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We derive asymptotically an order parameter equation in the limit where nascent bistability and
long-wavelength modulation instabilities coalesce. This equation is a variant of the Swift-
Hohenberg equation that generally contains nonvariational terms of the form ��2� and ����2. We
briefly review some of the properties already derived for this equation and derive it on three
examples taken from chemical, biological, and optical contexts. Finally, we derive the equation on
a general class of partial differential systems. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2759436�

Near the critical point associated with nascent bistability
and close to long-wavelength regime, the dynamics of
many natural spatially extended systems can be de-
scribed by a single real partial differential equation. This
approximation is very useful for the study of out of equi-
librium dissipative structures that can be either periodic
or localized in space. In this contribution, we derive a
real order parameter equation that includes nonvaria-
tional effects and which is capable of describing a very
wide class systems. Examples taken from biology, chem-
istry, and optics are considered together with a general
derivation that shows that the obtained real order pa-
rameter equation is universal and has a larger spectrum
of space-time dynamical behaviors compared with the
usual variational Swift-Hohenberg equation.

I. INTRODUCTION

In 1977, Swift and Hohenberg1 derived a real order pa-
rameter equation that has been widely used to describe con-
vective patterns induced by the Bénard-Marangoni instability
�often called non-Boussinesq-Bénard convection2,3�. Since
this pioneering work, the Swift-Hohenberg �SH� model equa-
tion has been derived for various nonequilibrium systems,
for instance, in optics,4,5 chemical reactions with diffusion,6

and in biology.7 As a result, it is one of the most studied
nonlinear equations not only in its field of origin, hydrody-
namical systems, but in most domains of the natural sci-
ences. It constitutes a paradigm for the study of pattern for-
mation, localized structures,8–14 and fronts.15–19 An important
property of this equation is that it admits a Lyapunov func-
tional or “potential” that is minimized by the steady state
solutions.

The aim of this paper is to present an order parameter
equation that arises in limiting situations where bistability is
nascent and the dynamics of long-wavelength modes exhibits
critical slowing down. This equation contains the SH model
as a particular case. In the double limit above, we show that
a wide class of nonlinear systems are governed by20

��

�t
= Y + C� − �3 − �1 ± �2�2� + ���2� + �����2, �1�

where �2=�2 /�x2+�2 /�y2, the ± sign depends on the original
problem studied, and the main control parameter is usually
Y. The above equation is one of the simplest possible non-
linear models of spatial dynamics; it has been derived first
for the coherently pumped semiconductor cavity,21,22 and
soon later for a liquid crystal light valve with optical
feedback.23–25 More recently, it was derived for an acoustic
resonator containing a viscous medium.26 A distinctive fea-
ture of this equation is the presence of the nonlinear diffusion
term ��2� and ����2, which breaks the �→−� and Y →−Y
symmetry and renders it nonvariational, i.e., it does not pos-
sess a Lyapunov functional. An exception is when �=� /2
�Ref. 27�, in which case �1� does possess the Lyapunov
functional

F = −�� �Y� + �C − 1�
�2

2
−

�4

4
± ����2

−
1

2
��2��2 −

�

2
�����2�dxdy .

Furthermore, one immediately sees that the above equation
reduces to the SH equation if � and � both vanish and the +
sign is assumed in �1±�2�2. Indeed, we will see below that
the asymptotic reduction leading to �1� can yield the SH
equation for some parameter values. However, the latter is
not a robust description in general, as any deviation from
these values will generally produce nonzero � and �.

Before embarking into the derivation of �1�, let us make
a few remarks on its dynamical properties. First, assuming
the + sign, the linear stability of a given steady state yields
two instability points at Y±=�±

3 + �1−C��±, where

�± =
− � ± 	�2�1 − C� + 12C

6 − �2/2
,

and with critical wavenumbers k±=	1−��± /2. In the SH
model ��=0�, this yields two symmetrically located insta-
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bilities Y−=−Y+ with identical critical wave number. In the
general case, however, the location and the wavenumbers of
the two instabilities do not obey this constraint, and this can
have dramatic consequences. In particular, if one lets
�2�1−C�+12C be small, an analytic study of the interaction
between the two instabilities is possible. A continuous family
of branches of periodic solutions can be constructed. By con-
sidering the envelope of these branches, the interaction of the
two instabilities is shown to give rise to isolated branches of
periodic solutions.21,22 On the other hand, in the case where
�1−�2�2� holds in �1�, corresponding to a stabilizing linear
diffusion, modulation instabilities are still possible due to the
nonlinear diffusion term ��2�. Finally, in the absence of a
Lyapunov functional, the system does not necessarily relax
to a steady state. Indeed, time-dependent dynamics has been
reported25 for this model, although these aspects remain
largely unexplored.

Note that other generalizations of the SH model have
been found in the literature. In particular, let us note the case
of optical parametric oscillators,28–30 for which the spatial
differential operator �1+��2+�2�2 is found. The nonlinear
diffusive term appears in the limit of large detunings. Other
examples are proposed but not derived in Ref. 31. In these
two instances, however, the equation still has the �→−�
symmetry, which strongly constraints the dynamics. Let us
also mention the abundance of examples in optics of the
complex SH equation with cubic32–35 and quintic36 nonlin-
earities. Another variation was also found in plant
ecology.37,38

Previous studies have already focused on Eq. �1�. In Ref.
39, the term ��2� was heuristically added to the SH equa-
tion in order to take account of the non-Boussinesq effects in
CO2 convection instabilities, while in Ref. 40 the term ����2
was added to stabilize hexagonal patterns in the SH equation
without quadratic nonlinearity and study fronts between vari-
ous patterns. The present derivation gives an a posteriori
justification for these approaches.

The rest of the paper is organized as follows. We first
derive �1� on three examples chosen across various fields of
the natural sciences: the Edblom, Órban, and Epstein �EOE�
model in Sec. II, the Fitzhugh-Nagumo equation in Sec. III,
and a semiconductor cavity model in Sec. IV. In a second
step, we sketch the general derivation of the order parameter
equation by considering a general class of nonlinear models,
with only some minor assumptions to simplify the algebra.

II. CHEMISTRY: THE EDBLOM, ÓRBAN,
AND EPSTEIN „EOE… MODEL

Edblom, Órban, and Epstein have shown the occurrence
of oscillatory behavior in the iodate oxidation of sulfite in a
continuous flow stirred tank reactor.41 A description of the
reaction in terms of component processes and the associated
empirical rate laws was given by Gáspár and Showalter.42

Because the resulting model is very stiff and difficult to in-
tegrate, a simplified EOE model was proposed,43

�u

�t
= av − �1 + b�u − uv2 + �2u , �2�

�v
�t

= − �1 + a�v + u + F + uv2 + d�2v , �3�

where the dimensionless variables u and v correspond to
HSO3 and H+ concentrations, respectively; a and b are re-
duced reaction rates; F is a flow rate; and d is the ratio of the
diffusion constants of v and u, respectively.

Denoting the steady state with a subscript s, Eq. �2�
yields

us =
avs

1 + b + vs
2 , �4�

and, substituting in �3�, we obtain an implicit relation be-
tween the control parameters a and vs,

a = as�vs� =
�F − vs��1 + b + vs

2�
bvs

. �5�

Two limit points coalesce if das /dvs=0 and d2as /dvs
2=0.

This yields the critical values

ac = 8
1 + b

b
, Fc = 	27�1 + b�, uc =

	12�1 + b�
b

,

vc = 	3�1 + b� .

Let us now study the linear space dynamics of the EOE
model in the neighborhood of that critical point. The linear
stability analysis with respect to finite wavelength perturba-
tions, i.e., perturbations of the form exp�ik ·x+�t�, yield the
characteristic equation,

p0�k� + p1�k�� + �2 = 0.

A Turing instability �also called a modulational instability�
happens if �=0 with nonzero k and �� /�k=0 �Refs. 44 and
45�. This value of k determines the wavelength 2� /k of the
emerging dissipative periodic structures, as was found ex-
perimentally in chemical open reactors.46,47 Differentiating
the polynomial with respect to k, we have

�p0

�k
+ p1

��

�k
+

�p1

�k
� + 2�

��

�k
= 0,

and imposing �=�� /�k=0, we find the condition,

�p0

�k
= 2d�2 + 2b + k2� − 3 −

4

b
= 0.

In the limit of very large wavelengths, i.e., k→0, this yields
the constraint,

d =
4 + 3b

4b�1 + b�
. �6�

Assuming d is fixed, this is an implicit equation for a critical
value bc of b. In the vicinity of this critical point, we now
seek a solution of the form

u�x,t� =
	12�1 + bc�

bc
�1 + �u1��,�� + �2u2��,�� + ¯ � ,
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v�x,t� = 	3�1 + bc��1 + �v1��,�� + �2v2��,�� + ¯ � ,

with the development,

a = 8
1 + bc

bc
�1 + �2a2 + �3a3�, b = bc�1 + �b1� ,

F = 	27�1 + bc��1 + �2F2� ,

where � is a small parameter and we have introduced the
slow space and time variables �=�1/2x and �=�2t. Substitut-
ing into �2� and �3�, we find at O��� that u1=− 1

2v1. At O��2�,
we have

0 = − 2�1 + bc��2u2 + v2 − 2a2� − 1
2�2v1, �7�

0 =
4 + 3bc

bc
�2u2 + v2� − 8

1 + bc

bc
a2 + 3F2 + d�2v1. �8�

The first equation yields

2u2 + v2 = 2a2 −
1

4�1 + bc�
�2v1

and, substituting the result into �8�, this gives

0 = − 2a2 + 3F2 + 
d −
4 + 3bc

4bc�1 + bc�
��2v1.

Hence, either �2v1 is a constant or

a2 =
3

2
F2 and d =

4 + 3bc

4bc�1 + bc�
, �9�

which we assume here. Note that the second condition above
is identical to �6�. Finally, at O��3�, Eqs. �2� and �3� yield,
respectively,

�u1

��
= − 2�1 + bc��2u3 + v3 − 2a3 −

3

4
v1

3 + 3�a2 − F2�v1�
+ �2u2 + � bcb1

2 + 2bc
+

3

4
v1��2v1, �10�

�v1

��
=

4 + 3bc

bc
�2u3 + v3� −

1 + bc

bc
�3v1

3 + 8a3 − 12�a2 − F2�v1�

+
1

bc
� b1

1 + bc
−

3v1

2
��2v1 + d�2v2. �11�

Solving �10� for u3 and substituting into �11�, the latter equa-
tion eventually simplifies to

�1 −
4

bc
+ 4bc� �v1

��
= �1 + bc��− 8a3 + 6F2v1 − 3v1

3�

+ 
 �2 + bc��2 + 3bc�b1

bc�1 + bc�
−

3

2
v1��2v1

− d�4v1.

In terms of the original variables, and setting v1�� ,��
=��x , t� /�, this equation writes

�1 −
4

bc
+ 4bc� ��

�t

= �1 + bc��12
F − Fc

Fc
− 8

a − ac

ac
+ 6

F − Fc

Fc
� − 3�3�

+ 
 �2 + bc��2 + 3bc�
bc�1 + bc�

b − bc

bc
−

3

2
���2� − d�4� . �12�

Let us rewrite this equation as

c1
��

�t
= c2 + c3� − c4�3 + c5�

2� − c6�
4� + c7��2� .

Then with the rescaling

�� =
2	c4c6

c5
�, x� = 	�c5/2c6�x, t� =

c5
2

4c1c6
t ,

it becomes

���

�t�
= Y + C�� − ��3 − �1 ± �2�2�� + ����2��,

Y =
8c2c6

	c4c6

c5
3 , C =

4c3c6

c5
2 + 1, � = ±

− c7

	c4c6

,

± =
− c5

�c5�
.

We thus obtain Eq. �1� with �=0. Note that for �12� to be
physically acceptable, one must have

1 −
4

bc
+ 4bc 	 0 → bc 	 0.88 → d 
 1;

otherwise, any inhomogeneous perturbation of the homoge-
neous steady state is unstable and the growth rate of a per-
turbation is unbounded as the wavenumber tends to infinity.
Should such a situation arise, it would be necessary to pro-
ceed to higher orders of the perturbation expansion until
regularizing terms of the form �6� appear in �12�.

III. BIOLOGY: THE FITZHUGH-NAGUMO MODEL

The FitzHugh-Nagumo equations48 were proposed as a
simplified version of the Hodgkin-Huxley model49 to de-
scribe electric excitations in nervous membranes. The exci-
tation is mediated by an electrochemical reaction involving
sodium and potassium ion flow. The model involves a
voltage-like variable u that allows regenerative self-
excitation, and a recovery variable v. Presently, we consider
a slightly modified version of this model by adding a qua-
dratic nonlinear term ��u2� to the kinetic equation of the
recovery variable and allowing it to diffuse,

�u

�t
= u − u3 − v + �2u , �13�
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�v
�t

= ��u − �u2 − v − a� + ��2v . �14�

In these equations,  and a are positive parameters, � is the
ratio of the diffusion coefficients for v and u, and � is the
ratio of the characteristic of the characteristic times. The ho-
mogeneous steady state is given by

us
3 + � − 1�us − �us

2 = a ,

and vs=us−�us
2−a. As before, nascent bistability happens

when the curve �a�us� ,us� is vertical, i.e., when

us = uc =
1

3
�,  = c = 1 +

�3

3
.

This yields vc=��9−�2� /27 and ac=�2 /27. Consider next
linear perturbations of the form exp�ik ·x+�t�. Following the
same procedure as in Sec. II, the condition to have �=0 and
�� /�k=0 for small but finite k is to have

� = �c = ��1 − �2/3� .

To summarize, the conditions for nascent bistability and
long-wavelength dynamics are

uc =
�

3
, c = 1 +

�3

3
, �c = ��1 −

�2

3
� .

To study finite-size perturbation around this critical point, we
introduce a small parameter � and let z=zc+�z1+�2z2+¯
for z=u, v, a, , and � in Eqs. �13� and �14�. In addition, we
rescale space and time as �=�1/2x and �=�2t. Solving order
by order in �, we find at O��� that

u1 =
3

3 − �3v1,

and that a1 and 1 must satisfy the solvability condition

a1 = �1/3.

Next, at O��2�, we obtain

u2 =
3

3 − �2v2 +
27�

�3 − �2�3v1
2 −

9

�3 − �2�2�2v1,

together with the solvability condition

�

9
�3 − �2��3a2 − �2� −

3�a1

�
v1 = 0.

For this to hold for any function v1, we must have

a2 = �2/3, a1 = 0.

Finally, at O��3� the solvability condition is

�1 −
1

�
� �v1

��
=

3 − �2

9
�3a3 − �3� − 2v1 −

9

�3 − �2�2v1
3

+
18�

�3 − �2�2 ��v1�2 +
3

3 − �2��1

�

+
6�

3 − �2v1��2v1 −
3

3 − �2�4v1.

In terms of the original variables, with v1�� ,��
= �3−�2���x , t� /�, we thus find

�1 − �−1��3 − �2�
��

�t

= �3 − �2�
a − ac

3
− � − c���

9
+ �� − 9�3�

+ 18�����2 + 3�� − �c

�
+ 6����2� − 3�4� . �15�

This time �using the same kind of final rescaling as with
�12�� we obtain Eq. �1�, with both � ,��0. For the same
reasons as with �12�, this equation is physically acceptable
only if ��−1��3−�2�	0. Note that in the case where �=0,
which corresponds to the usual version of the Fitzhugh–
Nagumo equations, then �15� becomes the SH equation.50

However, the latter is not a robust description with respect to
small changes of the original model, since, as soon as �
�0, nonlinear diffusion terms appear.

IV. OPTICS: THE SEMICONDUCTOR
MICRORESONATOR

The final example concerns the semiconductor cavity
driven by a coherent optical field. This setup has been in-
tensely studied in recent years for both its fundamental and
practical interests. Indeed, in the plane transverse to the cav-
ity axis, localized structures �often called “cavity solitons”�
have been excited experimentally.51,52 Moreover, it has been
shown that they can subsequently be manipulated53–55 as op-
tical bits of information. The derivation of �1� for this prob-
lem was done in Refs. 21 and 22. The starting model56 in-
volves the complex amplitude F of the electromagnetic field
in the cavity and the electric carrier density in the semicon-
ductor material, Z,

�F

�t
= �1 + i��ZF − i�2F + Y , �16�

�Z

�t
= �P − Z − �1 + 2Z��F�2 + D�2Z� . �17�

In these equations, time and space have been rescaled with
the decay rate of the electromagnetic field and the diffraction
length, respectively; Y is the �real� amplitude of the driving
field, which is assumed here to be resonant with one mode of
the cavity; � is a phenomenological parameter that is a char-
acteristic of the semiconductor material;  is the decay rate
of electric carriers density. Finally, P describes the electric
current flowing into the semiconductor junction. We consider
negative values of P, which means that the device is below
lasing threshold.

The homogeneous stationary solution is given implicitly
by

Y = − �1 + i���P − �F�2�F/�1 + 2�F�2� .

Nascent bistability is reached for the critical values
Fc= �1− i��	3/2�1+�2�, Zc=−3/2, Pc=−9/2, and
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Yc=	27�1+�2� /8. At this critical point, the cubic character-
istic polynomial has a zero root when

k2�D�9 + �2k2 − 3��2� + 8�2k2 − 3�� = 0, �18�

where k is the wavenumber of the plane wave pertubation
considered in the linear analysis of the homogeneous steady
states. Equation �18� admits the solution k=0, which corre-
sponds to the neutral mode, and also a very large wave-
length, i.e., 0
k�1, if D�Dc=8� /3�1+�2�. We now ex-
plore the system dynamics in the neighborhood of this
operation point. To this end, we set F=Fc�1+�f + ¯ �, Z
=Zc�1+�z+ ¯ �, P= Pc+�2p2, Y =Yc�1+�2y2+�3y3+ ¯ �,
and D=Dc+� d1+¯. As usual, we normalize the time and
space scales by the transformation ���2t and ���1/2x, and
it is convenient to set

� =
�2t

1/ + Dc/�
, � =

�1/2x
	Dc

.

Proceeding in exactly the same fashion as for the two previ-
ous examples, we find that z=−f in the leading order prob-
lem. The next order yields the solvability condition y2

=−p2 /2. Finally, at the third order of the perturbation devel-
opment, we obtain

� f

��
= 4y3 − f� p2

3
+ f2� + �d1 − 5f/2��2f − a�4f − 2��f �2,

�19�

where a= �1−�2� /4�2, and a should be positive.

V. GENERAL DERIVATION

We now generalize the derivations above by considering
systems of the form

�u

�t
= �L0 + L� · �� · u + �Q0 + Q� · ��uu + Cuuu

+ ¯ + D · �2u + D2 · �4u + ¯ . �20�

Without loss of generality, we assume that u=0 is the refer-
ence state. For notational simplicity, the system is assumed
to depend linearly on the vector parameter �, although from
the examples we have seen before, this is by no means nec-
essary; the terms �Q0+Q� ·��uu and Cuuu represent qua-
dratic and cubic nonlinearities, respectively; finally, D is a
diffusion matrix and the term D2 ·�4u has been added for
generality. The latter can be relevant, for instance, to diffrac-
tion problems involving the propagation operator eia�2

=1
+ ia�2− 1

2a2�4+¯ �Ref. 24�. Once again, this last term is not
necessary for the presence of a bi-Laplacian in the order
parameter equation.

Being only separated from a limit point by an O��� dis-
tance, critical slowing down brings the relevant time to �
=�2t. On the other hand, spatial dynamics is assumed to
occur on the slow scale �=�1/2x. The variables and param-
eters are thus expanded as

u�x,t� = �u1��,�� + �2u2��,�� + ¯ , �21�

� = �0 + ��1 + �2�2 + ¯ . �22�

From the proximity of the limit point, the linear operator
L0+L� ·�0 possesses a zero eigenvalue, and we shall as-
sume that all other eigenvalues are negative. We shall denote
the left and right eigenvectors as

w� · �L0 + L� · �0 − �I� = �L0 + L� · �0 − �I� · v� = 0 .

�23�

To first order in �, we obviously get

0 = �L0 + L� · �0� · u1, �24�

and we therefore have

u1 = ���,��v0. �25�

The function ��� ,�� is the order parameter we are looking
for. The second order problem is

0 = �L0 + L� · �0� · u2 + �L� · �1� · u1

+ �Q0 + Q� · �0�u1u1 + D · �2u1, �26�

=�L0 + L� · �0� · u2 + �L� · �1� · v0�

+ �Q0 + Q� · �0�v0v0�2 + D · v0�2� . �27�

In order to solve this equation for u2, a solvability condition
is that the right-hand side be orthogonal to w0, i.e., that

0 = w0 · ��L� · �1� · v0� + �Q0 + Q� · �0�v0v0�2

+ D · v0�2�� . �28�

We wish this to hold for any �. The solvability condition
thus splits into three parts. One the one hand, the condition

0 = w0 · �L� · �1� · v0 �29�

imposes that we stay sufficiently close in the parameter space
to the locus of the limit point. Next, the condition

0 = w0 · �Q0 + Q� · �0�v0v0 �30�

is the condition for nascent bistability. Finally,

0 = w0 · D · v0 �31�

is the necessary condition for Turing bifurcations or modu-
lational instabilities to occur on a sufficiently slow spatial
scale. Assuming �29�–�31�, we can now solve for u2 and find

u2 = �
�
0

v�

���
w� · ��L� · �1� · v0�

+ �Q0 + Q� · �0�v0v0�2 + D · v0�2�� , �32�

or, more compactly,

u2 = u21� + u22�
2 + u23�

2� . �33�

Proceeding finally to third order, the problem to solve for u3

is
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��

��
v0 = �L0 + L� · �0� · u3 + �L� · �1� · u2

+ 2�Q0 + Q� · �0�u1u2 + Q� · �1u1u1

+ Cu1u1u1 + D · �2u2 + D2 · �4u1. �34�

The solvability condition is, this time,

w0 · v0��

��
= w0 · ��L� · �1� · u2 + 2�Q0 + Q� · �0�u1u2

+ Q� · �1u1u1 + Cu1u1u1 + D · �2u2

+ D2 · �4u1� . �35�

Using �25� and �33�, the right-hand side of this equation can
be rearranged as

w0 · ���L� · �1�u21 + �L� · �2�v0��

+ ��L� · �1�u22 + �Q� · �1�v0v0 + 2�Q0

+ Q� · �0�v0u21��2

+ �2�Q0 + Q� · �0�v0u22 + Cv0v0v0��3 + ��L� · �1�u23

+ D · u21��2� + 2�Q0 + Q� · �0�v0u23��2�

+ D · u22�
2��2� + �D · u23 + D2 · v0��4�� .

Equation �35� is therefore of the form

c1
��

��
= c2� + c3�2 − c4�3 + c5�

2� − c6�
4� + c7��2�

+ c8�
2��2� , �36�

where c4 and c6 should be positive to avoid nonphysical
blowup. Finally, after rescaling space, time, and �, this equa-
tion can be recast as

��

��
= r� + s�2 − �3 − �1 ± �2�2� + ����2� + ������2, �37�

which is equivalent to �1�. The equation contains only four
independent parameters and the ± sign is actually −c5 / �c5�.

VI. CONCLUSIONS

We have presented and derived the real order parameter
equation �1� for different examples of nonequilibrium sys-
tems of the reaction-diffusion type for chemistry and biology
and of the reaction-diffusion-diffraction type for optics. We
further extended the applicability of this description by de-
riving �1� for a general class of nonlinear models. The uni-
versality of this equation resides in the fact that one can
formulate the general conditions under which it can be de-
rived. Let the steady state be implicitly given by ��us�, where
� is the main control parameter and us characterizes the ho-
mogeneous steady state. The systems should be

�1� Close to the nascent bistability where the phenomenon
of slowing down occurs: d� /dus, d2� /dus

2=0;
�2� Close to a large wavelength symmetry-breaking instabil-

ity: limk→0�p0 /�k=0, where p0�k�+ p1�k��+ p2�k��2

+¯ is the characteristic polynomial for perturbations of
the form exp�ik ·x+�t�.

These conditions make the critical point near which �1� is
valid a codimension 3 point. In practice, therefore, at least
three parameters �for example, a, b, and F in �12�� are nec-
essary in order to approach this point. While this is a strong
restriction to the use of this model, we note that the same
comment applies to the usual Swift-Hohenberg equation as
well. Still, this is a very useful model to study some complex
nonlinear behaviors and if we are unable to understand such
behaviors in �1� or in the Swift-Hohenberg equation, then
there is little hope to understand them at all.

The model �1� differs from the usual Swift-Hohenberg
equation in many aspects. The fundamental difference comes
from the nonvariational terms ���2� and/or ����2�. Some
consequences of these have already been identified:

�1� Localized structures can move with a constant speed.25

This behavior is clearly attributed to the absence of any
Lyapunov or potential to minimize for Eq. �1�;

�2� Two modulational instabilities can exist with different
wavelengths. The interaction between these instabilities
can lead to the formation of isolated branches of dissi-
pative structures in the bifurcation diagram.21

The spectrum of space-time dynamical behaviors of Eq. �1�
is thus wider than that of the usual variational Swift-
Hohenberg. Owing to its general character, Eq. �1� has a
larger domain of application in various natural systems and
may be regarded as a minimal mathematical model for in-
vestigating nonvariational effects that are observed experi-
mentally in pattern-forming systems.
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