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Abstract. The purpose of the paper isto propose a simple and efficient algorithm to evaluate
the exact quasi-likelihood of (possibly marginally heteroscedasticy ARMA models with
time-dependent coefficients. The algorithmisbased onthe Kalmanfilter and isthereforesimpler
thanapreviousalgorithmbased onaChol esky factori sation. Computational efficiency isobtained
by taking the ARMA structure into account. Empirical evidenceis given. It is aso shown how
the algorithm can be used as an approximation in the following non-linear models. conditionally
heteroscedastic ARMA models (with GARCH errors) and threshold ARMA models, in order to
improve the treatment of the initial observations when the parameters of these models are esti-
mated.

1 Introduction

The computation of the exact likelihood function of a Gaussian ARMA (autoregressive-moving
average) process of order (p, ) has been studied by several authors, for example Ljung and Box
(1979), Andey (1979), Gardner, Harvey and Phillips (1980), Pearlman (1980), Méard (1984).
These methods consist essentially in expressing the exact marginal distribution of the first m
observations (m = max(p, d), max(p, q + 1) or p + q according the method). That procedureis
possible because the distribution is multinormal and is thus characterised by the covariances
between the first observations. Among those approaches, that of Gardner et al. (1980) (denoted
by GHP in the sequél) is based on the Kalman filter but requires a large number of operations,
mainly for computing the covariance matrix P, of the state vector at theinitia timet = 0.

Monte Carlo experiments (e.g. Ansley and Newbold, 1980) have shown that, for ARMA
models and relatively short series of length 50 or 100, exact maximum likelihood estimation is
far superior to conditional maximum likelihood estimation (or |east-squares estimation), which
either assumes that the pre-sample observations and errors have known fixed values, or starts
estimationat t = m+ 1, with m = max(p, q) and g = 0 for t <m. It seemstherefore plausible that
conditional maximum likelihood suffers similarly when dealing with more general time-de-
pendent or non-linear models.

A preliminary version of this paper was presented at the " Rencontres Franco-Belges', Brussels,
November 23-24, 1995. A reduced version of this paper, without the applications to non-linear
models, is submitted. We thank the three anonymous referees and the editors of the special issue
for their useful comments.
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Theexact likelihood function of a Gaussian evolutive ARMA processis the subject of this
paper. Anevolutive ARMA processischaracterised by time-dependent coefficientsand margina
heteroscedasticity, i.e. atime-dependent innovation standard deviation. By time-dependent, we
mean a deterministic function of time depending on afinite number of parameters, as opposed
torandom coefficients(e.g. Nichollsand Quinn, 1982) and time-dependent estimatorsof constant
parameters (e.g. Ljung and Soderstrom, 1983).

Theinterest towardsthat kind of modelsisrenewed thanksto new asymptotic results about
consistency and normality which have been obtained recently. Also, Grillenzoni (1990) and
Dahlhaus (1996) have presented non-standard, approximate and somewhat complex methods
and have applied them to the estimation of the parameters of models with time-dependent
coefficientsfor real and artificial time series. Here, we consider the quasi-likelihood estimation
method, compute the exact likelihood, not an approximation, and using a renowned algorithm.
Implementation of that algorithm ishowever not trivial because of the determination of theinitial
conditions, the requirement of computational efficiency (since the algorithm is used many times
in an optimisation procedure, and another algorithm already exists), and the generality of the
model. Moreover, there are potentia applications for the estimation of non-linear models. We
do not raise here identification problems which can be serious. Coefficients can be polynomial
(Grillenzoni, 1990), periodical (Dahlhaus, 1996) functions of time but other parametrisations
can be considered.

The method for computing the likelihood which is described here is based on the Kalman
filter. It isageneraisation of GHP with an improvement for the computation of P,. The proofs
are collected in Appendix 1. The main details of the new algorithm are given in Appendix 2.
The method will be compared with another exact method given by Méard (1982) which extends
the Cholesky factorisation of Ansley (1979). That method is sketched in Appendix 3.

Inseveral fields of applications, such asfinance, meteorology, hydrology and biology, the
class of ARMA models has shortcomings. A more satisfactory way to represent these seriesis
to resort to non-linear models, using stochastic processes defined by non-linear equations. There
are several waysto introduce non-linearity. We consider two of them: models with generalised
conditionally autoregressive heteroscedastic (GARCH) errors (Bollerslev, 1986), and threshold
ARMA models (Tong, 1990). The agorithm for computing the exact likelihood function for
evolutive ARMA processes, which is described in this article, can be used as an approximation
for estimating the parameters of these models.

Contrarily to the evolutive ARMA model which ismarginally heteroscedastic, the ARMA
model with GARCH errors, or ARMA-GARCH, is conditionally heteroscedastic. We propose
anew estimation procedure for ARMA-GARCH models characterised by better initial values
for the recurrences used in the quasi-maximum likelihood method. The procedure is an
improvement with respect to Azrak et al. (1993).

We aso consider threshold ARMA models, which provide a generalisation of threshold
autoregressiveor TAR models(Tong, 1978, 1983). These models are defined by severa ARMA
submodels. The submodel used at time t depends on the regime, defined by the location of a
variable with respect to one or several thresholds. In the estimation method proposed by Mélard
and Roy (1988), thefirst observations are lost since they are used asinitia valuesin the recur-
rences. We propose a procedure which has not that inconvenience.

In the conclusions, we briefly indicate how the method can be extended to a wider class
of models.

2 Evolutive ARMA modeds and non-linear models

The evolutive ARMA model considered here is a special case of the extended ARIMA model
defined by Azrak and Mélard (1993). A non-stationary white noise process (e,t € Z) is a
sequence of independent random variables, with mean zero and variance 2. We let 6, = g,0,
where ¢ is a scale factor, and g, is a deterministic functions of t. Then, an evolutive ARMA
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processis defined as a (generally non-stationary) stochastic process which is the solution of the
eguation

P q
Wt_z‘lq)tiwt—i :et_jgtletjet—j ) (2.1)

wherethe coefficients ¢, ..., Oy, 044, ..., 0, and g; are deterministic functions of t, depending on
afinite number of unknown parameters, and p and g are integer constants. Let us denote by v
the vector of parameters, ¢ being not included.

An ARMA process, also called here an ARMA process with constant coefficients, is a
special case defined by the equation

p q
Wt__zlq)iwt—i :e[__zleje[—j ) (2.2)
1= ]=
where the innovations have mean zero and a constant variance 62.

The statistical properties of the models with time-dependent coefficients are now better
known. Kwoun and Yagjima (1986), Hamdoune (1995), and Dahlhaus (1996) have shown
estimators which are consistent and asymptotically normal in the homoscedatic case, that is to
say when o, = 6. Heteroscedastic evolutive models have been scarcely treated in the literature.

A GARCH(q,, p,) process is defined (Bollerslev, 1986) as a sequence of martingale dif-

ferences(e,t € Z), suchthat E(e/l,_,) = 0, where, denotesthe c-field generated by the process
up totimet, (e, s <t) and where the conditional variance satisfies

Py Gy
Val’(e[/lt_l) :h:a0+j§1a,je[2_j+i§1l3ih_i N (23)
with the constraints
0,>0, a,>0, 0;20, (j= 1,...,p1—1),[3q1>0, B.=20, (i=1,...,q9,—1).

The ARMA (p, g) modelswith GARCH (q,, p,) errors have the same form asan ARMA model,
except that the errors don’t constitute a white noise but a GARCH process, satisfying (2.3).

A threshold autoregressive model for a time series (w,,t € Z) is composed of | regimes
R(k=1,...,1), autoregressive of order p,, determined by another series (y,,t € Z). Let I (t) be
suchthat I (t) =k if and only if r,_, <y, <r,, where the thresholdsr, are real numbers such that
fo=—co<r;<...<I_;<I =00, Themodel isdefined (Tong, 1983) by

Prty

w, = 01 (1)) + i§1¢i(| Ow,_; +€, (2.4)

where (g,t € Z) is a non-stationary white noise process with variance var(e) :c,z(t). The

coefficients¢;(k),i =1, ..., py, 0o(k) and the standard deviations G,, arethe parameters of the k-th

regime, k=1, ..., |. Tong's approach has some inconveniences, particularly the purely autore-
gressive specification and the fact that the parameters of the different regimes need to be func-
tionally independent from each other, leading to alarge number of parameters and complicating
estimation.

These considerations and others have lead Méard and Roy (1988) to propose a
guasi-maximum likelihood estimation method for the threshold ARMA (TARMA) models (e.
g. Tong, 1990, p. 101). If we forget the constants, TARMA model is defined similarly as (2.4)
asfollows

Prty 9 ¢

we=3 o OW +e _Ele"(l 0)e._;- (2.5)
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3 Quasi-likelihood function of evolutive ARMA models

We suppose that the processis stationary and invertiblein the past. Thismeansthat, foralt <0,
¢ = ¢;, 6, =0, and g, = g,, and the zeros of the polynomialsin the complex variable z

p . q .
i=1 i=1
are all of modulus greater than 1. The assumption of invertibility in the past implies that the

non-stationary processisinvertible (Cramér, 1961, Hallin, 1978), i. e. for all finitet, e can be

expressed as a mean-square convergent linear combination of w,, W, _;, W, _,, .... Without that
property, the processremai nsunindentifiable and inefficient forecasts are produced by the model
(Hallin, 1986).

The quasi-likelihood function is the density function of the observationsw = (w; ... w,)’,
considered as afunction of the parameters of the model, assuming that the process is Gaussian.
It can be written as follows

L(v,6%w) = (2r) " (det T,) exp(—;w’ r} w) , (3.1)

whereT’,, isthen x n covariance matrix of w, whose element (t, s) iscov(w,,w;) (t,s=1,...,n).
The computation of that function requires inverting I',,, which requires a computation time
proportional to n®,

We shall develop avery fast algorithm with a number of operations of order n instead of
n®, allowing therefore to evaluate the likelihood of an evolutive ARMA process exactly and

without difficulty. Another algorithm based on the Cholesky factorisation of a band matrix
(Méard, 1982) is summarised in Appendix 2.

4 Fast algorithm based on the Kalman filter

In an article devoted to the likelihood of multivariate ARMA models in the context of missing
and/or aggregated data, Ansley and Kohn (1983) have used the Kalman filter for a state space
model where the matrices depend on time. They haven’t handled explicitly ARMA modelswith
time-dependent coefficients. Méard (1985) has given a sketch of an algorithm for evaluating
thelikelihood of amultivariate ARMA model with time-dependent coefficients. Itisanimproved
version of that algorithm which is offered here in the univariate case.

Let us consider a discrete time stochastic process (W,,t € N) satisfying the equation:

W =FW_,+Gg , 4.1
wherether x 1 state vector W, represents the state of the system at timet, F, iscalled ther xr
transition matrix, G, isar x 1 matrix, and (e,t € N) is a white noise process, with zero mean
and variance o2. Suppose that the state of the system can be observed through the observation
w,, of dimension 1:

w, =HW,, (4.2)
where H, isa 1 xr matrix (usually a noise is added to the right hand side of (4.2) but it is not

necessary here). The specification of the state space form (4.1-2) is completed by the two
conditions:

* theinitial state vector, W,, with mean o, and covariance matrix Py,
» that the g are uncorrelated with the initial state vector W, i. e. E(eW,)=0for t € N.
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The Kalman filter is arecurrence procedure for obtaining an estimator of the state vector
at timet, based on the information at time t — 1. We follow the presentation of Harvey (1989,
pp. 104-107), dightly improved. Let us consider the model composed of (4.1) and (4.2). Denote
l; the o-field generated by the random variables (w,,u <t), o,_, =EMW,_//I,_,) the optimal
estimator of W, _,, based on the observationsup totimet — 1, and o, _, the estimator of W, based
on the same observations:
Oy =E(W/I ) =Foy_; (4.3)
taking (4.1) into account. Let P, be the covariance matrix of the estimation error defined by:
P=E{W,—o) W,—a)}
and P, _, the prediction error covariance matrix
Poe -1 =E{(W, — oty ) (W, — O(‘t/t—l),}

=F.P,_,F/+Goc'G . (4.4)

Equations (4.3-4) are known as the prediction equations from which the updating equations can
be deduced (Jazwinski, 1970):

r2n

o =04, + Py _H'o € (4.5)
P =Py~ Pt/t—lHt’Gt_thPt/t—l ) (4.6)
where
6t2 =H,Py,_H/’ (4.7)
and the sample innovations, or residuals, are defined by
€ =w—Hoy,_; . (4.8)

Let us denote by K, the gain matrix given by
Ki= Ft+1Pt/t—1Ht’6t_2 . (4.9)

The Kaman recurrence estimation technique, or Kalman filter, is based on equations (4.3-8).
They allow us to write the following recurrence relations:

O, 1y =(Fe o —KHpow,  +Kw, (4.10)

Pi 1 :Ft+1Pt/t—1F’t+1 + Gt+16t2+ th+1’ - KthZK’t . (4.11)

In principle, the initial values of the Kalman filter are given by the mean and the covariance
matrix of the distribution of the state vector. They can be specified by o,,=0and P,, or o,,=0

and P, = P,. To usethat recurrence algorithm in order to evaluate the likelihood function of the

evolutive ARMA model defined by (2.1), it is necessary to transform (2.1) in a state space
representation. That transformation can be done using the following theorem (Mélard, 1985).

Theorem 1
Let (w,,t € N) be an evolutive ARMA(p, ) process defined by (2.1) and such that:
0,=0 , p<i<r , 0,=0 , g<j<r-1,
withr = max (p,q +1). It can be represented (not uniquely) in state space form (4.1-2), where
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¢t+L2 | _'et+L1
| Ir—1 _et+2,2
F, - | , G,= , . (412
I
Oy | O ... .. 0 0,101

H, = H isaconstant matrix equal to H = (1,0, ...,0), and ¢, = g,G.

By applying the projection theorem (Jazwinski, 1970), the residuals &, are mutually

uncorrelated random variables, with mean zero and variance (4.7) which defines b? = 6%/, If
wesupposethat the processis Gaussian, theresidual shaveanormal distributionand are mutually
independent. Changing the variable w;, by &, in the density is a transformation which yields a
lower triangular Jacobian matrix containing ones on the main diagonal. Consequently, the
Jacobian isequal to 1. The logarithm of the likelihood function deduced from (3.1) can thus be
written as follows:

logL (v, 0% LS loge? -1 3 &

Og (V,G !W)_C 2t:1 Og(c t) 2t=1(52b[2 H

(4.13)

where ¢ is aconstant.

It is well known (for example Tunnicliffe Wilson, 1973) that estimating the variance
simultaneously with the other parameters can be difficult. We consider an alternative procedure
which makes use of anon-linear least squares procedure such asthe one proposed by Marquardt
(1963). Solving the likelihood equation for 67, and substituting ¢* by the solution

- n &
62 = 1 y L ,
ntzlbf
we obtain the concentrated log-likelihood

, 13 2, N L g?
¢’ -5 Z log(by) z'OQ{Emg} , (4.14)

wherec’ isanother constant. From that expression, parameter estimation is done asindicated by
Azrak and Mélard (1993).

In order to compute & and b? in (4.14), the recurrences (4.7-11) can be used, in the given
order, avoiding the estimation error covariance matrix P,, see e. g. Pearlman (1980), Mélard
(1985). In the sequel, we propose an algorithm employing ssmultaneously P, _, and P,, which
isjustified by thefollowing theorem (inspired by the Fortran codein GHPinthe stationary case).

Theorem 2
Let (w;,t € N) bean evolutive ARMA(p, q) process expressed in the form of thelinear dynamic
model of Theorem 1. The elements of the matrix V, = G,6°G,” have the following form

et+i—1,i—1et+j—1,j—16t2a 2<i<j<r,
Vi(i,1)=V(j,1)=1-6,;_1; 100 i=1 1<j<r, (4.15)
o, i=j=1

The elements of the matrix P, _, are given by the recurrence:
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P10, ) =Vi(i, )+ P_y(i +1,] +1), Lj=1..,r-1, (4.16a)

Pue_(r, 1) =Vi(r,r) (4.16b)
and the elements of matrix P, are given by the following recurrence:

P 1(i, )Py _+(L] _
P(i,j) =Py (i, j)—— 1F() )1(1‘1;( D ij>2 (4.17a)
t/t— 9

P.(1,j))=PG,1)=0. (4.17b)

In order to start the recurrences, we need initial values which are respectively o, =0 and

P, = E[W,W’{. If the processwere stationary, henceF =F,,G =G,,6°=0% g =1(t=1,...,n),
we could determine P, as the solution of the equation

P,=FPF +Go’G’'=C+V , (4.18)

where C = FP,F’ and V = Go°G’. In the subroutine STARMA, GHP have rewritten (4.18) in

theform Vec(V) = SVec(P,), with an appropriate definition of Vec(.) and somematrix S, in such

away tosolveasystemof r (r + 1)/2 linear equations. It isone of the reasonswhy their algorithm
isnot efficient for large models, the other one being the use of the Kalman filter instead of the
Chandrasekhar recurrences (Morf et al., 1974, Pearlman, 1980, Méard, 1984).

The algorithm proposed in this paper for computing theinitial covariance matrix P, of the

state vector (Akaike, 1978, Jones, 1980, Méard, 1984) allows to improve the AS154 program
for computing the likelihood function of an ARMA model with constant coefficients using the

GHP method. The autocovariances v, =cov(w,,w,_,) for k=0,...,r, are determined by the
algorithm of Tunnicliffe Wilson (1979). A subproduct of that algorithm (see Mélard, 1984)

consistsin the covariances A, = E(w,g, _,) computed by the recurrence
min(p, k)

M=-60°+ X 0N, .k=1...0q, (4.19)
i=1
with A, = 62 The first element of matrix P, is given by
Py(1, 1) = COV((Wp),, (Wp),) = Var(w) = Y, (4.20)

In the case of an ARMA (p, q) process with constants coefficients, (A1.1) (see Appendix 1) is
written in the form

W, = éi(q)jwm-l-j —-0,_1&.,i_j)

Hence, the components Py(i, 1) of P, can be obtained by the following relation:
Pyi, 1) =Cov((Wp),, (Wp),) = E((Wp), W)

Il
M=

{OEW, i Wo)—8;_E(e &)}

]

:jz:‘i(q)ij—Hl_ej—l;\'j—i) . (4.21)

SinceP,isasymmetric matrix, thereremainsto determinethediagonal and subdiagonal elements
of the columns after the first one, which can be done using the following theorem.

Theorem 3
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Let (w,,t € N)bean ARMA(p, q) processwith constant coefficientssatisfying (2.1), represented
in the form of a linear dynamic model (4.1) with matrices F, =F,G, =G composed of the
coefficients ¢, 6;, respectively. The elements P(i, j ) of the covariance matrix of the state vector
at time O satisfy the relation:
Poi +1,j +1) =Py(i, ) = 0;{0,Po(1, 1) + Po(i + 1, 1)} —0,P(1,] + - V(i,j) , (422
for 1<i,j <r —1, where the elements of V = 6°GG’ are given by:
V(i,j)=V(j,i)=6,_6,_,06° 2<i<r, i<j<r ,

V(Lj)=-6,_,6° 1<j<r ,

V(1,1) =6

Remark. The recurrence relation expressed in Theorem 3 alows to determine the elements
within each diagonal, in the manner represented by Figure 1.

Figure 1.
Matrix PO

KEXEN

3
QO \b()

Scheme of therecurrence

OO L QQQ

Let us now consider the evolutive ARMA process defined by (2.1). Suppose that it is
stationary inthe past. More precisely, supposethat F, = F,, G, = G,,and 6, = g;,c fort <1, which
impliesthat:

o =0; .0,=96; , for t<j . (4.23)
Equation (4.18) is replaced by
P,=F,P,F,’+G,g’6°G/=C+V . (4.24)

The method described in Theorem 3 can then be used, with some modifications resulting from
the replacement of ¢ by g,c.

In all therelations which have been given, o isinvolved but it is not known until the other
parameters have been estimated. Consequently, ¢ should not appear which implies e.g. that

P,,_./0”is expressed instead of P,,_,in (4.4), and similarly for the other equations.
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Thefinal algorithm, without the initialisation stage which hasjust been described, isgiven
in Appendix 2. At time t, we use the notation o for both o,,_, and o, P for both P, _,/c* and

P./o? and V for V,/c°. The order of computationis o, ; (4.3), P,,_./0°(4.16), b? (4.7), &7 (4.8),
o, ., (4.5), P, /0% (4.17), V,, /o* (4.15).

The AS154 program of GHP for computing thelikelihood function of ARMA modelswith
constant coefficients is composed of two subroutines, STARMA which computes Py/c?, and

KARMA, which evaluates the likelihood function and the covariance matrix P,. STARMA

requiresalargenumber of operations, and consequently alarge executiontime. Wehavereplaced
it by an improved subroutine called RECPO which implements the preceding method. Besides,
we have adapted KARMA renamed TKALMAR so as to handle evolutive models. Note finally
that the diffuse Kalman filter technique of De Jong and Chu-Chun-Lin (1994) is not necessary
in our context.

5 Empirical evidence

In this Section, a comparison of the new agorithm with the one based on the Cholesky fac-
torisation is made and alimited Monte Carlo study is presented to compare the unconditional
guasi-maximum likelihood method with the conditional quasi-maximum likelihood method.

In order to compare the methods for evaluating the likelihood function, it is necessary to
compute the number of operations, counting multiplicationsand divisions. The best method will
be the one with the smallest number of operations, which can be decomposed as follows:

N.(P, a) =No(p,q) +nN,(p, q),
where Ny(p, q) indicates the number of operations at the start (at timet < 0), and N,(p, q) means
the number of operations at timet.
In the case of evolutive models, there is another available algorithm LIKAMT, due to
Mélard (1982), which is based on a Cholesky factorisation of a band matrix (LIKAMT) (see

Appendix 3). It iscompared here in Table 1 with the algorithm proposed in Section 4. Only the
dominating terms with respect to n, p and g are shown. Moreover, p and g are neglected before

n, and 1 is neglected before p or g. Let s be defined by s =min(p, Q).
Table 1. Number of operations used by algorithms LIKAMT and TKALMAR

Algorithms references number of multiplications and divisions
LIKAMT Méard (1982) 7
gP +pia- p)+%(r2— p%)+n(@’+p)
Proposed method Azrak (1996) (p? g2 3, 2 g2 3 3
TKALMAR E+E+2pr +qs+§r +n §+§+§r +§q+p

Note that without Theorem 2, the number of operations of TKALMAR needed at each
time t would be higher: of order 3r%2, if no care is taken of the structural zeros in F, or

2pr +r%2+q?/2, otherwise, instead of r%2+q%2.

We have included LIKAMT in the ANSECH-PC module of the software called Time
Series Expert (Mélard and Pasteels, 1994). We have compared it with TKALMAR based on the
modification of AS154 (GHP) (see Section 4). As a matter of illustration, execution time in
milliseconds are reproduced in Tables 2 to 5. They have been obtained as averages over 1000
trialsonapersonal computer withanIntel Pentium processor clocked at 60 MHz, whileevaluating
the exact likelihood function of ARMA(p, ) modelswith time-dependent coefficientsfor series
of length 50, 100 and 200.
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Table 2. Large ARMA(p, q) models for a series of length 50: execution time (ms).

Modds (1300 (121) (L12) (0,13) (13.13) (24,13) (13,24) (24,24)
LIKAMT 135 122 150 158 331 903 669 1297
TKALMAR 180 161 180 200 218 523 559 579

Table 3. Large ARMA(p, q) models for a series of length 100: execution time (ms).

Modds (13,00 (L12) (121) (0.13) (13,13) (24,13) (13,24) (24.24)
LIKAMT 148 291 147 315 501 1083 1105 1744
TKALMAR 347 350 308 389 416 1001 1074 1101

Table 4. Large ARMA(p, q) models for a series of length 200: execution time (ms).

Modds (1300 (121) (L,12) (0.13) (13.13) (24,13) (13,24) (24,24)
LIKAMT 176 196 574 630 840 1442 1978 2638
TKALMAR 678 604 689 767 8.3 1956 2104 21438

Table 5. Ratio of execution times for LIKAMT over TKALMAR
(according to the series length, 50, 100, 200)

Lengh  (130) (121) (L12) (0,13) (13,13) (24,13) (1324) (24,24)

50 0.9 0.7 0.8 0.8 15 1.7 1.2 22
100 0.4 0.5 0.8 0.8 12 11 1.0 1.6
200 0.3 0.3 0.8 0.8 1.0 0.7 0.9 1.2

We notice that algorithm LIKAMT is the fastest for some models. On the contrary, for
modelswith orders p and q equal or larger than 13, we observe a superiority of TKALMAR, at
least for short series. Even if isnot asfast for some models, it is based on asimple principle and
IS easy to manipulate.

One of the reasons why algorithm LIKAMT isfast, despite the fact it is complex, is that
itis optimised as afunction of p and of g, separately, whereas TKALMAR depends on the size
r of the state vector. TKALMAR can still be improved, mainly for long series, by making use
of the fast recurrences (quick recursions) implemented in GHP. We have not shown results in
that direction because they depend on the specific models being used.

Now, we consider a limited Monte Carlo study to show that the unconditional
guasi-maximum likelihood method is superior to the conditional quasi-maximum likelihood
method. We are interested in speed of convergence of the estimators to the true value of the
parameters, either when theinnovation distribution isnormal (corresponding to exact maximum
likelihood), or it is not normal, considering as an example the case where the law is double
exponential.

A marginally heteroscedastic MA(1) model, defined by
W =6- eet—la

var(g) = o, = exp(it),
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has been simulated, with 6 = 0.9, and using a normal or double exponential distribution for the
e. Thelength of theseriesvariesfrom 25t0400. Theval ueof Y hasbeen chosenin correspondence

ton, suchthat the product yn isroughly constant. A number of 10000 series have been generated.
Theresultsaregivenin Table 6 and 7 in the case of anormal distribution, and in Table 8 for the
comparison between double exponential and normal distributions. The biasis smaller with the
unconditional method than with the conditional method, and decreases faster to zero when n
increases. Also, there is no difference when the innovation distribution is compatible with the
law used in the quasi-maximum likelihood, i.e. normal, or when it is not compatible, i.e. double
exponential.

Table 6. Estimated parameters for order one moving average model with normal
innovation distribution obtained by the conditional or unconditional quasi-maximum
likelihood methods (n = 25 or 50; 10000 replications)

Observations n=25 n=50

Method 0 =0.900 v=0.054 0 =0.900 vy=0.0027
Conditional 0.851 0.048 0.871 0.0025
Unconditional 0.880 0.053 0.905 0.0027

Table 7. Estimated parameters for order one moving average model with normal
innovation distribution obtained by the conditional or unconditional quasi-maximum
likelihood methods (n = 100, 200 or 400; 10000 replications)

Observations n =100 n =200 n =400
Methods ©=0.900 y=0.0130 ©=0.900 y=0.0060 6 =0.900 y=0.0030
Conditional 0.883  0.0120 0.889  0.0060 0.893  0.0029
Unconditional 0910 0.0130 0.905  0.0060 0.902 0.0030

Table 8. Estimated parameters for order one moving average model with normal or
double exponential innovation distribution obtained by the conditional or uncondi-
tional quasi-maximum likelihood methods (n = 50; 10000 replications)

Innovation

distribution double exponential normal

Method 0 =0.900 y=0.027 0 =0.900 vy=0.027
Conditional 0.872 0.025 0.871 0.025
Unconditiona 0.905 0.027 0.905 0.027

6 Application tothe ARMA model with GARCH errors

The joint density function of the observations w = (w, ..., w,) is expressed in the form of the
product of the marginal density of the first observation by the conditional densities of the fol-
lowing observations. The main contribution of this Section is to show a natural approximation
of thelikelihood function which allowsusing thealgorithmfor evaluating thelikelihood function
of evolutive processes such as described in Section 4.
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Parameter estimation is achieved by the quasi-maximum likelihood method, where the
likelihood function iscomputed asif the conditional distributionsof the (e,t € Z) were normal.

The ARMA-GARCH model can then be rewritten as

Wt—_§,1¢iwt_i :e[__ilej i (6.1)
I = ]=
Py q;
e[/|t_1~N(O,h[ :Oc0+_zlocje[2_j +_le3iht—i) . (6.2)
j= i=

We temporarily suppose that all the variablesfor t < 1 have known fixed values.

The parameters ¢;(i =1,...,p), 6;(j =1,...,q), o4(j =1,...,py), and Bi(i =1,...,q,) are
stored in vector v. Noted that o, isnot included in v, and oz ? can be interpreted as a scale factor,
like o in Section 2.

We should therefore exhibit a parametrisation which doesn’t involve o,’. Let us denote

g’ = h/o, and the new parameters o, = /0. Equation (2.3) implies the following expression
for the conditional variance

Py Gy
o = 1+E’1 o6’ + E& Boc, - (6.3)

Letvy=(¢y,...,0p,64,...,04,04, ..., ocpl’, By, ..., Bql) be the new vector of parameters. The

logarithm of the quasi-likelihood function can thus be written as
2

12 » 10 §
logl (vy, ow) = ¢~ X logag, 221%93 (6.4)
Asin Section 4, we obtain the concentrated |og-likelihood with respect to o:
S S T R
c - 2tglloggt 2log{t§ 3} , (6.5)

where the e, and g, are computed by using respectively (6.1) and (6.3). After having obtained
the estimators v, and o, we derive the estimators of the original parameters o = 00!’

In the preceding paragraphs, we have supposed that the variable and the errorshave known
fixedvaluesfor t < 1. Our purpose hereisto describe briefly an estimation method which doesn’t
make that restrictive assumption.

Let us consider time t. Conditionally to I,, the model has the form (2.1), where the
coefficientso, = ¢;,i =1,...,p,0;,=0;,] =1,...,q and g, isgiven by (6.3). Thisisaspecial case
of an evolutive ARMA model, called ARMAG model by Mélard (1977, 1985), intrinsically a

marginally heteroscedastic ARMA model. Therefore the quasi-likelihood function (4.13) can
be computed by using the method described in Section 4, which consists in removing the link

between relations (6.1) and (6.3). We consider the errors g, asif they were the innovations of an
ARMAG model where g, is deterministic instead of being random, and we consider the g, asif
they were obtained fromexpression (6.3), i. e. using the past errorsinstead of being deterministic.
The method computes the residuals &, and their variance 6°b? using the improved Kalman filter
deduced from Theorem 2, and described in Appendix 2. Theorem 3 can be used to start the
recurrences.

That procedure avoids the loss of observations at the beginning of the series. The only
assumption whichisneeded isthat g, =1 fort < 1.

*That approach has been developed in collaboration with O. Scaillet, see Azrak et al. (1993).
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7 Application to threshold ARMA models

Mélard and Roy (1988) have considered an estimation method for threshold ARMA models
(Tong, 1990, p. 101) by conditional quasi-maximum likelihood: they have supposed normality

of the process (e,t € Z) but have assumed that the values of the variable w, and e,

t <m=max(p,q), are zero, where p = max(p,, ..., p;) ahd g = max(q,, ...,q,). In this Section,
unconditional quasi-maximum likelihood is considered, under the assumptions that the thresh-
olds are known, that the ARMA modelsfor thel regimes are stationary and invertible, and that
the regime for time 1 is also the regime for t < 1. This provides an interpretation of the first
asinnovations of the process.

We can proceed as in Section 6, computing the quasi-likelihood function by the product
of normal conditional densities. At timet, conditionally toy =(y,, ..., Y;), the model defined by
(2.5) is an evolutive ARMA model, since the coefficients depend on time, through the regime
I (t) at timet. Indeed, (2.5) correspondsto (2.1), where the coefficients o, = ¢;(1 (t)),i =1,...,p,

6, =6,(1(1),]=1,....qandgo =0,

Consequently, we consider the errors g as if they were the innovations of an evolutive
ARMA model. The quasi-likelihood functionisof theform (4.13) and iscomputed by using the
method described in Section 4. More precisely, the residuals &, and their variance ¢°b? are

obtained using the recurrences in Appendix 2, and Theorem 3 is used to start the recurrences.
Contrarily to Tong (1983) and Mélard and Roy (1988), the impact of the initial conditions is
reduced because the likelihood is no longer conditional on the first observations and errors.

In principle, the algorithm LIKAMT based on the Cholesky factorisation (Mélard, 1982)
(see Appendix 3) could be used instead but it is very complex and the computation of the
coefficients of the model appears at severa places. On the contrary, the Kalman filter method
improved in Section 4 allows more easily to insert the computation of the coefficients for the
different regimes, while reducing the total computation time for high-order models. However,
the assumption (4.23) should be dlightly modified.

8 Conclusion

In this paper, a new agorithm called TKALMAR has been developed for quasi-maximum
likelihood estimation of non-stationary models. That algorithm is based on the Kalman filter
with a number of improvements. It is compared with the algorithm LIKAMT (Mélard, 1982)
whichrelies on the Cholesky factorisation of aband matrix. Theresultsfor the computation time
arenotinfavour of asinglealgorithm. TKALMARisbetter than LIKAMT for high-order models,
when the series length is not too large. TKALMAR, which is conceptually simple, can be used
instead of non-standard, approximate and somewhat complex methods proposed and applied
recently by Grillenzoni (1990) and Dahlhaus (1996). Besides linear model s with time-dependent
coefficients, TKALMAR described in this paper can also be used for estimating the parameters
in ARMA-GARCH models and in threshold ARMA models.

At the time of writing, the algorithm is not implemented yet in the programme ANSECH
of Time Series Expert (TSE version 2.2), see Mélard and Pastedls (1994), but well LIKAMT,
based on the Cholesky factorisation. ARMA models with coefficients which depend linearly or
exponentially on time, with an innovation standard deviation which varies linearly or expo-
nentially ontime, can befitted by quasi-maximum likelihood. For ARMA modelswith GARCH
errors, three estimation methods are proposed for estimating simultaneously the parameters of
an ARMA-GARCH mode!:

 aconditional maximum likelihood method using initial errors equal to zero in order to start
the recurrences ("agorithm with taking off");

» the method described in Section 6, but using the Chol esky factorisation instead of the Kalman
filter ("algorithm for time-dependent ARMA models');



14

» acompromise method, based for the first observations on the exact evaluation of a process
with time-dependent coefficients, in order to start the recurrence relations of the conditional
method ("a gorithm with time-dependent startup™).

For threshold ARMA models, the THRESH programmethat Mélard and Roy (1988) have
implemented and which has been converted to persona computersby Azrak (1996) isstill based
on conditional quasi-likelihood estimation and relieson LIKAMT.

The approach which has been developed in this paper can be extended without difficulty
to the following models:
* the evolutive ARMA(p, q) model with GARCH(q,, p,) errors, defined by the following
eguation:

P q
W, = iglq)tiwt—i +& _Jg'letjet_j >

with
E(e[/lt—l) =0

Py Gy
Vs, ) =h= 0‘0"‘1_;1%3[2-1 +i§1l3iht—i

* the threshold evolutive ARMA model, defined by the equation
Pay Yy

W, = El o, (1 (OW,_ +e - El 0,(I (1) _;

We have not yet investigated the asymptotic properties of the estimators. Except for the
thresholds, they can be derived by combining the approach of Azrak (1996) with that of Klimko
and Nelson (1978), and Tj@stheim (1984b, 1986).

Refer ences

AKAIKE, H. (1978) Covariancematrix computation of the state variabl e of astationary Gaussian
process, Ann. Inst. Statist. Math. 30 (B), 499-504.

ANSLEY, C. F. (1979) Anagorithm for the exact likelihood of amixed autoregressive-moving
average process, Biometrika 66, 59-65.

ANSLEY,C.F.,andKOHN, R. (1983) Exact likelihood of vector autoregressive-moving average
process with missing or aggregated data, Biometrika 70, 275-278.

ANSLEY, C. F., and NEWBOLD, P. (1980) Finite sample properties of estimators for autore-
gressive moving average models, J. Econometrics 13, 159-183.

AZRAK, R. (1996) Contributionsal’ estimation de model es non stationnaires, these de doctorat,
Université Libre de Bruxelles, Bruxelles.

AZRAK,R.,andMELARD, G. (1993) Exact likelihood estimationfor extended ARIMA models,
in honour of M. B. Priestley, T. Subba Rao (ed.) Developments in Time Series Analysis,
Chapman & Hall, London, pp. 110-123.

AZRAK,R.,MELARD, G.,and SCAILLET, O. (1993) Estimation of modelswith ARCH errors
andapplications, Communicationat ORBEL 7 (Seventh National Congresson Quantitative
Methods for Decision Making), Bruxelles, January 21-22.

BOLLERSLEV, T. (1986) Generalized autoregressive conditional heteroskedasticity, J. Eco-
nometrics 31, 307-327.

CRAMER, H. (1961) On some classes of non-stationary stochastic processes, in Proceedings
of the Fourth Berkel ey Symposium on Mathematical Statisticsand Probability, University
of California Press, Berkeley and Los Angeles, Val. 2, pp. 57-78.



15

DAHLHAUS, R. (1996) Fitting time series models to nonstationary processes, Ann. Satist.,
forthcoming.

DE JONG, P., and CHU-CHUN-LIN, S. (1994) Fast likelihood evaluation and prediction for
nonstationary state space models, Biometrika 81, 133-142.

GARDNER, G. , HARVEY, A. C., and PHILLIPS, G. D. A. (1980) Algorithm AS 154, An
algorithm for exact maximum likelihood estimation of autoregressive-moving average
modelsby meansof Kamanfiltering, J. Roy. Satist. Soc. Ser. C, Appl. Satist. 29, 311-322.

GRILLENZONI, C. (1990) Modeling time-varying dynamical systems, J. Amer. Statist. Assoc.
85, 499-507.

HALLIN, M. (1978) Mixed autoregressive-moving average multivariate processes with
time-dependent coefficients, J. Multivariate Anal. 8, 567-572.

HALLIN, M. (1986) Non-stationary g-dependent processes and time-varying moving average
models: invertibility propertiesand the forecasting problem, Adv. Appl. Prob. 18, 170-210.

HAMDOUNE, S. (1995) Etude des problemes d'estimation de certains modéles ARMA
évolutifs, Ph.D. Thesis, Université Henri Poincaré, Nancy 1.

HARVEY, A.C. (1989) Forecasting, Sructural Time Series Models and the Kalman Filter,
Cambridge University Press, Cambridge.

JAZWINSKI, A.H. (1970) Stochastic Processes and Filtering Theory, Academic Press, New
Y ork.

JONES, R.H. (1980) Maximum likelihood fitting of ARMA modelsto time series with missing
observations, Technometrics C 22, 389-395.

KLIMKO,L.A.,and NELSON, P.1. (1978) On conditional | east squaresestimation for stochastic
processes, The Annals of Satistics 6, 629-642.

KWOUN, G.H., and YAJMA, Y. (1986) On an autoregressive model with time-dependent
coefficients, Ann. Inst. Statist. Math. 38, Part A, 297-309.

LJUNG, G., and BOX, G. E. P. (1979). The likelihood function of stationary autoregressive-
moving average models, Biometrika 66, 265-270.

LJUNG, L. and SODERSTROM, T. (1983) Theory and Practice of Recursive Identification,
MIT Press, Cambridge MA.

MARQUARDT, D.W. (1963) An algorithm for least-squares estimation of non-linear para-
meters, Journal of the Society of Industrial Applied Mathematics 11, 431-441.

MELARD, G. (1977) Sur uneclassedemodelesARIMA dépendant du temps, Cahiersdu Centre
d’ Etudes de Recherche Opérationnelle 19, 285-295.

MELARD, G. (1982) The likelihood function of a time-dependent ARMA model, in O.D.
ANDERSON and M.R. PERRYMAN (eds), Applied Time SeriesAnalysis, North-Holland,
Amsterdam, pp. 229-239.

MELARD, G. (1984) Algorithm AS197: A fast algorithm for the exact likelihood of
autoregressive-moving average models, J. Roy. Statist. Soc. Ser. C Appl. Satist. 33,
104-114.

MELARD, G. (1985) Analyse de données chronologiques, Coll. Séminaire de mathématiques
supérieures- Séminairescientifique OTAN (NATO Advanced Study I nstitute) n89, Presses
del’Université de Montréal, Montréal.

MELARD, G.,and PASTEELS, J-M. (1994) User’ smanual of Time Series Expert (TSE version
2.2), Ingtitut de Statistique, Université Libre de Bruxelles.

MELARD, G., and ROY, R. (1988) Modéles de séries chronologiques avec seuils, Revue de
Satistique Appliquée 36, 5-24.



16

MORF, M., SIDHU, G. S,, and KAILATH, T. (1974) Some new algorithms for recursive esti-
mation on constant, linear, discrete-time systems, |.E.E.E. Trans. Automatic Control
AC-19, 315-323.

NICHOLLS, D. F. and QUINN, B. G. (1982) Random Coefficient Autoregressive Models: An
Introduction, Spinger-Verlag, New Y ork.

PEARLMAN, J. G. (1980) An agorithm for the exact likelihood of a high-order
autoregressive-moving average process, Biometrika 67, 232-233.

TIJSTHEIM, D. (1984a) Estimation in linear time series models I: stationary series, Departe-
ment of Mathematics, University of Bergen 5000 Bergen, Norway and Departement of
Statistics, University of North Carolina Chapel Hill, North Carolina 27514.

TIJSTHEIM, D. (1984b) Estimation in linear time seriesmodels |1: some nonstationary series,
Departement of Mathematics, University of Bergen 5000 Bergen , Norway and Departe-
ment of Statistics, University of North Carolina Chapel Hill, North Carolina 27514

TIISTHEIM, D. (1986) Estimation in nonlinear time series models, Sochastic Processes and
their Applications 21, 251-273.

TONG, H. (1978) On athreshold model, In C.H. Chen (Ed.), Pattern recognition and signal
processing, Sythoff and Noordhoff, Alphen aan den Rijn, pp. 575-586.

TONG, H. (1983) Threshold Modelsin Non-linear Time Series Analysis, Springer-Verlag, New
Y ork.

TONG, H. (1990) Non-linear Time Series. A Dynamical System Approach, Oxford University
Press, Oxford.

TUNNICLIFFE WILSON, G. (1973) The estimation of parameters in multivariate time series
models, J. Roy. Statist. Soc. Series B 35, 76-85.

TUNNICLIFFE WILSON, G. (1979) Some efficient computational procedures for high order
ARMA models, J. Satist. Comput. Smul. 8, 303-309.

Appendix 1 Proofs

Proof of Theorem 1
The matrices F, and G, depend on parameters while H, = H is a constant matrix equal toH = (1,0, ..., 0). We have
thusw, = (W,), as the observation equation. Consequently,

r r-1
W), =X oyw,_j+&— 3 68
j=1 j=1

:q)tl(vvt—l)1+ (Vvt—l)2+ &
provided we let
r-1

(Vvt)zzjgzq)t+],jwt+l—j _j§19t+]_jet+l—j

:¢t+].2(vvt—1)1_et+].1et+(vvt—1)3 >

b
with the convention 3 -, =0 if a>b.Wededucethei-th element:

I=a

(Vvt)i:jgi(q)tﬂ—]_jwtﬂ—l—j_et+i—]_j—1et+i—j) . (Al1)
We go on up to (W), which has the following expression
(Vvt)r :¢t+i—]_rwt—1_et+r—].r—let
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Proof of Theorem 2

First noticethat (4.15) is adirect consequence of (4.12). Consider equation (4.6). Since the variance 62 defined by
(4.7) issimply equal to P, _,(1, 1), the explicit computation of the covariance matrix P, yields the following form:

0 0 0
Pui-1(2, DPy _4(1,2) Pu-1(2, DPy _4(1,1)
0 P, (22— P .(2,r)—
u-1(52) Pu-1(1, D) u-a(&1) Pu-1(1, D)
Po_a(r, DPy _4(1,2) Pot-1(r, DPy_o(L,1)
0 P, ,r.,2)- Py_q(r,r)—
u-all>2) Pu-1(1, D) u-allT) Pu-1(1, D)

Hence (4.17) is proved. Introducing the matrix P,_; in expression (4.4), we obtain after straightforward algebra,
given the structure of F,, the first term in the form

Pui-1(2, DPy _4(1,2) Pu-1(2, DPy _4(1,1)
P, (22— P, (21)—
w27 e @ w0 T
Po_a(r, DPy _4(1,2) Pt -1(r, DPy_o(L,1)
Py_(r,2)— Py_q(r,r)—
w27 e @ w0 @
0 : 0 0
which proves (4.16).

Proof of Theorem 3

The elements of matrix V = Go°G” have avery simple form. They are given by the following relations:
V(i,j)=V(.,i)=6,_6,_,c° ,2<i<r , i<j<r

V(Lj)=-6,_,6° , 1<j<r

V(1,1) =6>

We notice that the elements of the matrix C, C = FP,F’, have the following form:
* the elements of the first column satisfy:

C@i,n=0{oP(LD+P,(i+1,1} , 1<i<r
* by symmetry of the matrix, we have

CrD=0{0PLD+Py(Lj+D} , 1<j<r
* the other elements are obtained by:

C@i,))=0,{0,P((L, D) +Py(i + L1} +¢;Py(L,j +D+P(i+Lj+1) , 1<i,j<r-1
Wecan observethat all thetermswhich appear in thedefinition of the elementsof matrix C, exceptfor Py(i + 1, j + 1),
don’t depend on the elements of the first row (or of the first column) of matrix P,. Since
Py, ) =C(,))+V(@i,j) , 1<i,j<r
and given therelations for matrix C(i, j), we can write the following relation:
Po(i, 1) =0,{0,Py(1, 1)+ Py(i +1, 1)} +0,Py(L,j + 1) +Py(i +1,j + 1)+ V(i,j) , 1<i,j<r ,
which yields the recurrence relation between the elements of matrix P,
Pyi +1,] +1) = Pi, )~ (0;(0,Py(L, 1)+ Py(i + 1, 1)+ ,Py(L, j + 1)) - V(i. })

for1<i,j<r-1.

Appendix 2 Thealgorithm TKALMAR
We give here the contents of the loop over time of the algorithm TKALMAR.

o, < ofl)
Forj=1,..,r-1
o) <o +1)
Forj= L..p
ofj) « o) + Opyj_1j Oy
Fork=1,..,r:
Forj=Kk ..,r: _
Pk, J) <~ V(K ) _ .
If j<rthenP(k,j) « P(k, j) + P(k+1,j+1)
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b?« P(1, 1)
& —w —ay
(1) < w,
Forj=2,..r:

K « P(1, j)/b?

o) « o) + K,

Fork=j,..,r:

P(k, j) « P(k j) - KP(1,K)

Fork=1,..,r:

P(1,k)« 0

Forj=2,..,q+1:
V(l! J) &~ _et+j,jgt+1
V(L 1) gy
Fork=2,..,g+1
Forj=k, ..,q+1:
V(j, k) < V(1,)) V(1, k)
V(1, K) < V(1,K) g,

Appendix 3 Thealgorithm LIKAMT

Ansley (1979) has given an agorithm for the computation of the exact likelihood function of an ARMA process
with constant coefficients. In thisappendix, we generalise that method to ARMA (p, q) modelswith time-dependent
coefficients.

The algorithm LIKAMT (Mélard, 1982) is based on the Cholesky factorisation of a positive definite sym-
metric matrix but, to reduce the number of operations by an order of magnitude, the covariance matrix is put in the
form of a band matrix. This is done by changing the variable in the density function of w such that x, = w,, for

t=1..p,andx=y,fort=p+1,...,n, where

Ve = W= QW g = = OpW, (A3.1)
which implies that

Yi=6—6,6 1—... =048 4- (A3.2)

L et us consider the Wold-Cramér decomposition (Cramér, 1961), of the process {x,,t > 1}. Denote &, = b,&,

the sample innovation at time t, where var(&,) = 6°. The decomposition of x, is given by
q

X =bg —Elllftj btfjétfj > (A3.3)

whereq(t)=t—-1for1<t < pandq(t) =qgfort > p, becauseof (A3.2). Notethat the Jacobian of thetransformation
isequal to 1. Consequently, the likelihood function (3.1) has the form (4.13). The algorithm LIKAMT computes
&, and b,. The covariances

Yo = COVIW, W), By =COV(Y, Yyoi)s My = COV(Yp W i), Ay = COV(X;, X, _y)
are computed using the following relations:

1. the autocovariances of the MA part are computed by means of
q
By = Ek 61 _80°9" s (A3.4)
for0<k <q, and B, =0, for k > g, denoting 6,,=—1 for all t;

2. the covariance , are obtained, intheorder k =q,q -1, ...,0, by the recurrence
min(p,q-K)

P
My = COV(Yp Yokt Elq)tk,iwtki) =By + 21 O kil ks (A3.5)

for 0<k <q, given that u, =0, fork > q;
3. the autocovariancesy,, of the process are obtained by the recurrences

P P
Y :COV(Yt + iglq)tiwt—i’ Wtk) =Myt iglq)ti’yt—i,k—i’ (A3.6)

including the variance v,
4. the covariances A, coincide with one of the previously mentioned covariances.
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Using (A3.3),we have a system of q(t) + 1 equations
q

7\1k:_Wtkbtz—k62+j=§k‘4+1l|]t—k,j—kl|jtjbt27j62 ; (A3.7)
0P+ S P A38
Ao =b’c S Y -0 - (A3.8)

Weshall need thefollowing basic algorithmfor determining, at timet, the coefficientsy, of theWold-Cramér
decomposition of (x,t > 1), the standard deviation cb,, and the sample innovation b,&,, as a function of the past
coefficientsy, _, ;, standard deviationscb; _,, and innovations b, _,&,_,, 0<k <q(t), asfollows:

1.y, b? , isdetermined for k = q(t),q(t)— 1, ..., 1, by using (A3.7) with A, 4, At qe)-1 - - -» M., FESPeECtively;
2. b? is computed using (A3.8);
3. b,&, is obtained from (A3.3).
The complete algorithm for evaluating the &, and the b,, hence the likelihood, is composed of five stages.
* Stagel
1. The coefficients ¢, = ¢, are determined fort =1-p,...,0and 6; =6, fort=1-q, ..., 0.
2. Thevaluesof g, arestored fort =1-q,2-q, ..., 0.
3. The autocovariances vy, (k =0, ..., p) are determined for t =1—-p,2-p, ..., 0, asif the process were stationary,
with the constant coefficients equal to ¢y, 6, and g3
» Stage 2
Foreveryt=1,...,p:
1. the covariances (A3.4-6) are computed;
2. the basic dgorithm is applied at timet, using Ay = vy (k=0, ...t = 1).
» Stage 3
By means of expression (A3.1), x, =y, iscomputed fort > p + 1.
» Stage4
Foreveryt=p+1,...,p+q,

1. the covariances B (k =0, ..., q) are computed, and the,, (K =q,9 -1, ...,t — 1) are deduced in that order, using
(A3.4-5);

2. the basic agorithm is applied at time t with the autocovariances Ay =By (K=0,...,t —p—1), Ay =y
(k=t-p,...,mint-1,09)).

» Stage5

For every t = p+q+1ton, the basic algorithm is applied using the A, =By, ..., Ayt _q = Byi_q- Given (A3.4), the
equations (A3.7-8) are replaced by the following ones:

2

p
Wtkbtz— k :etkgtz— Kt J_ =%+ 1(Wt —kj-kWy btz—j =6 k.j— ketj 9 fj) ’

q
b'=g/~ 2 (Wb, 650"



