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Abstract. The purpose of the paper is to propose a simple and efficient algorithm to evaluate
the exact quasi-likelihood of (possibly marginally heteroscedastic) ARMA models with
time-dependent coefficients. The algorithm is based on the Kalman filter and is therefore simpler
thanaprevious algorithmbased onaCholesky factorisation. Computational efficiency isobtained
by taking the ARMA structure into account. Empirical evidence is given. It is also shown how
the algorithm can be used as an approximation in the following non-linear models: conditionally
heteroscedastic ARMA models (with GARCH errors) and threshold ARMA models, in order to
improve the treatment of the initial observations when the parameters of these models are esti-
mated.

1 Introduction
The computation of the exact likelihood function of a Gaussian ARMA (autoregressive-moving
average) process of order ( p, q) has been studied by several authors, for example Ljung and Box
(1979), Ansley (1979), Gardner, Harvey and Phillips (1980), Pearlman (1980), Mélard (1984).
These methods consist essentially in expressing the exact marginal distribution of the first m
observations (m = max(p, q), max(p, q + 1) or p + q according the method). That procedure is
possible because the distribution is multinormal and is thus characterised by the covariances
between the first observations. Among those approaches, that of Gardner et al. (1980) (denoted
by GHP in the sequel) is based on the Kalman filter but requires a large number of operations,
mainly for computing the covariance matrix P0 of the state vector at the initial time t = 0.

Monte Carlo experiments (e.g. Ansley and Newbold, 1980) have shown that, for ARMA
models and relatively short series of length 50 or 100, exact maximum likelihood estimation is
far superior to conditional maximum likelihood estimation (or least-squares estimation), which
either assumes that the pre-sample observations and errors have known fixed values, or starts
estimation at t = m + 1, with and for t < m. It seems therefore plausible that
conditional maximum likelihood suffers similarly when dealing with more general time-de-
pendent or non-linear models.

m =max(p ,q ) et = 0

1A preliminary version of this paper was presented at the "Rencontres Franco-Belges", Brussels,
November 23-24, 1995. A reduced version of this paper, without the applications to non-linear
models, is submitted. We thank the three anonymous referees and the editors of the special issue
for their useful comments.
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The exact likelihood function of a Gaussian evolutive ARMA process is the subject of this
paper. An evolutive ARMA process is characterised by time-dependent coefficients and marginal
heteroscedasticity, i.e. a time-dependent innovation standard deviation. By time-dependent, we
mean a deterministic function of time depending on a finite number of parameters, as opposed
to random coefficients (e.g. Nicholls and Quinn, 1982) and time-dependent estimators of constant
parameters (e.g. Ljung and Söderström, 1983).

The interest towards that kind of models is renewed thanks to new asymptotic results about
consistency and normality which have been obtained recently. Also, Grillenzoni (1990) and
Dahlhaus (1996) have presented non-standard, approximate and somewhat complex methods
and have applied them to the estimation of the parameters of models with time-dependent
coefficients for real and artificial time series. Here, we consider the quasi-likelihood estimation
method, compute the exact likelihood, not an approximation, and using a renowned algorithm.
Implementation of that algorithm is however not trivial because of the determination of the initial
conditions, the requirement of computational efficiency (since the algorithm is used many times
in an optimisation procedure, and another algorithm already exists), and the generality of the
model. Moreover, there are potential applications for the estimation of non-linear models. We
do not raise here identification problems which can be serious. Coefficients can be polynomial
(Grillenzoni, 1990), periodical (Dahlhaus, 1996) functions of time but other parametrisations
can be considered.

The method for computing the likelihood which is described here is based on the Kalman
filter. It is a generalisation of GHP with an improvement for the computation of P0. The proofs
are collected in Appendix 1. The main details of the new algorithm are given in Appendix 2.
The method will be compared with another exact method given by Mélard (1982) which extends
the Cholesky factorisation of Ansley (1979). That method is sketched in Appendix 3.

In several fields of applications, such as finance, meteorology, hydrology and biology, the
class of ARMA models has shortcomings. A more satisfactory way to represent these series is
to resort to non-linear models, using stochastic processes defined by non-linear equations. There
are several ways to introduce non-linearity. We consider two of them: models with generalised
conditionally autoregressive heteroscedastic (GARCH) errors (Bollerslev, 1986), and threshold
ARMA models (Tong, 1990). The algorithm for computing the exact likelihood function for
evolutive ARMA processes, which is described in this article, can be used as an approximation
for estimating the parameters of these models.

Contrarily to the evolutive ARMA model which is marginally heteroscedastic, the ARMA
model with GARCH errors, or ARMA-GARCH, is conditionally heteroscedastic. We propose
a new estimation procedure for ARMA-GARCH models characterised by better initial values
for the recurrences used in the quasi-maximum likelihood method. The procedure is an
improvement with respect to Azrak et al. (1993).

We also consider threshold ARMA models, which provide a generalisation of threshold
autoregressive or TAR models (Tong, 1978, 1983). These models are defined by several ARMA
submodels. The submodel used at time t depends on the regime, defined by the location of a
variable with respect to one or several thresholds. In the estimation method proposed by Mélard
and Roy (1988), the first observations are lost since they are used as initial values in the recur-
rences. We propose a procedure which has not that inconvenience.

In the conclusions, we briefly indicate how the method can be extended to a wider class
of models.

2 Evolutive ARMA models and non-linear models
The evolutive ARMA model considered here is a special case of the extended ARIMA model
defined by Azrak and Mélard (1993). A non-stationary white noise process is a

sequence of independent random variables, with mean zero and variance . We let ,
where is a scale factor, and is a deterministic functions of t. Then, an evolutive ARMA

(et, t ∈ Z)
σt

2 σt = gtσ
σ gt



3

process is defined as a (generally non-stationary) stochastic process which is the solution of the
equation

where the coefficients , and are deterministic functions of t, depending on
a finite number of unknown parameters, and p and q are integer constants. Let us denote by ν
the vector of parameters, σ being not included.

An ARMA process, also called here an ARMA process with constant coefficients, is a
special case defined by the equation

where the innovations have mean zero and a constant variance .

The statistical properties of the models with time-dependent coefficients are now better
known. Kwoun and Yajima (1986), Hamdoune (1995), and Dahlhaus (1996) have shown
estimators which are consistent and asymptotically normal in the homoscedatic case, that is to
say when σt = σ. Heteroscedastic evolutive models have been scarcely treated in the literature.

A GARCH process is defined (Bollerslev, 1986) as a sequence of martingale dif-
ferences , such that , where denotes the σ-field generated by the process
up to time t, and where the conditional variance satisfies

with the constraints

The ARMA (p, q) models with GARCH (q1, p1) errors have the same form as an ARMA model,
except that the errors don’t constitute a white noise but a GARCH process, satisfying (2.3).

A threshold autoregressive model for a time series is composed of l regimes
, autoregressive of order , determined by another series . Let be

such that if and only if , where the thresholds are real numbers such that
. The model is defined (Tong, 1983) by

where is a non-stationary white noise process with variance . The
coefficients and the standard deviationsσk, are the parameters of the k-th
regime, k = 1, ..., l. Tong’s approach has some inconveniences, particularly the purely autore-
gressive specification and the fact that the parameters of the different regimes need to be func-
tionally independent from each other, leading to a large number of parameters and complicating
estimation.

These considerations and others have lead Mélard and Roy (1988) to propose a
quasi-maximum likelihood estimation method for the threshold ARMA (TARMA) models (e.
g. Tong, 1990, p. 101). If we forget the constants, TARMA model is defined similarly as (2.4)
as follows

wt − ∑
i = 1

p

φtiwt − i = et − ∑
j = 1

q

θtjet − j , (2.1)

φt1,…,φtp θt1,…,θtq gt

wt − ∑
i = 1

p

φiwt − i =et − ∑
j = 1

q

θjet − j , (2.2)

σ2

(q1, p1)
(et, t ∈ Z) E(et/It − 1) = 0 It

(es, s ≤ t)

var(et/It − 1) =ht = α0 + ∑
j = 1

p1

αjet − j
2 + ∑

i = 1

q1

βiht − i , (2.3)

α0 > 0, αp1
> 0, αj ≥ 0, (j = 1,…, p1 − 1), βq1

> 0, βi ≥ 0, (i = 1,…,q1 − 1).

(wt, t ∈ Z)
Rk(k = 1,…, l) pk (yt, t ∈ Z) I(t)

I(t) = k rk − 1 ≤ yt < rk rk

r0 = −∞ < r1 <…< rl − 1 < rl = ∞

wt = θ0(I(t)) + ∑
i = 1

pI(t)

φi(I(t))wt − i + et, (2.4)

var(et) = σI(t)
2(et, t ∈ Z)

φi(k), i = 1,…, pk, θ0(k)

wt = ∑
i = 1

pI(t)

φi(I(t))wt − i + et − ∑
j = 1

qI(t)

θj(I(t))et − j. (2.5)
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3 Quasi-likelihood function of evolutive ARMA models

We suppose that the process is stationary and invertible in the past. This means that, for all ,
, , and , and the zeros of the polynomials in the complex variable z

are all of modulus greater than 1. The assumption of invertibility in the past implies that the
non-stationary process is invertible (Cramér, 1961, Hallin, 1978), i. e. for all finite t, can be
expressed as a mean-square convergent linear combination of , , . Without that
property, the process remains unindentifiable and inefficient forecasts are produced by the model
(Hallin, 1986).

The quasi-likelihood function is the density function of the observations w = (w1 ... wn)′,
considered as a function of the parameters of the model, assuming that the process is Gaussian.
It can be written as follows

where is the covariance matrix of w, whose element is .
The computation of that function requires inverting , which requires a computation time

proportional to .

We shall develop a very fast algorithm with a number of operations of order n instead of
n3, allowing therefore to evaluate the likelihood of an evolutive ARMA process exactly and
without difficulty. Another algorithm based on the Cholesky factorisation of a band matrix
(Mélard, 1982) is summarised in Appendix 2.

4 Fast algorithm based on the Kalman filter
In an article devoted to the likelihood of multivariate ARMA models in the context of missing
and/or aggregated data, Ansley and Kohn (1983) have used the Kalman filter for a state space
model where the matrices depend on time. They haven’t handled explicitly ARMA models with
time-dependent coefficients. Mélard (1985) has given a sketch of an algorithm for evaluating
the likelihood of a multivariate ARMA model with time-dependent coefficients. It is an improved
version of that algorithm which is offered here in the univariate case.

Let us consider a discrete time stochastic process satisfying the equation:

where the state vector represents the state of the system at time t, is called the
transition matrix, is a matrix, and is a white noise process, with zero mean

and variance . Suppose that the state of the system can be observed through the observation
, of dimension 1:

where is a matrix (usually a noise is added to the right hand side of (4.2) but it is not
necessary here). The specification of the state space form (4.1-2) is completed by the two
conditions:
• the initial state vector, , with mean and covariance matrix ;
• that the are uncorrelated with the initial state vector , i. e. .

t ≤ 0
φti = φi θt j = θj gt = g0

1 − ∑
i = 1

p

φiz
i , 1 − ∑

j = 1

q

θjz
j

et

wt wt − 1 wt − 1,…

L(ν,σ2;w) = (2π)−n /2 (det Γw)
−1/2 exp

⎛
⎜
⎝
−

1
2

w ′ Γw
−1 w

⎞
⎟
⎠

, (3.1)

Γw n × n (t , s) cov(wt,ws) (t , s = 1,…,n )
Γw

n 3

(Wt, t ∈ N)
Wt =FtWt − 1 +Gtet , (4.1)

r × 1 Wt Ft r × r
Gt r × 1 (et, t ∈ N)

σt
2

wt

wt =HtWt, (4.2)
Ht 1 × r

W0 α0 P0

et W0 E(etW0′) = 0 for t ∈ N
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The Kalman filter is a recurrence procedure for obtaining an estimator of the state vector
at time , based on the information at time . We follow the presentation of Harvey (1989,
pp. 104-107), slightly improved. Let us consider the model composed of (4.1) and (4.2). Denote

the σ-field generated by the random variables , the optimal
estimator of , based on the observations up to time , and the estimator of based
on the same observations:

taking (4.1) into account. Let be the covariance matrix of the estimation error defined by:

and the prediction error covariance matrix

Equations (4.3-4) are known as the prediction equations from which the updating equations can
be deduced (Jazwinski, 1970):

where

and the sample innovations, or residuals, are defined by

Let us denote by the gain matrix given by

The Kalman recurrence estimation technique, or Kalman filter, is based on equations (4.3-8).
They allow us to write the following recurrence relations:

In principle, the initial values of the Kalman filter are given by the mean and the covariance
matrix of the distribution of the state vector. They can be specified by and , or
and . To use that recurrence algorithm in order to evaluate the likelihood function of the
evolutive ARMA model defined by (2.1), it is necessary to transform (2.1) in a state space
representation. That transformation can be done using the following theorem (Mélard, 1985).

Theorem 1

Let be an evolutive ARMA(p, q) process defined by (2.1) and such that:

with . It can be represented (not uniquely) in state space form (4.1-2), where

t t − 1

It (wu,u ≤ t) αt − 1 = E(Wt − 1/It − 1)
Wt − 1 t − 1 αt /t − 1 Wt

αt /t − 1 =E(Wt/It − 1) = Ftαt − 1 , (4.3)
Pt

Pt = E{(Wt − αt) (Wt − αt)′} ,
Pt /t − 1

Pt /t − 1 =E{(Wt − αt /t − 1) (Wt − αt /t − 1)′}

=FtPt − 1Ft′ +Gtσt
2Gt′ . (4.4)

αt =αt /t − 1 + Pt /t − 1Ht′σ̂t
−2ê t , (4.5)

Pt =Pt /t − 1 − Pt /t − 1Ht′σ̂t
−2HtPt /t − 1 , (4.6)

σ̂t
2 = HtPt /t − 1Ht′ (4.7)

ê t = wt −Hαt /t − 1 . (4.8)

Kt

Kt = Ft + 1Pt /t − 1Ht′σ̂t
−2 . (4.9)

αt + 1/t =(Ft + 1 −KtHt)αt /t − 1 +Ktwt , (4.10)

Pt + 1/t =Ft + 1Pt /t − 1F ′t + 1 +Gt + 1σt + 1
2 Gt + 1′ −Ktσ̂t

2K ′t . (4.11)

α0 = 0 P0 α1/0 = 0
P1/0 = P0

(wt, t ∈ N)
φti = 0 , p < i < r , θtj = 0 , q < j < r − 1 ,

r =  max (p ,q + 1)
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is a constant matrix equal to , and .

By applying the projection theorem (Jazwinski, 1970), the residuals are mutually

uncorrelated random variables, with mean zero and variance (4.7) which defines . If
we suppose that the process is Gaussian, the residuals have a normal distribution and are mutually
independent. Changing the variable by in the density is a transformation which yields a
lower triangular Jacobian matrix containing ones on the main diagonal. Consequently, the
Jacobian is equal to 1. The logarithm of the likelihood function deduced from (3.1) can thus be
written as follows:

where c is a constant.

It is well known (for example Tunnicliffe Wilson, 1973) that estimating the variance
simultaneously with the other parameters can be difficult. We consider an alternative procedure
which makes use of a non-linear least squares procedure such as the one proposed by Marquardt
(1963). Solving the likelihood equation for , and substituting by the solution

we obtain the concentrated log-likelihood

where c’ is another constant. From that expression, parameter estimation is done as indicated by
Azrak and Mélard (1993).

In order to compute and in (4.14), the recurrences (4.7-11) can be used, in the given
order, avoiding the estimation error covariance matrix , see e. g. Pearlman (1980), Mélard
(1985). In the sequel, we propose an algorithm employing simultaneously and , which
is justified by the following theorem (inspired by the Fortran code in GHP in the stationary case).

Theorem 2

Let be an evolutive ARMA(p, q) process expressed in the form of the linear dynamic

model of Theorem 1. The elements of the matrix have the following form

The elements of the matrix are given by the recurrence:

Ft =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φt ,1 |
φt + 1,2 |
. | Ir − 1

. |

. |
− − − − − − − − − − − −

φt + r − 1,r | 0 … … 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Gt =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
− θt + 1,1

− θt + 2,2

.

.

.
− θt + r − 1,r − 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.12)

Ht = H H = (1,0,…,0) σt = gtσ

ê t

bt
2 = σ̂t

2/σ2

wt ê t

logL(ν,σ2;w) = c −
1
2
∑

t = 1

n

log(σ2bt
2) −

1
2
∑

t = 1

n ê t
2

σ2bt
2
, (4.13)

σ2 σ2

σ̂2 =
1
n
∑

t = 1

n ê t
2

bt
2
,

c’ −
1
2
∑

t = 1

n

log(bt
2) −

n
2

log
⎧
⎨
⎩
∑

t = 1

n ê t
2

bt
2

⎫
⎬
⎭

, (4.14)

ê t
2 bt

2

Pt

Pt /t − 1 Pt

(wt, t ∈ N)
Vt = Gtσt

2Gt′

Vt(i , j) = Vt(j , i) =

⎧
⎪
⎨
⎪
⎩

θt + i − 1, i − 1θt + j − 1, j − 1σt
2, 2 ≤ i ≤ j ≤ r ,

− θt + j − 1, j − 1σt
2, i = 1, 1 < j ≤ r ,

σt
2, i = j = 1.

(4.15)

Pt /t − 1
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and the elements of matrix are given by the following recurrence:

In order to start the recurrences, we need initial values which are respectively and

. If the process were stationary, hence , , , ,
we could determine as the solution of the equation

where and . In the subroutine STARMA, GHP have rewritten (4.18) in
the form , with an appropriate definition of and some matrix S, in such
a way to solve a system of linear equations. It is one of the reasons why their algorithm
is not efficient for large models, the other one being the use of the Kalman filter instead of the
Chandrasekhar recurrences (Morf et al., 1974, Pearlman, 1980, Mélard, 1984).

The algorithm proposed in this paper for computing the initial covariance matrix of the
state vector (Akaike, 1978, Jones, 1980, Mélard, 1984) allows to improve the AS154 program
for computing the likelihood function of an ARMA model with constant coefficients using the
GHP method. The autocovariances for , are determined by the
algorithm of Tunnicliffe Wilson (1979). A subproduct of that algorithm (see Mélard, 1984)
consists in the covariances computed by the recurrence

with . The first element of matrix is given by

In the case of an ARMA(p, q) process with constants coefficients, (A1.1) (see Appendix 1) is
written in the form

Hence, the components of can be obtained by the following relation:

Since is a symmetric matrix, there remains to determine the diagonal and subdiagonal elements
of the columns after the first one, which can be done using the following theorem.

Theorem 3

Pt /t − 1(i , j) =Vt(i , j) + Pt − 1(i + 1, j + 1), i , j = 1,…, r − 1 , (4.16a )

Pt /t − 1(r , r) =Vt(r , r) , (4.16b )
Pt

Pt(i , j) =Pt /t − 1(i , j) −
Pt /t − 1(i ,1)Pt /t − 1(1, j)

Pt /t − 1(1,1)
i , j ≥ 2 , (4.17a )

Pt(1, j) =Pt(i ,1) = 0. (4.17b )

α0 = 0

σt
2 = σ2P0 = E[W0W ′0] F = Ft G = Gt gt = 1 (t = 1,…,n )

P0

P0 = FP0F ′ +Gσ2G ′ = C + V , (4.18)
V = Gσ2G ′C = FP0F ′

Vec(V) = SVec(P0) Vec(.)
r(r + 1)/2

P0

γk =cov(wt,wt − k) k = 0,…, r

λk = E(wtet − k)

λk = −θkσ
2 + ∑

j = 1

min(p ,k)
φjλk − j ,k = 1,…,q , (4.19)

λ0 = σ2 P0

P0(1,1) = cov((W0)1, (W0)1) = var(w0) = γ0. (4.20)

(Wt)i = ∑j = i

r

(φjwt + i − 1 − j − θj − 1et + i − j) .

P0(i ,1) P0

P0(i ,1) =cov((W0)i, (W0)1) = E((W0)iw0)

= ∑
j = i

r

{φjE(w−j + i − 1w0) − θj − 1E(e−j + ie0)}

= ∑
j = i

r

(φjγj − i + 1 − θj − 1λj − i) . (4.21)

P0
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Let be an ARMA(p, q) process with constant coefficients satisfying (2.1), represented
in the form of a linear dynamic model (4.1) with matrices composed of the
coefficients , respectively. The elements of the covariance matrix of the state vector
at time 0 satisfy the relation:

for , where the elements of are given by:

Remark. The recurrence relation expressed in Theorem 3 allows to determine the elements
within each diagonal, in the manner represented by Figure 1.

Figure 1.

Let us now consider the evolutive ARMA process defined by (2.1). Suppose that it is
stationary in the past. More precisely, suppose that , , and for , which
implies that:

Equation (4.18) is replaced by

The method described in Theorem 3 can then be used, with some modifications resulting from
the replacement of σ by g1σ.

In all the relations which have been given, σ is involved but it is not known until the other
parameters have been estimated. Consequently, σ should not appear which implies e.g. that

is expressed instead of in (4.4), and similarly for the other equations.

(wt, t ∈ N)
Ft = F ,Gt = G

φi, θi P0(i , j)

P0(i + 1, j + 1) = P0(i , j) − φj{φiP0(1,1) + P0(i + 1,1)} − φiP0(1, j + 1) − V(i , j) , (4.22)
V = σ2GG ′1 ≤ i , j ≤ r − 1

V(i , j) =V(j , i) = θi − 1θj − 1σ
2 2 ≤ i ≤ r , i ≤ j ≤ r ,

V(1, j) = − θj − 1σ
2 1 < j ≤ r ,

V(1,1) =σ2 .

Matrix P

Scheme of the recurrence

o

Ft = F1 Gt = G1 σt = g1σ t ≤ 1

φtj = φjj , θtj = θjj , for t < j . (4.23)

P0 = F1P0F1′ +G1g1
2σ2G1′ = C + V . (4.24)

Pt /t − 1/σ2 Pt /t − 1
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The final algorithm, without the initialisation stage which has just been described, is given
in Appendix 2. At time t, we use the notation for both and , P for both and

, and V for . The order of computation is (4.3), (4.16), (4.7), (4.8),

(4.5), (4.17), (4.15).

The AS154 program of GHP for computing the likelihood function of ARMA models with
constant coefficients is composed of two subroutines, STARMA which computes , and
KARMA, which evaluates the likelihood function and the covariance matrix . STARMA
requires a large number of operations, and consequently a large execution time. We have replaced
it by an improved subroutine called RECPO which implements the preceding method. Besides,
we have adapted KARMA renamed TKALMAR so as to handle evolutive models. Note finally
that the diffuse Kalman filter technique of De Jong and Chu-Chun-Lin (1994) is not necessary
in our context.

5 Empirical evidence
In this Section, a comparison of the new algorithm with the one based on the Cholesky fac-
torisation is made and a limited Monte Carlo study is presented to compare the unconditional
quasi-maximum likelihood method with the conditional quasi-maximum likelihood method.

In order to compare the methods for evaluating the likelihood function, it is necessary to
compute the number of operations, counting multiplications and divisions. The best method will
be the one with the smallest number of operations, which can be decomposed as follows:

where indicates the number of operations at the start (at time ), and means
the number of operations at time t.

In the case of evolutive models, there is another available algorithm LIKAMT, due to
Mélard (1982), which is based on a Cholesky factorisation of a band matrix (LIKAMT) (see
Appendix 3). It is compared here in Table 1 with the algorithm proposed in Section 4. Only the
dominating terms with respect to n, p and q are shown. Moreover, p and q are neglected before
n, and 1 is neglected before p or q. Let s be defined by .

Table 1. Number of operations used by algorithms LIKAMT and TKALMAR

Algorithms references number of multiplications and divisions

LIKAMT Mélard (1982)

Proposed method Azrak (1996)
TKALMAR

Note that without Theorem 2, the number of operations of TKALMAR needed at each
time t would be higher: of order 3r3/2, if no care is taken of the structural zeros in Ft, or

, otherwise, instead of .

We have included LIKAMT in the ANSECH-PC module of the software called Time
Series Expert (Mélard and Pasteels, 1994). We have compared it with TKALMAR based on the
modification of AS154 (GHP) (see Section 4). As a matter of illustration, execution time in
milliseconds are reproduced in Tables 2 to 5. They have been obtained as averages over 1000
trialsona personal computerwith anIntel Pentium processor clocked at60 MHz, whileevaluating
the exact likelihood function of ARMA(p, q) models with time-dependent coefficients for series
of length 50, 100 and 200.

Pt /t − 1/σ2α αt /t − 1 αt

Pt/σ2 Vt/σ2 Pt /t − 1/σ2 bt
2 ê t

2αt /t − 1

Pt + 1/σ2 Vt + 1/σ2αt + 1

P0/σ2

Pt

Nn(p ,q ) =N0(p ,q ) + nNt(p ,q ),
N0(p ,q ) t ≤ 0 Nt(p ,q )

s =min(p ,q )

7
6

p 3 + p 2(q − p ) +
p
2
(r 2 − p 2) + n (q 2 + p )

⎛
⎜
⎝

p 2

2
+

q 2

2
+ 2pr + qs +

3
2

r 2⎞⎟
⎠
+ n
⎛
⎜
⎝

r 2

2
+

q 2

2
+

3
2

r +
3
2

q + p
⎞
⎟
⎠

2pr + r 2/2 + q 2/2 r 2/2 + q 2/2
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Table 2. Large ARMA(p, q) models for a series of length 50: execution time (ms).

Models (13,0) (12,1) (1,12) (0,13) (13,13) (24,13) (13,24) (24,24)

LIKAMT  13.5  12.2  15.0  15.8  33.1  90.3  66.9 129.7

 TKALMAR   18.0   16.1   18.0   20.0   21.8   52.3   55.9  57.9

Table 3. Large ARMA(p, q) models for a series of length 100: execution time (ms).

Models (13,0) (1,12) (12,1) (0.13) (13,13) (24,13) (13,24) (24,24)

LIKAMT  14.8  29.1  14.7  31.5  50.1 108.3 110.5 174.4

TKALMAR   34.7   35.0   30.8   38.9   41.6  100.1  107.4 110.1

Table 4. Large ARMA(p, q) models for a series of length 200: execution time (ms).

Models (13,0) (12,1) (1,12) (0.13) (13,13) (24,13) (13,24) (24,24)

LIKAMT  17.6  19.6  57.4  63.0  84.0 144.2 197.8 263.8

TKALMAR   67.8   60.4   68.9   76.7   81.3  195.6  210.4  214.8

Table 5. Ratio of execution times for LIKAMT over TKALMAR
(according to the series length, 50, 100, 200)

Length (13,0) (12,1) (1,12) (0,13) (13,13) (24,13) (13,24) (24,24)

 50  0.9  0.7   0.8   0.8  1.5 1.7 1.2 2.2

100  0.4  0.5   0.8   0.8  1.2 1.1 1.0 1.6

200  0.3 0.3   0.8   0.8  1.0 0.7 0.9 1.2

We notice that algorithm LIKAMT is the fastest for some models. On the contrary, for
models with orders p and q equal or larger than 13, we observe a superiority of TKALMAR, at
least for short series. Even if is not as fast for some models, it is based on a simple principle and
is easy to manipulate.

One of the reasons why algorithm LIKAMT is fast, despite the fact it is complex, is that
it is optimised as a function of p and of q, separately, whereas TKALMAR depends on the size
r of the state vector. TKALMAR can still be improved, mainly for long series, by making use
of the fast recurrences (quick recursions) implemented in GHP. We have not shown results in
that direction because they depend on the specific models being used.

Now, we consider a limited Monte Carlo study to show that the unconditional
quasi-maximum likelihood method is superior to the conditional quasi-maximum likelihood
method. We are interested in speed of convergence of the estimators to the true value of the
parameters, either when the innovation distribution is normal (corresponding to exact maximum
likelihood), or it is not normal, considering as an example the case where the law is double
exponential.

A marginally heteroscedastic MA(1) model, defined by
wt = et − θet − 1,

var(et) = σt
2 = exp(2γt),
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has been simulated, with , and using a normal or double exponential distribution for the
. The length of the series varies from 25 to400. The value of has been chosen in correspondence

to n, such that the product is roughly constant. A number of 10000 series have been generated.
The results are given in Table 6 and 7 in the case of a normal distribution, and in Table 8 for the
comparison between double exponential and normal distributions. The bias is smaller with the
unconditional method than with the conditional method, and decreases faster to zero when n
increases. Also, there is no difference when the innovation distribution is compatible with the
law used in the quasi-maximum likelihood, i.e. normal, or when it is not compatible, i.e. double
exponential.

Table 6. Estimated parameters for order one moving average model with normal
innovation distribution obtained by the conditional or unconditional quasi-maximum

likelihood methods (n = 25 or 50; 10000 replications)

Observations n = 25 n = 50

Method

Conditional 0.851 0.048 0.871  0.0025

Unconditional 0.880 0.053 0.905  0.0027

Table 7. Estimated parameters for order one moving average model with normal
innovation distribution obtained by the conditional or unconditional quasi-maximum

likelihood methods (n = 100, 200 or 400; 10000 replications)

Observations n = 100 n = 200 n = 400

Methods

Conditional 0.883  0.0120  0.889  0.0060  0.893 0.0029

Unconditional 0.910 0.0130  0.905  0.0060  0.902 0.0030

Table 8. Estimated parameters for order one moving average model with normal or
double exponential innovation distribution obtained by the conditional or uncondi-

tional quasi-maximum likelihood methods (n = 50; 10000 replications)

Innovation
distribution double exponential normal

Method

Conditional 0.872 0.025 0.871  0.025

Unconditional 0.905 0.027 0.905  0.027

6 Application to the ARMA model with GARCH errors

The joint density function of the observations is expressed in the form of the
product of the marginal density of the first observation by the conditional densities of the fol-
lowing observations. The main contribution of this Section is to show a natural approximation
of the likelihood function which allows using the algorithm for evaluating the likelihood function
of evolutive processes such as described in Section 4.

θ = 0.9
et γ

γn

θ = 0.900 γ = 0.054 θ = 0.900 γ = 0.0027

θ = 0.900 γ = 0.0130 θ = 0.900 γ = 0.0060 θ = 0.900 γ = 0.0030

θ = 0.900 γ = 0.027 θ = 0.900 γ = 0.027

w = (w1,…,wn)



12

Parameter estimation is achieved by the quasi-maximum likelihood method, where the
likelihood function is computed as if the conditional distributions of the were normal.
The model can then be rewritten as

We temporarily suppose that all the variables for have known fixed values.

The parameters , , , and are

stored in vector ν. Noted that is not included in ν, and can be interpreted as a scale factor,
like in Section 2.

We should therefore exhibit a parametrisation which doesn’t involve 2. Let us denote

and the new parameters . Equation (2.3) implies the following expression
for the conditional variance

Let be the new vector of parameters. The

logarithm of the quasi-likelihood function can thus be written as

As in Section 4, we obtain the concentrated log-likelihood with respect to :

where the and are computed by using respectively (6.1) and (6.3). After having obtained
the estimators and , we derive the estimators of the original parameters .

In the preceding paragraphs, we have supposed that the variable and the errors have known
fixed values for t < 1. Our purpose here is to describe briefly an estimation method which doesn’t
make that restrictive assumption.

Let us consider time t. Conditionally to It, the model has the form (2.1), where the
coefficients , and is given by (6.3). This is a special case
of an evolutive ARMA model, called ARMAG model by Mélard (1977, 1985), intrinsically a
marginally heteroscedastic ARMA model. Therefore the quasi-likelihood function (4.13) can
be computed by using the method described in Section 4, which consists in removing the link
between relations (6.1) and (6.3). We consider the errors as if they were the innovations of an
ARMAG model where is deterministic instead of being random, and we consider the as if
they were obtained from expression (6.3), i. e. using the past errors instead of being deterministic.
The method computes the residuals and their variance using the improved Kalman filter
deduced from Theorem 2, and described in Appendix 2. Theorem 3 can be used to start the
recurrences.

That procedure avoids the loss of observations at the beginning of the series. The only
assumption which is needed is that for .

(et, t ∈ Z)
ARMA-GARCH

wt − ∑
i = 1

p

φiwt − i = et − ∑
j = 1

q

θjet − j , (6.1)

et/It − 1~N
⎛
⎜
⎝0,ht = α0 + ∑

j = 1

p1

αjet − j
2 + ∑

i = 1

q1

βiht − i

⎞
⎟
⎠

. (6.2)

t < 1

φi(i = 1,…, p ) θj(j = 1,…,q ) αj(j = 1,…, p1) βi(i = 1,…,q1)
α0

1/2α0

σ

α0

gt
2 = ht/α0 α′j = αj/α0

gt
2 = 1 + ∑

j = 1

p1

αj′et − j
2 + ∑

i = 1

q1

βigt − i
2 . (6.3)

ν1 = (φ1,…,φp, θ1,…,θq,α1′,…,αp1
′, β1,…,βq1

)

log l(ν1,α0;w) = c −
1
2
∑

t = 1

n

logα0gt
2 −

1
2
∑

t = 1

n et
2

α0gt
2
. (6.4)

α0

c’ −
1
2
∑

t = 1

n

loggt
2 −

n
2

log
⎧
⎨
⎩
∑

t = 1

n et
2

gt
2

⎫
⎬
⎭

, (6.5)

et gt

ν̂1 α̂0 αj = α0α′j

φti = φi, i = 1,…, p θtj = θj, j = 1,…,q gt

et

gt gt

σ2bt
2ê t

gt = 1 t ≤ 1

2 That approach has been developed in collaboration with O. Scaillet, see Azrak et al. (1993).
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7 Application to threshold ARMA models
Mélard and Roy (1988) have considered an estimation method for threshold ARMA models
(Tong, 1990, p. 101) by conditional quasi-maximum likelihood: they have supposed normality
of the process but have assumed that the values of the variable wt and et,

, are zero, where and . In this Section,
unconditional quasi-maximum likelihood is considered, under the assumptions that the thresh-
olds are known, that the ARMA models for the l regimes are stationary and invertible, and that
the regime for time 1 is also the regime for t < 1. This provides an interpretation of the first
as innovations of the process.

We can proceed as in Section 6, computing the quasi-likelihood function by the product
of normal conditional densities. At time t, conditionally to , the model defined by
(2.5) is an evolutive ARMA model, since the coefficients depend on time, through the regime

at time t. Indeed, (2.5) corresponds to (2.1), where the coefficients ,
and .

Consequently, we consider the errors as if they were the innovations of an evolutive
ARMA model. The quasi-likelihood function is of the form (4.13) and is computed by using the
method described in Section 4. More precisely, the residuals and their variance are
obtained using the recurrences in Appendix 2, and Theorem 3 is used to start the recurrences.
Contrarily to Tong (1983) and Mélard and Roy (1988), the impact of the initial conditions is
reduced because the likelihood is no longer conditional on the first observations and errors.

In principle, the algorithm LIKAMT based on the Cholesky factorisation (Mélard, 1982)
(see Appendix 3) could be used instead but it is very complex and the computation of the
coefficients of the model appears at several places. On the contrary, the Kalman filter method
improved in Section 4 allows more easily to insert the computation of the coefficients for the
different regimes, while reducing the total computation time for high-order models. However,
the assumption (4.23) should be slightly modified.

8 Conclusion
In this paper, a new algorithm called TKALMAR has been developed for quasi-maximum
likelihood estimation of non-stationary models. That algorithm is based on the Kalman filter
with a number of improvements. It is compared with the algorithm LIKAMT (Mélard, 1982)
which relies on the Cholesky factorisation of a band matrix. The results for the computation time
are not in favour of a single algorithm. TKALMAR is better than LIKAMT for high-order models,
when the series length is not too large. TKALMAR, which is conceptually simple, can be used
instead of non-standard, approximate and somewhat complex methods proposed and applied
recently by Grillenzoni (1990) and Dahlhaus (1996). Besides linear models with time-dependent
coefficients, TKALMAR described in this paper can also be used for estimating the parameters
in ARMA-GARCH models and in threshold ARMA models.

At the time of writing, the algorithm is not implemented yet in the programme ANSECH
of Time Series Expert (TSE version 2.2), see Mélard and Pasteels (1994), but well LIKAMT,
based on the Cholesky factorisation. ARMA models with coefficients which depend linearly or
exponentially on time, with an innovation standard deviation which varies linearly or expo-
nentially on time, can be fitted by quasi-maximum likelihood. For ARMA models with GARCH
errors, three estimation methods are proposed for estimating simultaneously the parameters of
an ARMA-GARCH model:

• a conditional maximum likelihood method using initial errors equal to zero in order to start
the recurrences ("algorithm with taking off");

• the method described in Section 6, but using the Cholesky factorisation instead of the Kalman
filter ("algorithm for time-dependent ARMA models");

(et, t ∈ Z)
t ≤ m =max(p ,q ) p =max(p1,…, pl) q =max(q1,…,ql)

et

y = (y1,…, yt)

I(t) φti = φi(I(t)), i = 1,…, p
θtj = θj(I(t)), j = 1,…,q gtσ = σI(t)

et

σ2bt
2ê t
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• a compromise method, based for the first observations on the exact evaluation of a process
with time-dependent coefficients, in order to start the recurrence relations of the conditional
method ("algorithm with time-dependent startup").

For threshold ARMA models, the THRESH programme that Mélard and Roy (1988) have
implemented and which has been converted to personal computers by Azrak (1996) is still based
on conditional quasi-likelihood estimation and relies on LIKAMT.

The approach which has been developed in this paper can be extended without difficulty
to the following models:

• the evolutive ARMA(p, q) model with GARCH errors, defined by the following
equation:

with

• the threshold evolutive ARMA model, defined by the equation

We have not yet investigated the asymptotic properties of the estimators. Except for the
thresholds, they can be derived by combining the approach of Azrak (1996) with that of Klimko
and Nelson (1978), and Tjøstheim (1984b, 1986).
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Appendix 1  Proofs
Proof of Theorem 1

The matrices and depend on parameters while is a constant matrix equal to . We have
thus as the observation equation. Consequently,

provided we let

with the convention . We deduce the i-th element:

We go on up to which has the following expression

Ft Gt Ht = H H = (1,0,…,0)
wt = (Wt)1

(Wt)1 = ∑j = 1

r

φtjwt − j + et − ∑
j = 1

r − 1

θtjet − j ,

=φt1(Wt − 1)1 + (Wt − 1)2 + et ,

(Wt)2 = ∑j = 2

r

φt + 1, jwt + 1 − j − ∑
j = 1

r − 1

θt + 1, jet + 1 − j

=φt + 1,2(Wt − 1)1 − θt + 1,1et + (Wt − 1)3 ,

∑
i = a

b

i = 0 if a > b

(Wt)i = ∑j = i

r

(φt + i − 1, jwt + i − 1 − j − θt + i − 1, j − 1et + i − j) . (A1.1)

(Wt)r
(Wt)r = φt + i − 1,rwt − 1 − θt + r − 1,r − 1et .
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Proof of Theorem 2

First notice that (4.15) is a direct consequence of (4.12). Consider equation (4.6). Since the variance defined by
(4.7) is simply equal to , the explicit computation of the covariance matrix yields the following form:

Hence (4.17) is proved. Introducing the matrix in expression (4.4), we obtain after straightforward algebra,
given the structure of , the first term in the form

which proves (4.16).

Proof of Theorem 3

The elements of matrix have a very simple form. They are given by the following relations:

We notice that the elements of the matrix C, , have the following form:
• the elements of the first column satisfy:

• by symmetry of the matrix, we have

• the other elements are obtained by:

We can observe that all the terms which appear in the definition of the elements of matrix C, except for ,
don’t depend on the elements of the first row (or of the first column) of matrix . Since

and given the relations for matrix , we can write the following relation:

which yields the recurrence relation between the elements of matrix

for .

Appendix 2 The algorithm TKALMAR
We give here the contents of the loop over time of the algorithm TKALMAR.

α1 ←α(1)
For j = 1, ..., r 1:

α(j) ←α(j + 1)
For j = 1, ..., p:

α(j) ←α(j) + α1

For k = 1, ..., r:
For j = k, ..., r:

P(k, j) ← V(k, j)
If j < r then P(k, j) ← P(k, j) + P(k + 1, j + 1)

σ̂t
2

Pt/t − 1(1,1) Pt

⎛
⎜
⎜
⎜⎜⎜
⎜
⎜
⎝

0 0 … 0

0 Pt/t − 1(2,2) −
Pt/t − 1(2,1)Pt/t − 1(1,2)

Pt/t − 1(1,1)
… Pt/t − 1(2, r) −

Pt/t − 1(2,1)Pt/t − 1(1, r)
Pt/t − 1(1,1)

: : : :

0 Pt/t − 1(r ,2) −
Pt/t − 1(r ,1)Pt/t − 1(1,2)

Pt/t − 1(1,1)
… Pt/t − 1(r , r) −

Pt/t − 1(r ,1)Pt/t − 1(1, r)
Pt/t − 1(1,1)

⎞
⎟
⎟
⎟⎟⎟
⎟
⎟
⎠

,

Pt − 1

Ft

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Pt/t − 1(2,2) −
Pt/t − 1(2,1)Pt/t − 1(1,2)

Pt/t − 1(1,1)
… Pt/t − 1(2, r) −

Pt/t − 1(2,1)Pt/t − 1(1, r)
Pt/t − 1(1,1)

0

: : : :

Pt/t − 1(r ,2) −
Pt/t − 1(r ,1)Pt/t − 1(1,2)

Pt/t − 1(1,1)
… Pt/t − 1(r , r) −

Pt/t − 1(r ,1)Pt/t − 1(1, r)
Pt/t − 1(1,1)

0

0 : 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

V = Gσ2G ′
V(i , j) = V(j , i) =θi − 1θj − 1σ

2 ,2 ≤ i ≤ r , i ≤ j ≤ r

V(1, j) = − θj − 1σ
2 , 1 < j ≤ r

V(1,1) =σ2.
C = FP0F ′

C(i , r) =φr{φiP0(1,1) +P0(i + 1,1)} , 1 ≤ i ≤ r ;

C(r , j) =φr{φjP0(1,1) +P0(1, j + 1)} , 1 ≤ j ≤ r ;

C(i , j) =φj{φiP0(1,1) +P0(i + 1,1)} + φiP0(1, j + 1) +P0(i + 1, j + 1) , 1 ≤ i , j ≤ r − 1 .
P0(i + 1, j + 1)

P0

P0(i , j) =C(i , j) +V(i , j) , 1 ≤ i , j ≤ r

C(i , j)
P0(i , j) = φj{φiP0(1,1) +P0(i + 1,1)} + φiP0(1, j + 1) +P0(i + 1, j + 1) +V(i , j) , 1 ≤ i , j ≤ r ,

P0

P0(i + 1, j + 1) = P0(i , j) − (φj(φiP0(1,1) +P0(i + 1,1) + φiP0(1, j + 1)) −V(i , j)
1 ≤ i , j ≤ r − 1

φt + j − 1, j
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← P(1, 1)
← α1

α(1) ←
For j = 2, ..., r:

K ← P(1, j)/
α(j) ←α(j) + K
For k = j, ..., r:

P(k, j) ← P(k, j) K P(1, k)
For k = 1, ..., r:

P(1, k)← 0
For j = 2, ..., q + 1:

V(1, j)←
V(1, 1) ←
For k = 2, ..., q + 1:

For j = k, ..., q + 1:
V(j, k) ← V(1, j) V(1, k)

V(1, k)← V(1, k)

Appendix 3 The algorithm LIKAMT
Ansley (1979) has given an algorithm for the computation of the exact likelihood function of an ARMA process
with constant coefficients. In this appendix, we generalise that method to ARMA(p, q) models with time-dependent
coefficients.

The algorithm LIKAMT (Mélard, 1982) is based on the Cholesky factorisation of a positive definite sym-
metric matrix but, to reduce the number of operations by an order of magnitude, the covariance matrix is put in the
form of a band matrix. This is done by changing the variable in the density function of w such that , for

, and , for , where

which implies that

Let us consider the Wold-Cramér decomposition (Cramér, 1961), of the process . Denote

the sample innovation at time t, where . The decomposition of is given by

where for and for , because of (A3.2). Note that the Jacobian of the transformation
is equal to 1. Consequently, the likelihood function (3.1) has the form (4.13). The algorithm LIKAMT computes

and . The covariances

are computed using the following relations:

1. the autocovariances of the MA part are computed by means of

for , and , for , denoting for all t;
2. the covariance are obtained, in the order , by the recurrence

for , given that , for ;
3. the autocovariances of the process are obtained by the recurrences

including the variance ;
4. the covariances coincide with one of the previously mentioned covariances.

bt
2

ê t wt

wt

bt
2

ê t

−θt + j , jgt + 1

gt + 1
2

gt + 1

xt = wt

t = 1,…, p xt = yt t = p + 1,…,n
yt = wt − φt1wt − 1 −…− φtpwt − p , (A3.1)

yt = et − θt1et − 1 −…− θtqet − q . (A3.2)

{xt, t ≥ 1} ê t = btẽ t

var(ẽ t) = σ2 xt

xt = btẽ t − ∑
j = 1

q (t)
ψtjbt − jẽ t − j , (A3.3)

q(t) = t − 1 1 ≤ t ≤ p q(t) = q t > p

ẽ t bt

γtk = cov(wt,wt − k), βtk = cov(yt, yt − k), μtk = cov(yt,wt − k), λtk = cov(xt, xt − k)

βtk = ∑
j = k

q

θt − k , j − kθtjσ
2gt − j

2 , (A3.4)

0 ≤ k ≤ q βtk = 0 k > q θt0 = −1
μtk k = q ,q − 1,…,0

μtk = cov
⎛⎜⎝yt, yt − k + ∑

i = 1

p

φt − k , iwt − k − i

⎞⎟⎠ = βtk + ∑
i = 1

min(p ,q − k)
φt − k , iμt ,k + i, (A3.5)

0 ≤ k ≤ q μtk = 0 k > q
γtk

γtk =cov
⎛⎜⎝yt + ∑

i = 1

p

φtiwt − i, wt − k

⎞⎟⎠ = μtk + ∑
i = 1

p

φtiγt − i ,k − i, (A3.6)

γt0

λtk
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Using (A3.3),we have a system of equations

Weshall need the following basic algorithm for determining, at time t, the coefficients of the Wold-Cramér
decomposition of , the standard deviation σbt, and the sample innovation , as a function of the past
coefficients , standard deviations , and innovations , , as follows:

1. is determined for , by using (A3.7) with respectively;

2. is computed using (A3.8);

3. is obtained from (A3.3).

The complete algorithm for evaluating the and the , hence the likelihood, is composed of five stages.

• Stage 1

1. The coefficients are determined for and for .

2. The values of are stored for .

3. The autocovariances ( ) are determined for , as if the process were stationary,

with the constant coefficients equal to , , and .

• Stage 2

For every :

1. the covariances (A3.4-6) are computed;

2. the basic algorithm is applied at time t, using ( ).

• Stage 3

By means of expression (A3.1), is computed for .

• Stage 4

For every ,

1. the covariances ( ) are computed, and the ( ) are deduced in that order, using
(A3.4-5);

2. the basic algorithm is applied at time t with the autocovariances ,
.

• Stage 5

For every to n, the basic algorithm is applied using the . Given (A3.4), the
equations (A3.7-8) are replaced by the following ones:

q(t) + 1

λtk = −ψtkbt − k
2 σ2 + ∑

j = k + 1

q (t)
ψt − k , j − kψtjbt − j

2 σ2 , (A3.7)

λt0 =bt
2σ2 + ∑

j = 1

q (t)
ψtj

2bt − j
2 σ2 . (A3.8)

ψtj

(xt, t ≥ 1) btẽ t

ψt − k , j σbt − k bt − kẽ t − k 0 ≤ k ≤ q(t)

ψtkbt − k
2 k = q(t),q(t) − 1,…,1 λt ,q (t), λt ,q (t) − 1,…,λt ,1

bt
2

btẽ t

ẽ t bt

φti = φ0i t = 1 − p ,…,0 θtj = θ0j t = 1 − q ,…,0

gt t = 1 − q ,2 − q ,…,0

γtk k = 0,…, p t = 1 − p ,2 − p ,…,0
g0

2φ0i θ0j

t = 1,…, p

λtk = γtk k = 0,…t − 1

xt = yt t ≥ p + 1

t = p + 1,…, p + q

βtk k = 0,…,q μtk k = q ,q − 1,…, t − 1

λtk = βtk (k = 0,…, t − p − 1) λtk = μtk

(k = t − p ,…,min(t − 1,q))

t = p + q + 1 λt0 = βt0,…,λt , t − q = βt , t − q

ψtkbt − k
2 =θtkgt − k

2 + ∑
j = k + 1

p

(ψt − k , j − kψtjbt − j
2 − θt − k , j − kθtjgt − j

2 ) ,

bt
2 =gt

2 − ∑
j = 1

q

(ψtj
2bt − j

2 − θtj
2gt − j

2 ) .


