71 has a

much less central role to play in the network of dynamical effects.

The I35V mutant, which did not show any dynamical role in

[3], not only affects residues located in the BS and DS1 regions,

but also induces changes in DS3 residues V9 and L89, which may

be linked to I35 via L11 and L87. At this point we can only

speculate about why no dynamical changes were observed

experimentally for I35: as the NMR relaxation experiments

provide one value to describe the aggregate dynamic effect

induced on a particular residue like I35, the actual importance of

this residue may become masked when tightening (increases in

DMI) and relaxation (decreases in DMI) effects are somehow

balanced. As I35 (see Figure 2A) is one of the very few residues

that experiences strongly both types of effects, we could

hypothesize that its importance has indeed been concealed in this

manner. To validate this supposition one needs to examine the

influence of both negative and positive weights in the cluster

extraction method, which is currently not the case since the

absolute DMI values are used to extract the informative group of

residues.

Hence, next to the already strong overlap with the experimental

results in [3], all the additional experimental data show that our

predictions provide a rather accurate picture of the intra-domain

communication induced by the RA-GEF peptide. Interestingly,

the regions most distant from the binding pocket that are identified

here (like the DS3 and DS2 regions and the DS2-DS4 linker) lie

close to the region that experiences changes as a result of the

interaction between the first and second PDZ domains of PTP-BL

[7]. At this point its is unclear whether this overlap has any

allosteric relevance. Surely, further NMR analysis of the interplay

between hPDZ1 and hPDZ2 will allow us to identify the inter-

domain network of dynamical changes and shed light on the

functional interplay between them.

In addition, other predictive approaches, including the work

described in [29] and [21], support the potential relevance of

residues for which experimental data are at this point not

available. For instance, the DS4 region overlaps strongly with

the second signal transduction pathway proposed in [20], while the

effects observed in the first helix can be related to the first pathway

proposed in the same work. The major difference with our

predictions is that Kong and Karplus do not identify any of the

core residues that were experimentally identified. Interestingly, the

results reported in [20] seem to coincide more closely to those

reported in Figure 4, suggesting that their approach focused more

on backbone and surface effects rather than on side-chain effects in

the core of the domain. Potentially, this also might explain the

poor predictive scores of their method (see Table 1), as our analysis

was derived on the basis of methyl-relaxation data only.

Although the predictive accuracy of our method is clearly better

than those provided by the null models and the other computa-

tional methods, our approach also suffers from a specific

limitation, as it is unable to predict the dynamical effects of

alanine residues from only the side-chain dynamics. The small

side-chains of alanine residues are conformationally invariant and

thus show a uniform distribution corresponding to a single

conformation, which implies no uncertainty associated to the

outcome of the corresponding random variable. Consequently,

this results in zero entropy values and hence zero mutual

information shared with the other residues in the domain. To

test the impact of this issue, we also calculated the ROC curves

excluding the alanine residues from the quality assessment

(Figure 3B). This adjustment improves the predictive quality of

our method to AUC values of 0.75 and 0.81 for the analysis of all

residues or methyl-group containing residues, respectively. Clear-

ly, these results are also better than those obtained for the

betweenness-centrality and the random models (see also Table 1).

Interestingly, the performance of the predictor based on the

betweenness-centrality computed for the bound form also

improves, suggesting that alanine residues A39 and A69, which

have shown experimentally significant changes in methyl dynam-

ics, are not very central with respect to the other residues in the

domain. In contrast to the previous case, the predictor based on

the betweenness-centrality computed for the bound form performs

better than the one based on the unbound form. This suggests that

A39 and A69 become even less involved in response to peptide

binding.

Using the best predictive threshold for the network of dynamics

changes in hPDZ2, we also determined the network of dynamical

changes for the mouse variant of this domain. We show in the

alignment of Figure S6 in Text S1 all the similarities and

differences between both domains. Some of the differences in the

predictions between mPDZ2 and hPDZ2 are clearly due to

sequence differences, because they involve either divergent

residues such as K43 (see Figure 5), or residues very close to the

mutations (see Figure 5 and Figure S6 in Text S1). Some others,

like R79, most probably reflect the ligand-induced conformational

change of helix a2 in response to the APC peptide [4], which is not

observed for the RA-GEF2 peptide in the hPDZ2 case.

Eight methyl-group bearing residues, four for each domain,

characterize the differences between the two variants (see Figure 5):

four residues (i.e. V37, V22, V75, T77) oriented orthogonally with

respect to the binding groove are predicted for the hPDZ2, while a

set of three additional residues (V58, L59, L88) at the opposite side

of the binding groove, and I41 located on the b3-a1 linker, are

predicted for mPDZ2. The inclusion of the latter residue may

simply be a consequence of the sequence differences between

hPDZ2 and mPDZ2 in that region (see Figure 5). Furthermore,

the differences in peptide between hPDZ2 and mPDZ2, i.e. the

RA-GEF2-derived peptide vs. the APC-derived peptide, may

easily have induced the differences between hPDZ2 and mPDZ2.

In addition, the clustering algorithm requires a threshold t to

extract the informative group from the matrix of dynamical

changes, which was optimized for hPDZ2. Clearly, in order to

establish an optimal threshold for t, it should have been

determined on the basis of a number of independent datasets of

different proteins. Currently, we cannot exclude that the value t

selected here may add or exclude certain residues unwillingly.

Nevertheless, our results show clearly that the dynamic regions

within the core of both hPDZ2 and mPDZ2 are almost equivalent.

One particular difference between both domains is the amount

of positive and negative changes, visualized by red and blue links,

respectively, in Figure 2 and Figure S5 in Text S1. In our analysis

of hPDZ2, the number of pairs of residues experiencing decreases

in the conformational coupling due to binding is significantly lower

than those obtained in mPDZ2. It is unclear whether this is simply

an artifact of the data or a functionally relevant dynamics. Further

experimental analysis of these structures may provide insight into

this issue.
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Finally, even though for hPDZ2 our approach has a higher

accuracy than the other methods, great care must be exercised in

generalizing the conclusions since only one complete data set is

available. To further evaluate and improve all current methods

additional NMR data sets, containing both structural and

dynamical information, are required. Only then we can assess if

these methods are capable of assisting biological research in

understanding the mechanisms of both intra-protein communica-

tion and allostery.

Materials and Methods

NMR and crystal structure data
The human variant of the PDZ2 bound and unbound forms,

used in this paper, correspond to NMR PDB structures 1D5G [30]

and 3PDZ [31], and to the PDB crystal structures 3LNY and

3LNX [17], respectively. The mouse variant of the PDZ2 bound

and unbound forms correspond respectively to the NMR PDB

structures 1VJ6 [4] and 1GM1 [27]. Every structure of an

ensemble was first energy minimized using YASARA with the

Yamber2 force field [32].

Sampling the side-chain conformational space
To sample the conformational space of each side-chain, we

need to identify a fine-grained alphabet of side-chain conforma-

tions. As explained before in detail [26], a statistical rotamer

dataset based on conditional statistics of dihedral angles was

derived from the WHAT-IF dataset [33] and added to the FoldX

software. Details concerning the FoldX force field can be found in

[34,35].

This fine-grained dihedral angles dataset supplies a high-

resolution enumeration of the side-chain conformational space

for every residue in the structure. This position-specific alphabet

covers the conformational space of the residue side-chain over all

backbones, ensuring in this manner that all acceptable conforma-

tions can be visited during the sampling process. Once the

alphabet is determined, we sample the conformational space of

every side-chain relative to a particular backbone conformation

using Monte-Carlo Sampling with Metropolis Criterion.

Each Monte-Carlo process takes one backbone extracted from

the NMR ensemble as input, alters the side-chain conformations

towards other favourable states present in the alphabet, and stores

at regular intervals (every 1000 iterations) the conformational state

of the entire domain. The FoldX force field determines whether a

certain change in conformational state is favourable by calculating

its free energy change DG. The Metropolis criterion states that this

change is accepted with a probability p as given by the formula:

p~minf1,e{DG=RTg. Metropolis Monte Carlo sampling of side-

chain conformation was performed at 298K.

Prior to the actual sampling, the process first executes an energy

minimization phase, to ensure that the sampling commences from

a low-energy state. In order to collect many data points we ran the

Monte-Carlo sampling process many times in parallel using the

same backbone starting conformation, combining the results into

one file when all processes were finished. In our simulations we

recorded, for each ensemble, 751500 domain conformations.

Computing the side-chain mutual information coupling
The sampling procedure is applied to the ensembles in the two

states (bound and unbound). Each one of the sets of sampled

conformations is composed of side-chain configuration distribu-

tions of each residue in the domain. Therefore, each residue

corresponds to a random variable, and its realizations correspond

to the side-chain conformations the residue takes. The mutual

information between two of these distributions quantifies the

amount of dependency (or information transfer) between side-

chain movements of two residues, details discussed in [26].

Given two discrete random variables A and B, the mutual

information I(A,B) is computed as I(A,B) = H(A)+H(B)2H(A,B),

where H(A) and H(B) are the Shannon’s entropy and H(A,B) is the

joint entropy between A and B, defined as follows:

H(A)~{
X

a[A

p(a) log2(p(a))

H(A,B)~{
X

a[A

X

b[B

p(a,b) log2(p(a,b))

We look at the changes in dynamical couplings upon a binding

event by computing the absolute difference in mutual information

between the two states: DI(A,B)~DIbound (A,B){Ifree(A,B)D. The

result is the matrix of absolute changes shown in Figure S1 in Text

S1 for hPDZ2.

Since the original method, discussed in [26], a number a new

pre-processing steps were introduced on the data to improve the

calculation of Shannon’s entropy and MI. First, the conforma-

tional data for each residue was reparametrized to the unit interval

[0,1], which does not change the outcome since MI is invariant to

reparametrization of the marginal variables [36]. Yet this step is

important since it removes differences between the alphabet sizes

of each residue. In addition, we added to each reparametrized

value a low amplitude Gaussian noise (mean zero and variance

,10212), smoothing out the probability distribution. This new

data was then discretized using the fixed frequency discretization

method [37], which is capable of managing discretization bias and

variance, reducing calculation errors in the analysis and hence

improving the quality of the MI estimation.

The MI values computed from the sampled distributions, which

were close to those expected for the randomized distributions (i.e.

close to zero) of each residue pair, were filtered out of the matrix,

since they were considered of no relevance for the major

information flows throughout the structure.

Clustering highly coupled residues
Given the matrix of dynamical changes, we applied the Cluster

Affinity Search Technique (CAST) [38] for identifying the

residues, which are most relevant for the intra-domain commu-

nication. The algorithm searches for cliques of coupled residues

above a given affinity threshold t. Every time a new cluster is

created, the algorithm alternates between ‘‘add’’ and ‘‘remove’’

steps until the cluster stabilizes. High affinity residues are added to

the current clique and low affinity ones are removed. The affinity

of a residue ri with respect to a clique C is defined as

a(ri)~
P

rj[C DI(ri,rj), the sum of the changes in mutual

information coupling of the residues belonging to the clique.

High affinity residues are those for which a(r)§tDCD. Therefore, by

increasing or lowering the affinity threshold one can include more

or less residues in the set of predicted ones.

Network of residue contacts
We built the network of residue contacts starting from the

crystal structures of hPDZ2 in the two states. An edge between two

vertices (residues) is added if the two residues have at least one pair

of atoms at a distance less than or equal to 5 Å in the crystal

structure. The resulting networks show small-world properties
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[39]: they have a clustering coefficient of 0.54 and a characteristic

path length of 2.9. The same has been shown for other protein

residue networks [40]. Other properties of our networks are a

diameter of 6 and an average node degree of 9.9. To build the

network of short-range dynamical effects we mapped on the edges

the changes in mutual information observed from the unbound to

the bound state. The result for hPDZ2 is shown in Figure 2.

The measure of node betweenness-centrality proposed in [41]

was selected as the best performing one among a set of

betweenness-centrality measures (see Text S1). An extension of

this measure was used in [41] to show that the most centrally

conserved residues are in agreement with those experimentally

predicted to mediate signalling in five different proteins.

Assessing the quality of the predictions - ROC curves
ROC curves give a picture of the overall performance of a

predictor, which is not dependent on the chosen discrimination

threshold. We drew ROC curves by varying the threshold t and

computing False Positive Rate (FPR) and Sensitivity or True

Positive Rate (TPR) levels. FPR and TPR are computed comparing

the predictions of a computational approach with the residue

labeling based on experimental results reported in [3], in the

following way:

FPR~
FP

FPzTN

TPR~
TP

TPzFN

where True Positives (TP) are the residues predicted as relevant by

the computational approach that are also relevant from the

experimental results, True Negatives (TN) are the residues that are

not predicted by the computational approach and have no

significant changes in dynamics according to the experimental

results, False Positives (FP) are those residues erroneously

predicted by the computational approach according to the

experimental evidences, and False Negatives (FN) are those

residues which are not predicted by the computational approach

but have been observed to be relevant in the experimental results.

Computation of backbone variations
Backbone variations are computed starting from the two NMR

ensembles of the domain in the two states. After superposing all

structures in the NMR ensemble, by using the MUSTANG

structural alignment algorithm [42], we computed, for each

residue, the average distance of the Ca atoms from their centroid

and we took it as a measure of backbone flexibility. We then

calculated the differences in flexibility between the bound and the

unbound state. We computed z-scores of these differences and we

highlighted, in Figure 4, only the most significant ones (the four

flexible N-terminal amino acids and the four flexible C-terminal

amino acids were not included in this calculation).

Combining side-chain dynamics and backbone
information

The results of the two predictors, one based on the change in

MI shared between residue side-chains and the other based on the

change in backbone flexibility, were combined by taking the two

ranks of the residues, in the following way:

ri~a:ri
SCzb:ri

BB,

where ri
SC is the position of residue i in the ranking produced by

our side-chain dynamics based predictor, and ri
BB is the position of

the same residue in the ranking produced by the backbone

variation based predictor. ri results from the weighted sum of the

ranking positions. The final rank of predictions is obtained by

sorting the residues according to the resulting ri, while breaking ties

at random. The ROC curve of the resulting predictor is reported

in Figure S3 in Text S1. We fixed a = 1.5 and b = 1 by giving a

50% more importance to the side-chain dynamics information

with respect to the backbone one.

Supporting Information

Text S1 Supporting information: Accurate prediction of the

dynamical changes within the second PDZ domain of PTP1e. The

text contains additional information, figures and tables related to

the manuscript.

(PDF)
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