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Communauté Française Wallonie-Bruxelles and the Government of the Province of Québec, with a grant from the Action
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1 Introduction

The purpose of this paper is to extend the exact maximum likelihood estimation procedure for the

Gaussian vector autoregressive-moving average (VARMA) model when the model is stated in a par-

simonious structured form or when the process has unit roots.

Stationary VARMA models of order (p, q) and dimension k are characterized by a large number

of parameters which are the k × k elements of the p + q coefficients plus the k(k + 1)/2 elements of

the innovation covariance matrix. Some elements of the coefficient matrices may be specified (e.g. to

equal zero) without effect on the computational procedure. Detailed algorithms have been provided

independently by Solo (1984), Dugré et al. (1986), Shea (1987, 1989), Mittnik (1991), Mauricio (1995,

1997, 2002) and others. The original procedure given by Tunnicliffe Wilson (1973) and Reinsel (1979)

was not based on the exact likelihood but rather on its conditional form where the first values of the

innovations are assumed to be known, instead of being determined conditionally on the observed series.

Some other slightly improved procedures have been suggested by Hillmer and Tiao (1979) (see also Tiao

and Box, 1981), and Nicholls and Hall (1979). More recently, that approach has been transformed by

Mauricio (1995, 1997) into an exact and computationally efficient algorithm. Asymptotically, all these

estimation methods are equivalent but their small sample properties known by Monte Carlo studies

in the univariate case (Ansley and Newbold, 1980) are quite different. Although the autoregressive

(AR) coefficients are estimated roughly with the same success, the moving average (MA) parameters

suffer from a higher bias when the exact likelihood is not used. Despite this shortcoming, conditional

likelihood estimates are still useful since in general, they are much quicker to compute and they

often are used as initial values for the parameters in exact likelihood estimation. Some of the exact

algorithms make use of a state space form and the fast Chandrasekhar-type equation recursions of

Morf et al. (1974) (see also Lindquist, 1974, and Rissanen, 1973). The latter recursions were first

advocated for that purpose in the case of univariate time series by Caines and Rissanen (1974) and

Pearlman (1980), and implemented in that case by Mélard (1984) and Shea (1984). The general

principle of using the state space approach and the Kalman filter for evaluating the likelihood of

time series models goes back to Schweppe (1965) but the innovations form has first been used by

Rissanen and Barbosa (1969) and Aasnaes and Kailath (1973), see also Ansley (1979), Mélard (1985)

and Brockwell and Davis (1991). Less computationally efficient estimation procedures for VARMA

models rely on the Kalman filter but they are also useful in the case of missing data, see Ansley and

Kohn (1983).

Since the number of parameters of VARMA models is large, several problems arise: (a) the sta-



tistical precision of the estimators is low, hence the possibility of interpreting the fitted model is

reduced; (b) the numerical optimization procedure is more prone to failure; (c) the computation time

is large. The severity of the problems is higher when mixed models are used (i.e. models with both

an autoregressive, or AR, and a moving average, or MA, polynomials). In the univariate case, it is

known that the accuracy of the estimates suffers in the case of near cancelling roots in the AR and

MA polynomials. With multivariate models, the plausibility of near equal roots increases with k, p

and q.

The remedy which has been found is to obtain a more parsimonious specification. This is easier

said than done. Many parsimonious specification procedures have been proposed since the initial

stepwise model building approach of Tiao and Box (1981). Its seems that two approaches emerge

at the present time, (a) the echelon form structure implied by Kronecker indices, and (b) the scalar

component model structure (SCM) of Tiao and Tsay (1989). In addition, several other specification

procedures have been proposed recently, based upon a canonical ARMA echelon form (Tsay, 1991,

Poskitt, 1992, Nsiri and Roy, 1992, 1996).

It will be shown in Section 2 that the echelon form and the SCM share the same general appearance,

despite the fact that the two specification procedures are not equivalent and generally do not give rise to

the same model specification. Tsay (1989b) has argued that the SCM may lead to more parsimonious

parameterizations but there is little theoretical justification of that conjecture and to our knowledge,

there is not yet a large scale empirical study to support it.

Therefore, we shall handle both approaches simultaneously. Tsay (1989b) described an estimation

procedure on an example which unfortunately cannot be generalized. Indeed, he made use of an

algorithm for standard VARMA models, by multiplying both sides of the equation of the echelon form

representation by a matrix which depends on the parameters, therefore leading to a two-stage method.

Reinsel (1997) has given a description of several procedures for estimating VARMA model. One of

these procedures is for VARMA models under linear restrictions with a specialization to VARMA

models in the echelon canonical form. However, the procedure is not based on the exact likelihood but

rather on its conditional version. Therefore, the procedure may suffer from common known problems

of conditional maximum likelihood especially in the case of short series and when the roots of the

MA operator are near the unit circle. This is very frequent with univariate time series and there is

no reason why things should improve in the multivariate case. For instance, in the example given by

Reinsel (1997, p. 164), the MA polynomial is nearly noninvertible. Dufour and Jouini (2005) have

proposed a two-stage linear procedure for estimating stationary and invertible VARMA echelon form
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models.

As we have explained earlier, the evaluation of the likelihood is based on recurrence equations.

These equations need initial values which need to be determined. In the univariate case, the de-

termination of these initial conditions has been the weakest point of the algorithm of Gardner et al.

(1980). A much better solution has been found by Akaike (1978) and Jones (1980), and also by Mélard

(1984) who has proposed to make use of the autocorrelations of the ARMA models computed with

the algorithm of Tunnicliffe Wilson (1979). The latter is an improvement over the direct approach of

McLeod (1975). Demeure and Mullis (1990) developed a simpler algorithm. In the multivariate case,

no equivalent procedure has been found yet in order to obtain the initial conditions. Shea (1987, 1989)

essentially makes use of the direct procedure first described formally by Ansley (1980), for computing

the serial covariance matrices of a VARMA process, even without the improvement suggested by Kohn

and Ansley (1982). Nevertheless, some progress has been obtained recently with the contributions of

Mittnik (1990, 1993) and Tunnicliffe Wilson (1993). Harti, Mélard and Pham (2005) have provided

an algorithm which seems to be superior, at least for high dimensional vectors. See also Söderström

et al. (1998).

The case of a VARMA process with unit roots (also called a cointegrated VARMA process) is

generally handled through an error correction form (Engle and Granger, 1987). It is supposed that

the determinant of the autoregressive polynomial has one or several roots equal to 1 and the other

roots lying outside of the unit circle. It is equivalent to saying that the autoregressive polynomial

evaluated at point 1 is a singular matrix. The error correction factor is generally of reduced rank and

is often parameterized as a product of two rectangular matrices. The parameters of the model are

the autoregressive coefficients of the error-correction form (related but not identical with those of the

corresponding VARMA representation), the moving average coefficients, the two rectangular matrices

(although there may be some normalization in order to obtain a unique representation) and the

innovation covariance matrix. The parameters are generally estimated using least squares (in the pure

autoregressive case, Ahn and Reinsel, 1990), approximated least squares (e.g. Poskitt and Lütkepohl,

1995) or conditional maximum likelihood (Reinsel, 1997, Yap and Reinsel, 1995). However, the small

sample properties of these methods are not good for the moving average coefficients, at least. Yap

and Reinsel (1995) discuss full-rank and reduced-rank estimation of the error-correction form of the

model, both using a Gaussian conditional maximum likelihood approach. They obtain the asymptotic

properties in both cases and consider the likelihood ratio test for testing the number d of unit roots.

They observe that, although the addition of the MA terms does not alter the asymptotic distribution
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of the likelihood ratio test statistic, finite sample performance of the test is affected by the MA terms.

In this paper, we describe computational procedures for the evaluation of the exact likelihood of

parsimonious stationary VARMA models and partially nonstationary (integrated of order 1 (I(1)))

VARMA models. In the case of a VARMA model written under a parsimonious echelon form or as

a SCM, this implies mainly that the zero-lag coefficients are no longer the unit matrix but invertible

matrices. Under the SCM form, the zero-lag coefficient is supposed to be obtained using the original

canonical correlation approach. Two procedures are given, one based on the Kalman filter which

remains useful in the case where at least one observation is missing (although we do not include a

detailed treatment) and the other one based on the Chandrasekhar-type recursions, which is slightly

more efficient. In the case of an I(1) VARMA model, the parameters which are estimated are those

of the error correction form. A transformation of the data is used that in general depends on the

parameters.

To summarize, it happens that the two parsimonious structured forms and the unit root I(1)

model have somewhat related features as far as the evaluation of the exact Gaussian likelihood is

concerned. In our implementation, we have therefore treated the three cases together and added them

to a procedure designed for stationary VARMA models in standard form. We have used the published

program of Shea (1989) as a starting point. It is based on Chandrasekhar-type recursions. We have

kept the approximate form of the likelihood proposed called ‘switching to constant recurrences’ by

Gardner et al. (1980). Note however that the conditional method which is advertised by Shea (1989)

does not work as such and has been modified.

Empirical evidence is shown on two aspects. First, examples given by Tiao and Tsay (1989),

Reinsel (1997), Yap and Reinsel (1995) have been fitted using the new procedure: the mink and

muskrat data, the flour price data, the quarterly AAA corporate bonds and commercial paper series

(Haugh and Box, 1977), the U.S. monthly housing data (Hillmer and Tiao, 1979), the U.S. monthly

interest rates (Stock and Watson, 1988) and a simulated series (Nsiri and Roy, 1996). Second, limited

Monte Carlo comparisons between our procedure and the conditional procedure described by Reinsel

(1997), based on the accuracy of the estimators are presented in two cases: the echelon form and the

I(1) VARMA model. The models in these examples have been previously fitted using a conditional

maximum likelihood method or a two-stage method within which not all the parameters have been

estimated by exact maximum likelihood.

The paper is subdivided as follows. In Section 2, we summarize the concept of a structured

VARMA model in relation to a specification procedure, with the main emphasis on the echelon form
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based on Kronecker indices and the SCM. In Section 3, we describe I(1) VARMA models and explain

how they can be transformed to standard stationary VARMA models. In Section 4, we derive the

recurrence equations with respect to time and the initial conditions which contribute to the evaluation

of the exact likelihood of VARMA models of that type. In Section 5, we describe briefly the new

implementations. In Section 6, we handle some examples drawn from the literature. In Section 7,

a Monte Carlo simulation study is conducted, establishing the superiority of the exact maximum

likelihood method over the conditional one. Section 8 is devoted to concluding remarks.

2 Structured VARMA models

In the usual VARMA setup, we suppose that the k-dimensional process {Yt : t ∈ Z} is a solution of

the following recurrence equation:

Yt −
p∑

h=1

ΦhYt−h = εt −
q∑

h=1

Θhεt−h, (2.1)

where {εt} is the innovation process, a sequence of independent and identically distributed (iid) random

vectors with mean 0 and an invertible covariance matrix Σ. Denote by B, the lag operator, such that

BhYt = Yt−h, the autoregressive and moving average polynomials by Φ(z) = Ik−Φ1z− ...−Φpz
p, and

Θ(z) = Ik −Θ1z− ...−Θqz
q. We suppose that the VARMA model is identifiable (e.g. Hannan, 1969;

Hannan and Deistler, 1988, Chap. 2) and invertible, that is the roots of det{Θ(z)} are greater than

one in modulus. In the stationary case, the roots of det{Φ(z)} must also be outside the unit disk.

In the sequel, we assume normality for the distribution of the innovations but with non-Gaussian

innovations whose density satisfies some regularity conditions, the quasi-likelihood estimators obtained

by maximizing the Gaussian likelihood have the same asymptotic properties as in the Gaussian case

(e.g. Brockwell and Davis, 1991, Chap. 8).

2.1 The ARMA echelon form representation

More generally, consider a k-dimensional process {Yt : t ∈ Z}, which is wide-sense stationary, purely

non-deterministic and centered. If {εt : t ∈ Z} denotes the innovation process of {Yt }, then we have

Yt = εt +
∑

i≥1

Ψi εt−i, (2.2)

where the Ψi are k× k matrices such that
∑

i≥1

‖Ψi‖2 < ∞ and ‖ . ‖ denotes the Euclidean matrix norm

(or a compatible one). The covariance matrix Σ of εt is assumed to be invertible. This implies, in
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particular, that the matrices Ψi are uniquely defined by Equation (2.2). Let us define the vector of

future values F∞t+1 and the vector of past and present values Pt−∞ of the process {Yt }, at time t, by

F∞t+1 = (Y ′
t+1, Y

′
t+2, . . .)

′ , Pt
−∞ = (Y ′

t , Y ′
t−1, . . .)

′.

Let us denote Yt+i|t the orthogonal projection, component by component, of Yt+i onto the space

generated by the components of Pt−∞. It follows from (2.2) that

Ft+1|t = Ψ∞
∞Et (2.3)

where

Ft+1|t =




Yt+1|t
Yt+2|t

...


 , Ψ∞

∞ =




Ψ1 Ψ2 . . .
Ψ2 Ψ3 . . .
...

...
. . .


 , Et =




εt

εt−1
...


 .

The matrix Ψ∞∞ is called the Hankel matrix associated with the sequence {Ψi}, whereas the space

generated by the components of Ft+1|t is called the space of predictors and is denoted Pt. The

dimension of Pt is called the dynamic dimension or the McMillan degree of the process {Yt }. We can

show that a necessary and sufficient condition for the process {Yt } to admit an ARMA representation

is that its dynamic dimension be finite. Also when dimPt < ∞, for any basis of Pt we can find

a corresponding ARMA representation of {Yt } (see for example Deistler 1985 or Gouriéroux and

Monfort 1990, chap. 8). A natural way to choose such a basis, when dimPt = n, is to consider the

one formed by the first n linearly independent components of the vector of predictors Ft+1|t. If these

components are found at positions i1, . . . , in, then it is easy to show that the set IY = {i1, . . . , in} has

the following property

(∀i ∈ N) : i/∈IY ⇒ (i + k)/∈IY . (2.4)

We deduce from the above property that there exist non negative integers n1, . . . , nk, such that IY =

{1, 1+k, . . . , 1+(n1−1)k; 2, 2+k, . . . , 2+(n2−1)k; . . . ; k, k+k, . . . , k+(nk−1)k}, with the convention

that ni = 0 if and only if i/∈IY , for i = 1, . . . , k. The integers n1, . . . , nk are called the Kronecker

indices, or the dynamic indices of the process {Yt }. The sum of these indices is equal to the dynamic

dimension of the process. Moreover, since it is assumed that the matrix Σ is regular, it follows from

(2.3) that linear independence among the components of Ft+1|t is equivalent to linear independence of

the corresponding rows of Ψ∞∞. Thus, to determine the Kronecker indices, it is sufficient to determine

the basis formed by the first n linearly independent rows of Ψ∞∞. The ARMA representation associated

with this basis is called the echelon form canonical representation, (see Deistler, 1985, or Hannan and

Deistler, 1988).
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These indices allow us to define, in a unique manner, an ARMA(r, r) model

Φ̃0 Yt −
r∑

h=1

Φ̃h Yt−h = Θ̃0 εt −
r∑

h=1

Θ̃h εt−h,

referred to as an ARMA echelon form model, which is abbreviated by ARMAE . The order r is

such that r = max ni, i = 1, . . . , k. The elements Φ̃ij(z) and Θ̃ij(z) of the matrix polynomials

Φ̃(z) = Φ̃0 −
r∑

h=1

Φ̃hzh and Θ̃(z) = Θ̃0 −
r∑

h=1

Θ̃hzh of the ARMAE model are of the form, see Tsay

(1991),

Φ̃ij(z) = δij −
ni∑

h=ni+1−nij

Φ̃h,ijz
h (2.5)

and

Θ̃ij(z) = δij −
ni∑

h=ni+1−mij

Θ̃h,ijz
h, (2.6)

where the Φ̃h,ij and Θ̃h,ij are real parameters,

nij =

{
min(ni + 1, nj) if j < i ,
min(ni, nj) otherwise ,

and

mij =

{
ni + 1 if i > j and ni < nj ,
ni otherwise .

Given that Φ̃0 = Θ̃0, relation (2.6) can be equivalently written as (see Nsiri and Roy, 1992),

Θ̃ij(z) = Φ̃0,ij −
ni∑

h=1

Θ̃h,ijz
h.

Once we know the Kronecker indices n1, . . . , nk of the process {Yt }, we can define the ARMAE

model (ARMA echelon form model) by employing relations (2.5) and (2.6). The i–th equation of this

model is given by

Φ̃0,i.Yt −
ni∑

h=1

Φ̃h,i.Yt−h = Θ̃0,i.εt −
ni∑

h=1

Θ̃h,i.εt−h (2.7)

where Φ̃h,i. and Θ̃h,i. respectively denote the i–th row of the matrices Φ̃h and Θ̃h. The relation (2.7)

can be written in the “refined” form

Φ̃0,i.Yt −
pi∑

h=1

Φ̃h,i.Yt−h = Θ̃0,i.εt −
qi∑

h=1

Θ̃h,i.εt−h,

where pi and qi are such that Φ̃pi,i. 6= 0 and Θ̃qi,i. 6= 0, and thus we have max (pi, qi) = ni.
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The echelon form structure leads to

(Φ̃0 −
p∑

j=1

Φ̃jB
j)Yt = (Θ̃0 −

q∑

j=1

Θ̃jB
j)εt, (2.8)

where Φ̃0 = Θ̃0 is a lower triangular matrix with 1’s along the main diagonal. In addition, when

a refined ARMA echelon form is obtained, there are some linear constraints, generally that some

coefficients are equal to zero, thereby reducing the number of parameters that need to be estimated.

Note that (2.8) can be transformed in (2.1), by letting Φj = Φ̃−1
0 Φ̃j , j = 1, ..., p, Θh = Φ̃−1

0 Θ̃h,

h = 1, ..., q.

2.2 The scalar component model

Another way to write down a canonical form is given by the so-called scalar component model (SCM)

approach. Let us consider a VARMA(p, q) process satisfying (2.1). A linear combination X
(1)
t = v′1Yt

follows a SCM(p1,q1) model where p1 ≤ p and q1 ≤ q, if v′1Φp1 6= 0, v′1Φj = 0 for j = p1 + 1, ..., p, and

v′1Θq1 6= 0, v′1Θj = 0 for j = q1 + 1, ..., q. Hence

v′1Yt −
p1∑

j=1

v′1ΦjYt−j = v′1εt −
q1∑

j=1

v′1Θjεt−j .

If we can write k such independent linear combinations and stack the vectors v′1, ..., v′k in an invertible

matrix Φ̃0, it corresponds to the following equation

(Φ̃0 −
p∑

j=1

Φ̃jB
j)Yt = (Φ̃0 −

q∑

j=1

Θ̃jB
j)εt, (2.9)

where some of the rows of Φ̃j and Θ̃j are equal to zero. The SCM approach was introduced by Tiao

and Tsay (1989) and Tsay (1989a); see also Reinsel (1997) and Tsay (1991). We are thus led to an

equation which bears some resemblance which (2.8) except that now the matrix Φ̃0 is not considered as

being composed of parameters but rather is deduced from the data in order to simplify the model. Left

multiplying (2.9) by Φ̃−1
0 , the usual VARMA form (2.1) is obtained but the corresponding coefficients

Φ̃−1
0 Φ̃j and Φ̃−1

0 Θ̃j have a particular reduced-rank structure.

For convenience, we use the same notations for the coefficients of the ARMAE and SCM represen-

tations (2.8) and (2.9) respectively. However, it is important to remember that these two specification

procedures generally give rise to two different models for a given series. Indeed in (2.8), Φ̃0 is a lower

triangular matrix whilst in (2.9), Φ̃0 is unrestricted.
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3 I(1) VARMA processes

Let us again consider a VARMA model (2.1) but assume that det {Φ(z)} = 0 has d unit roots (roots

equal to 1), 0 < d < k, and that all other roots lie outside the unit circle. It is also assumed that

rank{Φ(1)} = k − d, and that the roots of det {Θ(z)} = 0 are all outside the unit circle. Under these

assumptions, we will see below that the model is at most I(1).

Following Engle and Granger (1987) and Yap and Reinsel (1995), we use the parametrization

provided by the error-correction representation

Φ∗(B)(Ik −B)Yt = CYt−1 + Θ(B)εt, (3.1)

where

Φ∗(z) = Ik − Φ∗1z − ...− Φ∗p−1z
p−1, Φ∗j = −

p∑

l=j+1

Φl,

and C = −Φ(1) = −(Ik −
∑p

j=1 Φj). We shall use a reduced-rank parametrization structure for C

advocated by Ahn and Reinsel (1990) and Yap and Reinsel (1995), among others, by taking C = C1C2,

where C1 and C2 are full-rank matrices of dimensions k× (k−d) and (k−d)×k, respectively. In order

to obtain a unique parametrization, C2 can be normalized, possibly by interchanging the components

of Yt, so that C2 = [Ik−d, C0], where C0 is a (k− d)× d matrix. The parameters of the I(1) VARMA

model are the coefficients in Φ∗(B), Θ(B), C1, C0, and the innovation covariance matrix Σ. It is

possible to write the model in the VARMA form (2.1), using

Φ(B) = Φ∗(B)(Ik −B)− CB. (3.2)

Although there is a one-to-one mapping from Φ1, ..., Φp to Φ∗1, ...,Φ∗p−1, C, the parametrization provided

by the error correction form seems to be easier.

Using the Jordan canonical form of Ik + C, Ahn and Reinsel (1990), and Yap and Reinsel (1995)

have suggested a conditional method for estimating the error correction representation. Contrarily to

what they say, the assumption on Φ(1) does not imply that
p∑

j=1

Φj = Ik + C has d unit eigenvalues.

There are examples where that procedure does not work, as Pham, Roy and Cédras (2003) have

pointed out. We shall therefore follow the approach described in this latter paper. Let P1 be a k × d

matrix such that Φ(1)P1 = 0, and P2 be any k×(k−d) matrix such that the k×k matrix P = [P1, P2]

is invertible. Let Q = [Q′
1, Q′

2]
′ be the inverse of P , with Q1 and Q2 having respectively d and k − d

rows. Then, denoting Φ∗∗(B) = Φ∗(B)(Ik − P2Q2B) + Φ(1)B, we have Φ(B) = Φ∗∗(B)(Ik − P1Q1B)

and det {Φ(z)} = (1− z)d det {Φ∗∗(z)}. By the assumption on the roots of det {Φ(z)}, all the roots of
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det {Φ∗∗(z)} are outside the unit circle. From Pham, Roy and Cédras (2003, Section 2), we also have

(Ik − P1Q1B)Yt = Φ∗∗(B)−1Θ(B)εt, (3.3)

which can be written, since Q1P1 = Ik−d, Q2P1 = 0,

Q1(Yt − Yt−1) = Q1Φ∗∗(B)−1Θ(B)εt, (3.4)

Q2Yt = Q2Φ∗∗(B)−1Θ(B)εt. (3.5)

Let us define the transformed process Xt =

[
X

(1)
t

X
(2)
t

]
= QYt, with X

(1)
t = Q1Yt and X

(2)
t = Q2Yt.

Hence, X
(1)
t has stationary first differences whereas X

(2)
t is stationary. Therefore, the process Yt is

I(1). Note also that Φ(1)Yt = Φ(1)P2X
(2)
t shows that there are k − d linear combinations of Yt that

are jointly stationary, that is, the order of cointegration is k − d. Here, we shall use (3.3) using

the transformation X̃t = (Ik − P1Q1B)Yt. The process X̃t has a stationary and invertible VARMA

representation and Q2X̃t = X
(2)
t , the stationary component of Yt. The previous development is valid

for the case 0 < d < k. The case d = 0 is obviously the stationary case already treated and when

d = k, Φ(1) is a matrix of zeros since its rank is zero and it is immediately seen from (3.2) that Yt is

strictly integrated of order 1 and that there is no linear combinations of Yt that are stationary. Also,

∇Yt = Yt − Yt−1 is a standard stationary and invertible VARMA process.

Yap and Reinsel’s (1995) contribution already mentioned in the introduction plus the known fact

that MA estimation is better with the exact quasi-likelihood than with conditional likelihood or the

least squares method, has led us to investigate the computation of the exact Gaussian likelihood for

model (3.1) for given values of the parameters Φ∗(B), Θ(B), C1, C0, and Σ. The procedure is as

follows:

1. given Φ(1), obtain P = [P1, P2] and Q = [Q′
1, Q′

2]
′ = P−1;

2. compute X̃t = (Ik − P1Q1B)Yt;

3. evaluate the coefficients of Φ∗∗(B) = Φ∗(B)(Ik − P2Q2B) + Φ(1)B;

4. compute the Gaussian likelihood of the model Φ∗∗(B)X̃t = Θ(B)εt;

5. if necessary, evaluate the autoregressive polynomial Φ(B) = Φ∗∗(B)(Ik−P1Q1B) of the original

I(1) VARMA model.
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Of course, the matrices P and Q are not unique. The following Theorem, whose proof is in the

appendix, ensures the uniqueness of X̃t and Φ∗∗(B), and consequently the uniqueness of representation

(3.3).

Theorem 3.1 Let Φ(1) be a k × k matrix such that rank{Φ(1)} = k − d = r, where 0 < d < k. Let

P1 be any k × d matrix such that Φ(1)P1 = 0 and P2 be any k × r matrix such that P = [P1, P2] is

invertible and the columns of P2 are orthogonal to those of P1. If P−1 = Q = [Q′
1, Q′

2]
′ stands for the

inverse of P , with Q1 and Q2 having d and r rows respectively, then the matrices P1Q1 and P2Q2 are

uniquely defined.

Remark 3.1 Using the singular value decomposition of Φ(1), we have

Φ(1) = UDV ′ = [u1, u2, ..., uk]




d1 0 0 . . . 0
0 d2 0 0

0 0 d3
. . .

...
...

. . . . . . 0
0 0 . . . 0 dk







v′1
...
v′r
...

v′k




,

where U and V are k × k orthogonal matrices and dr+1 = ... = dk = 0. Then, a natural choice for P1

and P2 in which P1 and P2 are orthogonal is

P1 = [vr+1, ..., vk] and P2 = [v1, ..., vr].

An alternative choice for P1 and P2 is

P1 =

[
C0

−Id

]
and P2 =

[
Ik−d

0

]
.

It is clear that Φ(1)P1 = 0 but P1 and P2 are not orthogonal. In contrast with the first choice,

the second transformation leads to a reduction of the length of the I(1) components only, resulting

therefore in a small saving of information. Indeed, let us partition the vector Yt in two subvectors Y
(1)
t

and Y
(2)
t where the components of Y

(2)
t are the purely nonstationary (I(1)) components of Yt. Then,

the corresponding transformed series X̃t is given by

X̃t =

(
Y

(1)
t

Y
(2)
t

)
−

(
0 C0

0 Id

) (
Y

(1)
t−1

Y
(2)
t−1

)
=

(
Y

(1)
t + C0Y

(2)
t−1

Y
(2)
t − Y

(2)
t−1

)
. (3.6)

Left multiplying (3.6) by

(
0 C0

0 Id

)
, yields the twice-transformed series

˜̃
Xt =

(
0 Id

Ik−d C0

)
X̃t =

(
∇Y

(2)
t

Y
(1)
t + C0Y

(2)
t

)
.

Obviously, the length of ˜̃
X

(1)

t is reduced by one but not the one of ˜̃
X

(2)

t .
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4 Evaluation of the likelihood

4.1 Some recurrences with respect to time

In this section, we obtain recurrences with respect to time in order to evaluate the Gaussian likelihood

function of the model, given a stationary time series {Yt; t = 1, . . . , T}. As mentioned in Section 1, one

of the most computationally efficient ways to handle the problem is by using the Chandrasekhar-type

recursions, provided that the model can be written under an invariant state space form. However, we

start with the Kalman filter recursions which are more general, and can be used for instance when

there are missing data (although we shall not cover that case here, see Ansley and Kohn, 1983). Of

course, other algorithms can be used as those of Mauricio (1995, 1997, 2002).

We shall follow the presentation given by Shea (1987), using a state vector αt of dimension rk× 1,

where r = max(p, q). We suppose that Φ̃0 is invertible. When we have the echelon form, Φ̃0 is a lower

triangular matrix with 1’s along the main diagonal, then its inverse Φ̃−1
0 is computed by elimination

and from (2.8), we write

(Ik −
p∑

j=1

Φ̃−1
0 Φ̃jB

j)Yt = (Ik −
q∑

j=1

Φ̃−1
0 Θ̃jB

j)εt. (4.1)

For the scalar component model of Section 2.2, Φ̃0 is obtained using a canonical analysis (see Tsay

1989) and is not considered as a parameter of the model. Besides that, the treatment is similar.

Let us denote Φj = Φ̃−1
0 Φ̃j , j = 1, . . . , p, Φj = 0, j = p + 1, . . . , r, Θj = Φ̃−1

0 Θ̃j , j = 1, . . . , q,

Θj = 0, j = q + 1, . . . , r. The state space form is written

Yt = h′αt + εt (4.2)

αt = Tαt−1 + Rεt−1, (4.3)

where

T =




Φ1 Ik

Φ2 Ik
...

. . . Ik

Φr 0k · · · 0k




, R =




Φ1 −Θ1

Φ2 −Θ2
...

Φr −Θr




, and h =




Ik

0k
...

0k




. (4.4)

Let us denote by F t
1 the Hilbert space spanned by the components of {Y1, Y2, ..., Yt} with the

covariance as the scalar product. The vector composed of the orthogonal projection of the components

of αt in the sub-space F t−1
1 is denoted by α̂t|t−1. Let Vt be the difference between αt and α̂t|t−1 which

is orthogonal to F t−1
1 . It is called the sample innovation at time t. Let Ft be its covariance matrix

Ft = E(VtV
′
t ).
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The α̂t|t−1 and the Ft are computed using the Kalman filter recurrences as follows

α̂t|t−1 = T α̂t−1|t−2 + Kt−1F
−1
t−1Vt−1, (4.5)

Kt = TPt−1hF−1
t−1, (4.6)

Pt = TPt−1T
′ + Kt−1F

−1
t−1K

′
t−1, (4.7)

Ft = h′Pth, (4.8)

Vt = Yt − h′α̂t|t−1, (4.9)

where Kt and Pt are auxiliary matrices of respective dimensions rk × k, rk × rk. Note that it is

the need to update the matrix Pt that prevents the Kalman filter from being competitive when the

Chandrasekhar recurrences are valid.

The α̂t|t−1 and the Ft can also be computed using the Chandrasekhar recurrences as follows

α̂t|t−1 = T α̂t−1|t−2 + Kt−1F
−1
t−1Vt−1, (4.10)

Kt = Kt−1 + TLt−1Mt−1L
′
t−1h, (4.11)

Ft = Ft−1 + h′Lt−1Mt−1L
′
t−1h, (4.12)

Mt = Mt−1 −Mt−1L
′
t−1hF−1

t h′Lt−1Mt−1, (4.13)

Lt = TLt−1 −Kt−1F
−1
t−1h

′Lt−1, (4.14)

Vt = Yt − h′α̂t|t−1, (4.15)

where Kt, Mt, and Lt are auxiliary matrices of respective dimensions rk × k, k × k, and rk × k. The

initial conditions are described in the Section 4.2.

With the notations introduced, the logarithm of the Gaussian likelihood function from time 1 to

time T is expressed by

logL = −Tk

2
log(2π)− 1

2

T∑

t=1

log(detFt)− 1
2

T∑

t=1

V ′
t F−1

t Vt. (4.16)

4.2 Derivation of the initial conditions

The initial conditions of the Chandrasekhar recurrences are given by: α̂1|0 = 0, K1 = L1 = TP1|0h +

RΣ, F1 = h′P1|0h + Σ and M1 = −F−1
1 where P1|0h = E(αtα

′
t)h. Because h contains Ik on the first

block and 0 otherwise, we only evaluate the first k columns of P1|0. From Jones (1980), we have

αi
t =

p∑

j=i

ΦjYt+i−j−1 −
q∑

j=i

Θjεt+i−j−1,
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(P1|0h)i =
p∑

j=i

ΦjΓ(j − i + 1)−
q∑

j=i

Θjδ
′(j − i + 1), i = 1, . . . , r,

where δ(j) = E(Ytε
′
t−j) = −ΘjΣ+

min(j,p)∑

i=1

Φiδ(j−i) and Γ(j) = E(Yt−jY
′
t ), the autocovariance function,

j = 1, 2, ..., q, (δ(0) = Σ). The matrices Γ(j), j = 1, 2, . . . , p, are calculated using the the procedure

mentioned below.

For univariate processes, the computation of the initial conditions of the Chadrasekhar recursions

is reasonably fast, due to the existence of fast algorithms (see Mélard, 1984, Kohn and Ansley, 1985),

which need approximately O(p2) operations instead of O(p3) for the direct method described by

McLeod (1975). This is not true for multivariate processes. The method of Ansley (1980), which is

used by Shea (1989) consists of solving a linear system of pk2 equations and is of order O(p3k6). Kohn

and Ansley (1982) have given an improved algorithm by slightly reducing the number of equations.

Mittnik (1993) has proposed a block-Levinson procedure using a pure moving average representation

of the process which requires a number of operations of order O(p2d6). Tunnicliffe Wilson (1993) has

presented a recursive tensor Euclid algorithm for which the number of operations is of the same order.

5 Implementations

Two Fortran 77 implementations have been compared in order to check the algorithms and the corre-

sponding programs. Both are based on the original Shea’s (1989) program but any other algorithm for

computing the exact Gaussian likelihood can be used. The original conditional maximum likelihood

procedure included in Shea’s program does not work and has been corrected. Implementation A was

initiated by Harti (1996) and is home made except the optimization routine which is based on the

library GQOPT (Goldfeld and Quandt, 1972). With respect to Shea’s (1989) program, the following

changes have been implemented in A:

1. the procedure described in Harti, Mélard and Pham (2005) has been used for computing the

autocovariance matrices, since it is generally faster and more secure than Shea’s (1989) COVARS;

2. instead of a sufficient condition for stationarity, we have used the necessary and sufficient con-

dition, which is provided free by the algorithm of Harti, Mélard and Pham (2005);

3. a necessary and sufficient condition of invertibility based on the condition for stationarity but

applied on the moving average coefficients instead of the autoregressive coefficients is also checked

in the program.
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Implementation B relies on the NAG library (The Numerical Algorithms Group, 1999). Indeed,

the subroutine E04UCF of the NAG library was used as optimization routine. It is based on sequential

quadratic programming and relies on Broyden-Fletcher-Goldfarb-Shanno quasi-Newton update of the

Hessian. Instead of the elements of the innovation covariance matrix, a k×k lower triangular matrix L

has been used as a parameter, so that Σ = LL′. For the I(1) case, F02WEF was used to compute the

matrix P = [P1, P2]. Moreover, to compute matrix inverses, the subroutines F07ADF and F07AJF of

NAG library were used. A check for stationarity and invertibility is performed using G13DXF. For our

vector of parameters, the optimization procedure gives the observed Fisher information (or Hessian)

matrix of the estimators. Their estimated standard errors are computed by inverting the observed

Hessian matrix at the final estimate of the parameters. The empirical results presented in Section 6

and Section 7 were obtained using implementation B. The source files and an executable for PC’s are

available on request from the first author.

Reliability and computing time

On the several examples, evaluation of the exact or of the conditional likelihood gave the same

results for the two implementations on several platforms (two Unix servers and a personal computer).

We observed much more problems in numerical optimisation for the conditional estimation than for

the exact estimation method. Implementations A and B gave close estimates except sometimes for the

conditional method. We ran the examples of Section 5 on a Sun Ultra-60 station with a SPARC-V9

processor clocked at 296 MHz, with 768 MB of memory, under the Sun Solaris 5.9 operating system.

Fitting a fully parametrised VARMA(1,2) model to the data of example 1 (T = 120) required 4.13 s

for exact maximum likelihood estimation, and 0.78 s for conditional maximum likelihood estimation.

The corresponding times for the same model in echelon form as in Example 1 were 2.70 s and 0.46 s,

reflecting the smaller number of parameters. Of course, such a comparison depends on many factors:

the computer and its operating system, the code optimisation at the compiler level, the optimisation

procedure used and its own parameters (notably the requested accuracy), the initial values of the model

parameters. Computations on a laptop PC with an Intel Pentium M processor clocked at 2 GHz gave

much smaller timings but they are known to be much less reliable than those from the SPARC-V9

processor. Anyway, for these models, the results on the PC had the same seven to eight significant

digits for each estimate, which is compatible with the requested accuracy 4.10−8. In implementation

A, an approximate exact likelihood can also be obtained. It gives nearly the same estimates as the

exact method and requires computational times close to the conditional method. The Monte Carlo
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simulations of Section 7, obtained also using implementation B, were all produced on a cluster of three

Compaq-Digital AlphaServer GS Series (two servers with six EV6.7 CPU’s clocked at 700 MHz with

8 MB cache and 6 GB RAM and one server with 16 EV6.8CB CPU’s clocked at 1001 MHz with 8 MB

cache and 16 GB RAM), running the Compaq Tru64 UNIX V5.1A operating system.

6 Empirical comparisons

This Section illustrates the proposed algorithm by fitting models that have been used in the literature.

These models are fitted by the conditional method (Reinsel, 1997), and the exact maximum likelihood

method. For the SCM model, a two-stage method is used as explained above. In the following, the

symbol ‘X’, indicates a coefficient to be estimated, ‘0’ or ‘1’, that the corresponding coefficient is

identically equal to 0 or 1, respectively, and ‘∗’ means that the coefficient is either a fixed constant

different from 0 and 1, or is dependent on another coefficient of the model.

Example 1 This is the artificial bivariate series of length T = 120 used by Nsiri and Roy (1996)

to illustrate their method for identifying the refined echelon form representation of a VARMA model.

The series was generated from the model

Yt −
[

0.6 0.0
0.5 −0.5

]
Yt−1 = εt −

[
0.8 −0.2
0.0 0.0

]
εt−1 −

[
−0.85 −0.8

0.0 0.0

]
εt−2, (6.1)

where the normal innovations {εt} have mean zero and Σ = I2. The dynamic dimension is, n = 2, the

Kronecker indices are n1 = 2, n2 = 1, and Φ̃(0) = I2. The method of Nsiri and Roy (1996) has given

the right values for the Kronecker indices. We have fitted model (6.1) with the appropriate ARMAE

specification except that we have added the element (2,1) of Φ̃(0) as an additional parameter. More

precisely we fit the following ARMAE model
[

1 0
X 1

]
Yt −

[
X 0
X X

]
Yt−1 =

[
1 0
∗ 1

]
εt −

[
X X
0 0

]
εt−1 −

[
X X
0 0

]
εt−2.

The conditional method has given the following results, with the estimated standard errors (see

Section 5) given after the ± symbol,


 1 0

0.090
(±0.055)

1


 Yt −




0.555
(±0.065)

0

0.570
(±0.041)

−0.533
(±0.051)


 Yt−1

= εt −

 0.731

(±0.066)
−0.165
(±0.083)

0 0


 εt−1 −


 −0.902

(±0.067)
−0.798
(±0.082)

0 0


 εt−2,
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with the estimate of vec(Σ) : ( 1.102 0.081 0.081 1.006 )′. The exact maximum likelihood has

given the following results


 1 0

0.086
(±0.057)

1


 Yt −




0.557
(±0.068)

0

0.565
(±0.041)

−0.532
(±0.051)


 Yt−1

= εt −

 0.745

(±0.072)
−0.166
(±0.081)

0 0


 εt−1 −


 −0.890

(±0.069)
−0.816
(±0.083)

0 0


 εt−2,

with the estimate of vec(Σ) : ( 1.068 0.073 0.073 1.000 )′.

The two methods give very close results. This conclusion is not surprising given the sample size

considered. The exact estimators are closer to the true values than the conditional ones, except in

one case.

Example 2 This is the example of the logarithms of the mink and muskrat data (Reinsel, 1997,

p. 164), with T = 62. Using the Kronecker indices, Reinsel obtained the following echelon form

representation
[

1 0
X 1

]
Yt −

[
X 0
X X

]
Yt−1 −

[
X X
0 0

]
Yt−2 =

[
X
X

]

+

[
1 0
∗ 1

]
εt −

[
X X
X X

]
εt−1 −

[
X X
0 0

]
εt−2,

and he used that specification to illustrate his conditional method for fitting structured models. After

eliminating a few parameters whose estimates were not significant (they are indicated by 0.000), he

obtained the following results

ˆ̃Φ0 = ˆ̃Θ0 =


 1 0

0.955
(±0.260)

1


 ,

ˆ̃Φ1 =




1.307
(±0.148)

0

0.000 0.984
(±0.140)


 ,

ˆ̃Φ2 =


 −0.704

(±0.086)
0.046

(±0.038)

0 0


 ,

ˆ̃Θ1 =




0.789
(±0.127)

−0.666
(±0.113)

0.000 −0.913
(±0.196)


 ,

ˆ̃Θ2 =


 −0.289

(±0.091)
0.323

(±0.102)

0 0


 and ˆ̃Σ =

[
0.0423 0.0199
0.0199 0.0580

]
.

With the exact method, we have obtained the following results

ˆ̃Φ0 = ˆ̃Θ0 =


 1 0

1.063
(±0.253)

1


 ,

ˆ̃Φ1 =




1.336
(±0.142)

0

0.000 0.840
(±0.203)


 ,
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ˆ̃Φ2 =


 −0.677

(±0.065)
0.031

(±0.027)

0 0


 ,

ˆ̃Θ1 =




0.901
(±0.166)

−0.748
(±0.117)

0.000 −1.245
(±0.253)


 ,

ˆ̃Θ2 =


 −0.380

(±0.153)
0.498

(±0.190)

0 0


 and ˆ̃Σ =

[
0.0407 0.0198
0.0198 0.0566

]
.

In general, the two estimators are closer for the autoregressive parameters than for the moving average

parameters. This is not surprising since the sample size is small.

Example 3 The data consist of the logarithms of indices of monthly flour prices in three cities,

Buffalo, Minneapolis and Kansas City, over the period from August 1972 to November 1980. In this

case, T = 100. Tiao and Tsay (1989) have specified a VARMA(1,1) model using the SCM approach.

The SCM representation (SCM(1,0), SCM(1,0), SCM(1,1)) is given by the following equation

Φ̃0Yt −




X X X
X X X
X X X


 Yt−1 =




X
X
X


 + Θ̃0εt −




0 0 0
0 0 0
X X X


 εt−1. (6.2)

The transformation matrix Φ̃0 obtained by Tiao and Tsay (1989) is

Φ̃0 = Θ̃0 =



−0.40 0.83 −0.40

0.61 −0.51 −0.60
0.55 0.83 −0.06


 .

Probably because the package which they used for model fitting did not cope with the presence of Φ̃0,

they used a two-stage approach. More precisely, after the computation of the matrix Φ̃0 and given

that the transformation Xt = Φ̃0Yt does not alter the parameter specification, they fitted the model

for the transformed series Xt. Replacing in their results Xt by Φ̃0Yt, we obtain


−0.40 0.83 −0.40

0.61 −0.51 −0.60
0.55 0.83 −0.06


 Yt −



−0.364 0.741 −0.340

0.531 −0.271 −0.722
0.774 0.136 0.352


 Yt−1 =



−0.02
−0.16

0.26




+



−0.40 0.83 −0.40

0.61 −0.51 −0.60
0.55 0.83 −0.06


 εt −




0 0 0
0 0 0

1.518 −1.332 −0.069


 εt−1.

Using the exact method of this paper, we obtain the following fitted model


−0.40 0.83 −0.40

0.61 −0.51 −0.60
0.55 0.83 −0.06


 Yt −



−0.362 0.738 −0.345

0.494 −0.235 −0.734
0.826 0.075 0.374


 Yt−1 =



−0.015
−0.122

0.209




+



−0.40 0.83 −0.40

0.61 −0.51 −0.60
0.55 0.83 −0.06


 εt −




0 0 0
0 0 0

1.420 −1.256 −0.062


 εt−1.
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The results are close but not identical probably because the so-called exact estimation method in the

SCA package (Liu and Hudak, 1986) that was presumably used by the authors, in fact computes the

exact likelihood for a moving average model, not for an ARMA model. Surprisingly, our conditional

results are closer to our exact results than to those of Tiao and Tsay (1989).

Example 4 We consider the bivariate time series of seasonally adjusted monthly U.S. housing data

consisting of housing starts and housing sold during the period from 1965 to 1974 (Hilmer and Tiao,

1979), with T = 120. The error correction form model specified by Reinsel (1997, p. 206) is

(1−B)Yt =

[
X
X

] [
1 X

]
Yt−1 + εt (6.3)

and he obtained the following estimates

Ĉ1 =

[
−0.523

0.141

]
, Ĉ2 =

[
1 −1.872

]
, Σ̂ =

[
26.59 5.97
5.97 9.87

]
.

The model fitted by the exact Gaussian maximum likelihood method using the first observation as

the initial value gives the following results

Ĉ1 =



−0.517
(±0.082)

0.142
(±0.048)


 , Ĉ2 =

[
1 −1.872

(±0.086)

]
, Σ̂ =

[
26.69 6.03
6.03 9.87

]
.

This is not surprising because the two methods are generally close for estimating pure VAR models

even if the sample size is small. Of course, a model for the non deseasonalized data, suitably seasonally

differenced, could have been fitted by exact maximum likelihood with joint estimation of C1, C2 and

the other parameters. The model would simply be slightly more complex.

Example 5 The data consists of the quarterly AAA corporate bonds and commercial paper series

from 1953 to 1970 (Haugh and Box, 1977; Reinsel, 1997, p. 306), where T = 72. The model specified

in error correction form by Reinsel (1997, p. 213) is

(1−B)Yt =

[
X
X

] [
1 X

]
Yt−1 +

[
X X
X X

]
(1−B)Yt−1 +

[
X X
X X

]
(1−B)Yt−2 + εt.

The results obtained using the conditional method are as follows

Ĉ = Ĉ1Ĉ2 =

[
−0.039

0.040

] [
1 −1.376

]
,

Φ̂∗1 =

[
0.628 −0.060
1.186 0.507

]
, Φ̂∗2 =

[
−0.496 0.072
−0.739 −0.083

]
,
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with the residual covariance matrix estimate Σ̂ =

[
0.0189 0.0270
0.0270 0.0838

]
.

The exact Gaussian maximum likelihood method gives the following results

Ĉ = Ĉ1Ĉ2 =



−0.041
(±0.021)

0.085
(±0.044)




[
1 −1.265

(±0.063)

]
,

Φ̂∗1 =




0.687
(±0.131)

−0.072
(±0.067)

1.284
(±0.277)

0.476
(±0.129)


 , Φ̂∗2 =



−0.465
(±0.152)

0.073
(±0.065)

−0.691
(±0.310)

−0.038
(±0.128)


 ,

with the residual covariance matrix estimate Σ̂ =

[
0.0188 0.0261
0.0261 0.0798

]
.

The conclusions are similar to those of Example 4.

Example 6 Our final example consists in three U.S. monthly interest rates from 1960 to 1979 (Stock

and Watson, 1988; Reinsel, 1997, p. 307), where T = 240. Yap and Reinsel (1995) fitted the following

reduced rank model in error correction form

(1−B)Yt =




X X
X X
X X




[
1 0 X
0 1 X

]
Yt−1 + εt −




X X X
X X X
X X X


 εt−1.

They used that specification to illustrate their conditional estimation method for fitting partially

nonstationary ARMA models. They obtained the following results.

Ĉ = Ĉ1Ĉ2 =



−0.199 0.250

0.023 −0.082
0.041 0.027




[
1 0 −1.398
0 1 −1.148

]
, Θ̂1 =



−0.143 0.237 −0.463
−0.224 0.118 −0.317
−0.125 0.037 −0.330


 .

The model fitted by the exact Gaussian maximum likelihood method gives the following results

Ĉ = Ĉ1Ĉ2 =




−0.156
(±0.054)

0.287
(±0.155)

0.011
(±0.040)

−0.123
(±0.119)

−0.013
(±0.040)

−0.006
(±0.104)







1 0 −1.199
(±0.108)

0 1 −1.008
(±0.040)


 ,

Θ̂1 =




−0.014
(±0.076)

−0.225
(±0.262)

−0.193
(±0.246)

−0.208
(±0.067)

0.086
(±0.158)

−0.190
(±0.141)

−0.167
(±0.059)

−0.025
(±0.144)

−0.195
(±0.135)




, Σ̂ =




0.2125 0.0650 0.0678
0.0650 0.1022 0.0830
0.0678 0.0830 0.0918


 .

This example confirms the general fact that the exact and the conditional methods lead to different

estimates of the moving average parameters even for a moderate sample size.
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7 Some Monte Carlo results

In this Monte Carlo study, we mainly investigate the finite sample properties of both the conditional

method and the Gaussian exact maximum likelihood method. We compare their performances and we

check the adequacy of their standard errors. In order to do that, we realized two different experiments

to illustrate the results in each of the two cases: ARMA echelon and unit root models. The standard

ARMA case was omitted because it was widely studied by Shea (1989). In the first experiment,

we considered a bivariate ARMAE(1,4) model that satisfies both the stationarity and invertibility

conditions. In the second experiment, we chose a trivariate I(1) ARMA(1,4) model with one unit root

(d =1). The two series lengths considered were 50 and 100. For each of these two experiments and for

each of the two series lengths, the G05HDF subroutine of the NAG library (The Numerical Algorithm

Group, 1999) was used to generate Gaussian series from the corresponding standard VARMA data

generating process (Barone, 1987, and Shea, 1988). Then, suitable transformations were applied to

obtain the series from the non standard VARMA processes, For each replication, the two estimation

methods (exact and conditional) were performed using the implementations of Section 5.

In order to perform a valid comparison, for both experiments, we kept only the first 100 replications

for which

(i) the optimization procedure E04UCF of the NAG library reaches an optimal solution for both

methods (conditional and exact), i.e. E04UCF ended without error indicators or warnings for

both methods;

(ii) for both methods, the optimal solution obtained satisfies the stationarity and invertibility con-

ditions.

Moreover, to insure that initial values of the parameters do not affect our conclusions, those values

for both methods were taken equal to the true parameter values.

For each parameter, the following results are reported:

(1) MEAN: the average of the estimates over the replications;

(2) OSD: the Observed Standard Deviation that is defined as the square root of the average over

the replications of the variances obtained by the optimization procedure;

(3) ESD: the Empirical Standard Deviation across the replications.
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7.1 Experiment 1

In the first experiment, we generate data from the following ARMAE model

Yt −
[

0.9 0.0
0.2 0.9

]
Yt−1 = εt −

[
0.0 0.0
0.0 0.1

]
εt−3 −

[
0.95 −0.8
0.0 0.0

]
εt−4,

where the innovations {εt} have mean zero and Σ = I2. The main purpose is to fit the following

ARMAE model
[

1 0
X 1

]
Yt −

[
X 0
X X

]
Yt−1 =

[
1 0
∗ 1

]
εt −

[
0 0
0 X

]
εt−3 −

[
X X
0 0

]
εt−4, (7.1)

for each replication. Of course, the (2, 1)-element of Φ̃0 is a parameter in the model. The results

are reported in Table 1. The latter is presented as a 3×1 block matrix, the first block gives the true

parameter values and the second and third ones present the results of the two estimation methods

(conditional and exact) for the sample sizes 50 and 100 respectively. For each estimated coefficient, we

provide the MEAN, OSD and ESD based on 100 independent realizations. For the coefficients that are

not estimated such as the elements of Φ̃0 except (2,1), or the element (1,2) of Φ̃1 and some elements

in Θ̃3, and Θ̃4, the MEAN corresponds to the true value and we put a dash for the OSD and ESD.

The lower triangular matrix L being estimated instead of Σ, we provide the results for the elements

of L. Since Σ = I2 in this model, the true L is also equal to I2. The OSD and ESD are presented

only for the lower part of L. To underline the differences between the two methods, the conditional

and exact estimates averages that are far apart or far from the true value were put in bold.

Inspection of Table 1 reveals that, for both sample sizes, the averages obtained from the exact

method are closer to the true values than those obtained by the conditional method. The greatest

differences between the two methods appear for the (1, 1)-element of Θ̃4 and the (2, 1)-element of Θ̃3.

The conditional method is particularly inefficient for estimating Θ̃4. Note that for both methods, as

the sample size increases, the averages become closer to the true values. Moreover, for the series length

T = 100, the bias of the exact estimates are smaller than those of the conditional ones. Note also

that for the larger sample size (T = 100), the OSD and ESD are close for all parameters. However,

with T = 50, for a few parameters, the OSD and ESD differ when the exact method is performed.

Experiments for other sample sizes were considered but the results are not reported. They indicate

that the OSD and ESD are much closer as the sample size increases.
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The true model

Φ̃0 Φ̃1 Θ̃3 Θ̃4 L
1 0 .900 0 0 0 .950 -.800 1.000 0

.000 1 .200 .900 0 .100 0 0 .000 1.000
The estimated model

Size Method Φ̃0 Φ̃1 Θ̃3 Θ̃4 L

50 COND MEAN 1 0 .858 0 0 0 .640 -.746 1.166 0
-.057 1 .173 .880 0 .078 — — .094 1.054

OSD — — .065 — — — .134 .149 .116 0
.159 — .140 .043 — .125 — — .155 .106

ESD — — .075 0 — — .166 .194 .168 —
.127 — .111 .044 — .136 — — .246 .192

EXACT MEAN 1 0 .874 0 0 0 .813 -.854 .998 0
-.057 1 .171 .883 0 .108 — — -.009 .927

OSD — — .056 — — — .233 .150 .130 0
.117 — .105 .035 — .127 — — .154 .098

ESD — — .065 0 — — .141 .145 .120 —
.119 — .106 .040 — .141 — — .167 .010

100 COND MEAN 1 0 .880 0 0 0 .741 -.775 1.112 0
-.020 1 .190 .891 0 .085 — — .059 1.050

OSD — — .039 — — — .082 .086 .076 0
.089 — .080 .023 — .075 — — .105 .074

ESD — — .040 0 — — .119 .117 .092 —
.079 — .069 .025 — .080 — — .143 .133

EXACT MEAN 1 0 .887 0 0 0 .900 -.825 .990 0
-.019 1 .189 .893 0 .102 — — -.004 .983

OSD — — .035 — — — .116 .078 .077 0
.073 — .063 .019 — .073 — — .107 .071

ESD — — .034 0 — — .062 .077 .063 —
.069 — .064 .022 — .067 — — .106 .072

Table 1. Comparison of the conditional (COND) and EXACT likelihood estimation methods for
the bivariate ARMA echelon model (7.1) based on 100 replications for each of the two sample sizes.
For each estimated parameter, we report the mean of the 100 estimates (MEAN), the observed
standard deviation (OSD) and the empirical standard deviation (ESD).

7.2 Experiment 2

In this experiment, we generate data from an I(1) VARMA(1,4) model with one unit root

Yt −




0.602 0.433 0.110
0.121 0.660 0.066
0.103 0.166 0.838


 Yt−1 = εt −




0.6 0 0.2
0 0.9 0

−0.4 −0.4 0.8


 εt−4,

where the innovations {εt} have zero mean and

Σ =




1.0 0.5 0.4
0.5 1.0 0.7
0.4 0.7 1.0


 , so L =




1 0 0
0.5 0.866 0
0.4 0.577 0.712


 .

We can easily check that the matrices C1 and C0 that characterize the error-correction form are
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given by

C1 =



−0.398 0.433
0.121 −0.340
0.103 0.166


 and C0 =

[
−0.80
−0.48

]
.

We fit the following error-correction form model

Wt = Yt − Yt−1 =




X X
X X
X X




[
1.0 0.0 X
0.0 1.0 X

]
Yt−1 + εt −




X 0 X
0 X 0
X X X


 εt−4. (7.2)

The first observation Y0 was set equal to zero. The results are reported in Table 2 whose presentation

is similar to Table 1. For each sample size and each method, we report the average estimates of the

matrices C1, C0, Θ4, and L and their respective OSD and ESD. The main conclusions are similar to

those of Experiment 1. The exact method performs better than the conditional one for both sample

sizes. The difference between the two methods is specially striking for Θ4 at both series lengths. In

particular, the true value of the (3, 2)-element is −0.400 whilst the conditional estimates averages are

−0.091 at T = 50 and −0.151 at T = 100. The corresponding exact estimates averages are respectively

−0.551 and −0.495.

8 Conclusions

This paper describes algorithms for exact maximum likelihood estimation of parsimonious VARMA

models and I(1) VARMA. The main difference between the VARMA echelon and the standard

VARMA representation is that a triangular matrix Φ̃(0) is substituted to the identity matrix in the

autoregressive and moving average polynomials and that constraints of nullity are imposed to some

coefficients. The constraints do not have an impact on the likelihood function itself. However, the

presence of Φ̃(0) modifies the evaluation of the likelihood but the change is smaller than it could be

anticipated.

Similarly, the coverage of I(1) or cointegrated VARMA models for exact maximum likelihood

estimation (conditional of course on the the first observation of the vector series) requires some minor

changes in the code. In the two cases, these features are not available in the existing software packages.

We have been able to fit several models shown in the literature and to investigate in a small

Monte Carlo study the effect of the use of the exact likelihood instead of the conditional likelihood.

In particular, with short series of 50 and 100 observations, the difference between the conditional and

the exact estimations can be quite large especially for high-order moving average parameters.

There should be no problem to handle I(1) VARMA models in structured form although it is

not currently implemented. A cointegrated VARMA model in echelon form can be specified using the
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method of Poskitt and Lütkepohl (1995) with Kronecker indices estimated using Bartel and Lütkepohl

(1997). Another procedure for obtaining a parsimonious cointegration representation is due to Hunter

and Dislis (1994).

The true model
C1 C0 Θ4 L

-.398 .433 -.800 .600 0 .200 1.000 0 0
.121 -.340 -.480 0 .900 0 .500 .897 0
.103 .166 -.400 -.400 .800 .400 .577 .712

The estimated model

Size Method C1 C0 Θ4 L

50 COND MEAN -.430 .411 -.811 .573 0 .172 .992 0 0
.119 -.430 -.488 0 .742 0 .548 .897 0
.157 .131 -.411 -.091 .432 .367 .454 .816

OSD .109 .133 .217 .122 — .116 .103 — —
.112 .141 .134 — .088 — .145 .090 —
.114 .138 .149 .162 .140 .147 .132 .080

ESD .138 .169 .231 .136 — .134 .096 — —
.162 .177 .158 — .099 — .138 .110 —
.119 .144 .169 .198 .200 .171 .167 .108

EXACT MEAN -.414 .419 -.798 .587 0 .253 .957 0 0
.123 -.401 -.484 0 .862 0 .510 .834 0
.143 .135 -.452 -.551 .980 .394 .566 .582

OSD .101 .126 .167 .137 — .146 .105 — —
.100 .132 .105 — .086 — .136 .092 —
.105 .128 .150 .220 .254 .147 .122 .095

ESD .112 .150 .210 .147 — .150 .097 — —
.120 .141 .144 — .060 — .121 .095 —
.117 .143 .173 .228 .204 .155 .141 .092

100 COND MEAN -.409 .437 -.793 .598 0 .179 1.001 0 0
.129 -.371 -.472 0 .799 0 .533 .901 0
.132 .155 -.409 -.151 .520 .393 .492 .806

OSD .068 .084 .055 .068 — .073 .071 — —
.065 .086 .034 — .048 — .099 .062 —
.072 .088 .085 .096 .102 .099 .089 .053

ESD .071 .092 .053 .074 — .079 .074 — —
.076 .094 .039 — .060 — .109 .061 —
.072 .100 .101 .136 .140 .108 .100 .071

EXACT MEAN -.410 .446 -.800 .611 0 .229 .980 0 0
.119 -.352 -.478 0 .894 0 .510 .854 0
.122 .152 -.404 -.495 .931 .392 .585 .642

OSD .063 .079 .045 .066 — .075 .072 — —
.051 .071 .022 — .035 — .096 .063 —
.065 .082 .076 .114 .121 .101 .085 .057

ESD .065 .088 .038 .073 — .078 .075 — —
.059 .080 .018 — .032 — .103 .054 —
.072 .091 .083 .130 .145 .109 .081 .064

Table 2.Comparison of the conditional (COND) and EXACT likelihood estimation methods for the trivari-
ate nonstationary ARMA(1,4) model (7.2) based on 100 replications for each of the two sample sizes. For
each estimated parameter, we report the mean of the 100 estimates (MEAN), the observed standard
deviation (OSD) and the empirical standard deviation (ESD).
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Appendix

Proof of Theorem 3.1. The singular value decomposition of Φ(1) yields that

Φ(1) = UDV ′ = [u1, u2, ..., uk]




d1 0 0 . . . 0
0 d2 0 0

0 0 d3
. . .

...
...

. . . . . . 0
0 0 . . . 0 dk







v′1
...
v′r
...

v′k




,

where U and V are k × k orthogonal matrices and dr+1 = ... = dk = 0.

The null space of Φ(1), i.e., the set of vectors x such that Φ(1)x = 0, is the space generated by

the columns of the matrix G = [vr+1, ..., vk]. Now let P1 and P ∗
1 be any k × d matrices such that

Φ(1)P1 = 0 and Φ(1)P ∗
1 = 0. Since P1 and P ∗

1 are full rank matrices, there exist full rank d × d

matrices α and α∗ such that

P1 = Gα and P ∗
1 = Gα∗.

Hence, we have

P ∗
1 = P1α

−1α∗.

In a similar way, consider k × r matrices P2 and P ∗
2 such that P = [P1, P2] and P ∗ = [P ∗

1 , P ∗
2 ] are

invertible, and the column vectors of P2 and P ∗
2 are orthogonal to those of P1 and P ∗

1 respectively. Of

course, the space spanned by the column vectors of M = [v1, ..., vr] is orthogonal to the one spanned

by those of G. Hence, there exist full rank r × r matrices β and β∗ such that

P2 = Mβ and P ∗
2 = Mβ∗.

Thus,

P ∗
2 = P2β

−1β∗.

Let Q =

[
Q1

Q2

]
= P−1 and Q∗ =

[
Q∗

1

Q∗
2

]
= (P ∗)−1, we can easily check that

Q∗ =

[
(α∗)−1αQ1

(β∗)−1βQ2

]
.

Now turning back to the product P ∗
1 Q∗

1, we have that

P ∗
1 Q∗

1 = P1α
−1α∗(α∗)−1αQ1 = P1Q1.

In a similar way we can check that P ∗
2 Q∗

2 = P2Q2, which completes the proof.
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