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The future Compact LInear particle Collider (CLIC) under study at CERN will require to stabilize heavy

electromagnets, and also to provide them some positioning capabilities. Firstly, this paper presents the

concept adopted to address both requirements. Secondly, the control strategy adopted for the

stabilization is studied numerically, showing that the quadrupole can be stabilized in both lateral and

vertical direction. Finally, the strategy is validated experimentally on a single degree of freedom scaled

test bench.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the Compact LInear Collider (CLIC) currently under study
[1], electrons and positrons will be accelerated in two linear
accelerators to collide at the interaction point with an energy of
0.5–3 TeV. To acquire such a high energy, the total length of the
machine should to be up to 48 km. This linear accelerator will
consist of a succession of accelerating structures and heavy
electromagnets (quadrupoles). The former are used to accelerate
the particles to increase their energy; the latter are used to
maintain the beam inside the vacuum chamber (alternating
gradient) and to reach the required luminosity at the collision
point. However, any oscillation of one quadrupole deflects the
beam, and reduces the luminosity. More precisely, if Fxðf Þ is
the power spectral density of the vertical displacement of the
quadrupole, it has been estimated that the integrated Root Mean
Square (RMS) sxðf Þ, defined as

sxðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
f

FxðnÞdn

s
ð1Þ

must stay below 1 nm [2] above 1 Hz to ensure sufficient
performances (Fig. 1(a)). Similarly, it must stay below 5 nm in
the lateral direction. This concerns about 2000 quadrupoles per
beam line. Additionally, about 80 of these quadrupoles should
have the capability to move by steps of some tens of nanometers
every 20 ms [3], with a precision of 71 nm (see Fig. 1(b)). To
ll rights reserved.

llette).
demonstrate the feasibility to fulfil such stringent requirements, it
is planned to build a mock-up of the longest CLIC main beam
quadrupole on its support. The paper is organized as follows.
Section 2 compares the main strategies studied for the
stabilization of quadrupoles in the past. Section 3 presents the
concept adopted in this work to support and control a long
quadrupole. Section 4 studies in details the stabilization strategy
on a simplified quadrupole. Section 5 presents an experimental
validation of the stabilization strategy on a scaled test bench.
Section 6 draws the conclusions.
2. Control strategy

The stabilization of structures at the nanometer scale is
a concern in various fields of precision engineering, like
interferometers [4], microscopes [5] or manufacturing [6]. In this
section, only a few key experiments of quadrupole stabilization
are presented, and some of their characteristics are compared in
Table 1: the number of degrees of freedom (d.o.f.), the type of
actuator, the number of stages for the isolation (i.e. the number of
spring-mass systems in series), the positioning capability, the
overall stiffness of the support and the ratio between the RMS
integrated displacements of the ground sw and the mass to
stabilize sx at 1 Hz.

In order to understand the advantages and disadvantages of
these approaches, let us consider a single d.o.f. quadrupole
shown in Fig. 2(a). Assuming that the alignment stage
(which is not discussed in this paper) is completely rigid, the
transmissibility Twx(f) between the ground w and the mass
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Fig. 1. (a) Frequency domain requirements for the stabilization; (b) time domain

requirements for the positioning.

Table 1
Comparison of several strategies adopted for the stabilization of quadrupoles.

Institution DESY CERN LAPP SLAC

Ref. [7,8] [9] [10] [11,12]

d.o.f. 1 6 6 6

Actuator Piezo- Piezo- Piezo- Electro-

electric electric electric static

Stages 1 2 2 1

Positioning No No No No

Suspension Stiff Soft Soft Soft

sw=sx at 1 Hz 3 3 2 1.5

Fig. 2. (a) Single d.o.f oscillator; (b) transmissibility Twx(f) between the ground and

the mass displacement for three values of the damping coefficient.
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(quadrupole) displacement x is shown in Fig. 2(b) for three values
of the damping coefficient c. An overshoot appears on the
transmissibility at the resonance frequency of the system.
The isolation properties of the support starts at

ffiffiffi
2
p

fn (where
2pfn ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
). Above that frequency, the amplitude of the

response is smaller than the amplitude of the excitation.
Increasing the damper constant c leads to a reduction of the
overshoot, but at the expense of a degradation of the isolation
performances. On the other hand, a reduction of the stiffness
increases the isolation at low frequencies (Fig. 3(a)). Then, in
order to increase the passive isolation, the first idea is to reduce
the value of fn as much as possible [11,12]. However, as
the resonance frequency of the system decreases, it also
becomes more sensitive to any external force directly applied
on the quadrupole at very low frequency. This is illustrated in
Fig. 3(b), showing the transmissibility between a force Fa applied
on the quadrupole and its vertical displacement x. Two
stages configurations [9,10] are also based on soft supports.
While efficient for the stabilization of quadrupoles, these systems
are much too soft to fulfil the positioning requirements (Fig. 1(b)).
For this reason, it has been decided to use stiff piezoelectric
supports like in Refs. [7,8], and reduce actively the
transmissibility Twx(f) at low frequencies (mainly the range
between 1 and 20 Hz) [13].
3. Six d.o.f. quadrupole

3.1. Support strategy and system dynamics

The strategy adopted to provide the required positioning
capabilities to the quadrupole is inspired from the concept of a
Stewart platform [14–16]. It is a well known concept that has
been applied for both vibration isolation and precise positioning
of ground and space structures. To tackle with the large length of
the quadrupole, the six legs are mounted as depicted in Fig. 4. For
reasons of simplicity, it has been decided to fix the orientations of
the legs using only two parameters: a fix the orientation in the
horizontal plane and b the inclination with respect to a vertical
axis. Their numerical values result from a tradeoff between the
following requirements: provide a good stability in the
longitudinal direction, manoeuvrability in both vertical and
lateral directions, allow a sufficient resolution in the vertical
direction, and ensure a static equilibrium when no control is
applied. Assuming that the quadrupole is rigid, the dynamic
equations of the system are

M €x ¼ F ð2Þ

where M¼ diagðm,m,m,Iy,If,IcÞ is the mass matrix, x¼ ðx,y,z,y,
f,cÞ is the vector describing small displacements of the
quadrupole, and F is the vector of resulting forces and torques
applied by the legs on the quadrupole. F is related to the axial
forces in each leg by

F¼ Bf ð3Þ

where f¼(f1,f2,y,f6)T is the vector of active control forces in the
six legs and B the force jacobian matrix. Assuming that there is no



Fig. 3. Effect of the support stiffness on (a) The transmissibility Twx(f) between the

ground and the mass displacement; (b) the transmissibility TFa xðf Þ between a force

Fa applied on the mass and the mass displacement.

Fig. 4. Simplified drawing of the quadrupole.
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damping in the legs, fi is given by

fi ¼ kað�qiþDiþwl
iÞ ð4Þ

where ka is the axial stiffness of each leg, qi and wl
i are,

respectively, the displacement of the quadrupole and the
ground in the direction of the leg. Di is the elongation of the leg
due to a voltage Vi applied to the piezoelectric stack

Di ¼ nd33Vi ð5Þ

where nd33 is a characteristic of the actuator.
Replacing Eqs. (3) and (4) in Eq. (2) gives

M €xþKx¼ kaBDþkaBwl ð6Þ
or again

M €xþKx¼ kaBDþkaBEw ð7Þ

where K¼ka BBT is the stiffness matrix, w and wl are the ground
excitation vector and the ground excitation vector in the legs, and
E is the excitation matrix projecting w in the directions of the legs.

Let J be the Jacobian matrix relating the elongations velocities
of the legs _q and the velocity vector _x as _q ¼ J _x. According to the
virtual work principle, we have

FTdx¼ fTdq¼ fT Jdx ð8Þ

After identification, we have F¼ JT f. Comparing with Eq. (3) leads
to B¼ JT. The analytical expression of J is found as follows. First, let
us split the velocity vector _x into translational and rotational
components such as _xT

¼ ðvT ,xT Þ where vT ¼ ð _x, _y, _zÞ and
xT ¼ ð _y, _f, _cÞ. Then, the velocity of the fixation point of leg i is

vi ¼ vþx� pi ð9Þ

where pi is the coordinate of the extremity of leg i in the reference
frame fixed on the quadrupole. If 1i is a unit vector in the direction
of leg i, the velocity of the extension of the leg is obtained by
projecting vi along 1i

_qi ¼ 1T
i vi ¼ 1T

i ðvþx� piÞ ð10Þ

or

_qi ¼ 1T
i vi ¼ 1T

i ðv�pi �xÞ: ð11Þ

Proceeding the same way for each leg, we have finally

J¼

. . . . . .

1T
i �1T

i
~p i

. . . . . .

0
B@

1
CA ð12Þ

where ~pi is the antisymmetric matrix calculated from pi to
express the cross product. In details, the matrices of unit vector
Q¼(11, y, 16) and positions of legs extremity P¼(p1

T,y,p6
T) are,
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Fig. 5. (a) Power spectral density of the ground displacement FwA
ðf Þ;

(b) coherence of the vertical displacement between two points wA(t) and wc(t).

Fig. 6. Control strategy used for the stabilization.
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respectively,

QT ¼

sinbcosa sinbsina cosb
�sinbcosa sinbsina cosb
�sinbsina �sinbcosa cosb
sinbsina sinbcosa cosb
sinbcosa �sinbsina cosb
�sinbcosa �sinbsina cosb

0
BBBBBBBBB@

1
CCCCCCCCCA

and

P¼

�R R �R R �R R

�L �L 0 0 L L

h h h h h h

0
B@

1
CA:

3.2. Seismic response calculation

Because the distance between any two legs (not only located
side by side) does not exceed a few meters, their excitation in any
particular direction should be coherent. Thus, it is assumed that
the excitation is the same for each pair of legs having the same
coordinate along the main quadrupole axis. That is, the excitation
vector is w¼(uA,vA,wA,uB,vB,wB,uC,vC,wC)T. Also, as the coherence
between the ground motion in perpendicular directions is very
low, the excitation matrix can be approximated by the following
bloc diagonal form

ET ¼

11 � ex 12 � ex 0 0 0 0

11 � ey 12 � ey 0 0 0 0

11 � ez 12 � ez 0 0 0 0

0 0 13 � ex 14 � ex 0 0

0 0 13 � ey 14 � ey 0 0

0 0 13 � ez 14 � ez 0 0

0 0 0 0 15 � ex 16 � ex

0 0 0 0 15 � ey 16 � ey

0 0 0 0 15 � ez 16 � ez

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

Ground vibration measurements have been compared in Ref. [17],
and led to the choice of a quiet place to perform the stabilization
experiments. Fig. 5(a) shows the power spectral densities of the
ground displacement at that place, and Fig. 5(b) shows the
coherence between wA(t) and wC(t) (located 2 m apart). Without
active control, the stationary response of the quadrupole is given
in the Fourier domain by

Xðf Þ ¼ Tðf ÞWðf Þ ð13Þ

where Tðf Þ ¼ ½�Mð2pf Þ2þK��1E and the random response is

Fxðf Þ ¼ Tðf ÞSwðf ÞT
�ðf Þ ð14Þ

where Sw(f) is the ground excitation matrix [18] given by

Swðf Þ ¼

Fuðf Þ 0 0 Fuðf Þ 0 0 Fuðf Þ 0 0

0 Fvðf Þ 0 0 Fvðf Þ 0 0 Fvðf Þ 0

0 0 Fwðf Þ 0 0 Fwðf Þ 0 0 Fwðf Þ

Fuðf Þ 0 0 Fuðf Þ 0 0 Fuðf Þ 0 0

0 Fvðf Þ 0 0 Fvðf Þ 0 0 Fvðf Þ 0

0 0 Fwðf Þ 0 0 Fwðf Þ 0 0 Fwðf Þ

Fuðf Þ 0 0 Fuðf Þ 0 0 Fuðf Þ 0 0

0 Fvðf Þ 0 0 Fvðf Þ 0 0 Fvðf Þ 0

0 0 Fwðf Þ 0 0 Fwðf Þ 0 0 Fwðf Þ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

where FiA ðf Þ ¼FiB ðf Þ ¼FiC ðf Þ ¼Fiðf Þ, and i¼{u,v,w}. For simplicity,
the active stabilization is studied in the next section on a three
d.o.f. system.
4. Quadrupole stabilization

Let us start with one third of the quadrupole, mounted on two
active legs, like represented in the left part of Fig. 6.

After integrating the lateral and vertical ground velocities
measured by the geophone, there is a linear relationship between
the sensor output and the actuator input

y¼ Cx ð15Þ

where y is the measurement vector, C a matrix containing the
sensor dynamics, and x¼ ðxA,yA,yAÞ. In this configuration, the
geophone cannot provide any information on yA, i.e. there is a null
column in matrix C. Focusing on the observable subspace (with a
0 index)

y0 ¼ C0x0 ð16Þ

or

y0 ¼ C0J�1
0 q0: ð17Þ



Fig. 7. Active stabilization in both vertical and lateral directions using a SVD

controller.

Fig. 8. Two-masses quadrupole on two active legs: (a) scheme of the model;

(b) FxA
ðf Þ and Fdðf Þ for a coherent excitation ðe¼ 0:9Þ; (c) FxA

ðf Þ and Fdðf Þ for a

incoherent excitation ðe¼ 0Þ.
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Additionally, C0 J0
�1 can be decomposed into singular values

y0 ¼USVT q0 ð18Þ

where S¼ diagðs1,s2Þ. Then, assuming that the flexible reso-
nances are above the frequency range of interest, the controller is
simply found using Eq. (6) and inverting Eq. (18)

Fb ¼ kaBD¼ kaBVHðf ÞS�1UT y ð19Þ

where H(f)¼diag(h1(f),h2(f)) is the gain vector. Here, the singular
values are used as a tool for the design of the system. For example,
vertical legs ðb¼ 0Þ will result in a null singular value for the
lateral direction, i.e. a configuration that cannot be controlled.
The gains can be tuned independently, or chosen all the same. The
latter case is illustrated in Fig. 7 showing the transmissibilities
TwAxA

ðf Þ and TuAyA
ðf Þ between the ground and the quadrupole,

respectively, in the vertical and lateral direction. In this case,
the quadrupole is stabilized in both directions using a scalar
controller. In the simulation, the following numerical values have
been used for the legs: ka¼3e8 N/m, ke¼588 Nm/rad, b¼ p=6,
and a mass of 420/3 kg and inertia of 15.6 kg m2 for the
quadrupole.

Now the question is: can such a local (decentralized) controller
be applied to each pairs of legs to stabilize the entire quadrupole?
In order to answer this question, let us consider the system
depicted in Fig. 8(a), which is a simplified version of Fig. 6, with
only one leg below each mass. The dynamics of the system is still
governed by Eq. (7), where x¼(xA, xB)T; D¼ ðdA,dBÞ

T ; w¼(wA, wB)T;

M¼
mA 0

0 mB

 !
; K ¼

kaþk �k

�k kaþk

 !
; B¼ E¼

1 0

0 1

� �
:

In this case, one controller is used for each leg: dA ¼ gAxA;
dB ¼ gBxB. The global stability of the quadrupole is represented
by the relative displacement d between the two masses, defined
by d¼xA�xB. This variable is essentially affected by the coherence
between wA and wB: the lower is the coherence, the higher is the
excitation of d. Thus, let us consider that the system is subjected
to the following excitation matrix

Swðf Þ ¼
1 e
e 1

� �
ð20Þ

where e is a parameter comprised between 0 and 1. If e¼ 1 (like in
Fig. 5(b)), wA and wB are fully coherent; If e¼ 0, wA and wB are
fully incoherent. Figs. 8(b) and (c) show the power spectral
density of xA and d for, respectively, e¼ 0:9 and e¼ 0 (FxB

ðf Þ is the
same as FxA

ðf Þ because of the symmetry of the system). The
following numerical values have been used for the simulation:
mA¼mB¼420/6 kg, ka¼200 MN/m, k¼172 MN/m. As expected,
one sees on Fig. 8 that, the lower the value of e, the level of Fdðf Þ.
However, one also sees that, whatever the value of e, the action of
the controller always to decrease both the amplitude of FxA

ðf Þ and
Fdðf Þ. In other words, the simple decentralized controller
presented in this section stabilize both parts of the quadrupole,
and at the same time, improves its global stability.
5. Test bench

5.1. Modeling

In order to test experimentally the stabilization strategy
described above, a scaled test bench has been designed to
represent one sixth of the quadrupole mounted on one active
leg (Fig. 9(a)). The experimental setup consists of a guided
piezoelectric stack, clamped in a double membrane like structure
to allow only a vertical motion (Fig. 9(b)). Two geophones are
used to measure the vibrations at both ends of the actuator. The
aim of the experiment is to stabilize a small mass laying on the
top of the membrane, i.e. the geophone itself.

The dynamic equation of the full scale model depicted in
Fig. 9(a) is

m €xþkðx�w�DcosbÞ ¼ 0 ð21Þ



Fig. 9. (a) One sixth of the quadrupole on one active leg; (b) scaled setup.

Fig. 10. Picture of the experimental setup.

Fig. 11. Transfer function Twx(f) calculated (solid line), measured during the day

when the controller is OFF (dotted line) and ON (dashed line).

Fig. 12. Simulation of the time history of the geophone motion x(t), subjected to a

ground excitation w(t) and a requested position r(t).
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where m¼420/6¼70 kg, and the stiffness of the actuator ka and
the jointures ke are lumped in k, which is found to be k¼250 MN/
m; x the vertical displacement of the quadrupole on the top of the
actuator, w the ground motion, and

D¼ nd33V ð22Þ

the elongation of the piezoelectric actuator induced by a voltage V

[19].
The scaled setup will be representative of the full scale system

if its dynamics is governed by the same equation, i.e. if

k

m
¼

k0

m0
ð23Þ

where m
0

¼2.5 kg is the mass of a geophone (the mass of the
membrane is much smaller than the mass of the geophone), and k

0

is the sum of the membrane stiffness km and the small actuator
stiffness ka

0

.
Assuming that the vertical stiffness of the guide is negligible

with respect to the stiffness of the actuator, the same dynamics is
obtained by taking an actuator with a stiffness k

0

¼25 MN/m. The
experimental setup is shown in Fig. 10. It is located in a tunnel
where the amplitude of the ground motion is similar to the values
measured in the LHC tunnel.

For frequencies below the resonance of the geophone on the
stiffness of the actuator, two ways to decrease the transfer
function Twx(f) between the two geophones can be considered:
(i)
 Integrate the signal of the top geophone in a feedback loop:

Fb ¼ kD¼ Kb
p x ð24Þ

Integrate the signal of the ground geophone in a feed forward
(ii)

strategy:

Ff ¼ kD¼ Kf
pw ð25Þ
where Kp
b and Kp

f are the gain of the controllers. Theoretically, both
of these strategies are efficient. However, in this study, the first
one is preferred because the performances of the feed forward
are limited by the coherence between the ground vibration
measurement and the uncontrolled output x. Fig. 11 shows the
transmissibility Twx(f) using the position feedback strategy. A
Butterworth high pass filter at 0.5 Hz is introduced in the
controller to remove the drift in the signals, and a lag at 30 Hz
to improve the stability. In order to test if the top geophone can be
also positioned to a requested position r, the feedback control law
has been transformed into a classical Proportional Integral
Derivative (PID) controller. Eqs. (24) and (25) become

Fb ¼ Kb
d
_xþKb

p ðr�xÞþKb
i

Z
ðr�xÞdt ð26Þ

Ff ¼ Kf
d
_wþKf

pw ð27Þ

where Kd
b, Ki

b, Kd
f are the gains of the controller, and r(t) is the

requested position.
Fig. 12 shows a short time history simulated with the control

law, when the requested position is a square function with an
amplitude of 10 nm and steps of 20 ms.

The following section presents the experimental results
obtained for the stabilization.

5.2. Experiments

The piezo-actuator is a P�753.21C [20]. It works in a closed
loop configuration together with a built-in capacitive sensor and
an amplifier (Fig. 13). The calibration factor for the piezo actuator
system is 400mV=nm. In the closed loop configuration the
actuator has a maximum stroke of 25mm and a resolution of
0.1 nm. The geophones (Guralp CMG-6T [21]) have a differential



Fig. 13. Description of the experimental setup.

Fig. 14. Comparison of RMS integrated of the top displacement sxðf Þ when the

controller is ON and OFF, during the day and during the night.
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sensitivity of about 2000 V/(m/s) and a frequency range between
30 s and 100 Hz. The real time control system is based on a card
PXI�6289 [22] for data acquisition. The characteristics of the card
are as follows: 32 single ended or 16 differential input channels
(18 bit resolution), four analog outputs (16 bit resolution).

The same filters are used as in the simulation. The range of the
signal for the piezo-electric actuator has the low limit of �2 V. In
order to protect the actuator and to ensure that the signal is not
exceeding this limit, an offset of 1 V is added to the output signal
of the control system. The sampling rate of the card is guaranteed
by the producer and can be set up to 625 kSample/s. On the other
hand, the program loop rate can vary depending on many factors
(CPU load, amount of calculations in the loop, amount of
information to be updated during the loop run). These two
processes have to be well synchronized. In order to evaluate the
performances of the stabilization, the signals from the geophones
are sent to a second acquisition system in parallel with the PXI.
This system has a better resolution, and better performances are
delivered by the PXI when it does not save data. The system used
was the MKII made by Müller-BBM. It contains 16 input channels
with DSP (Digital Spectrum Processing) for each four channels
with a sampling frequency up to 204 kHz. The dynamic resolution
is 24 bits, and it can be used in a range between 10 mV and 50 V
with a noise level lower than 1 pV. The transfer function Twx(f)
measured during the day is compared with the theoretical curve
in Fig. 11. It has been calculated by

Twxðf Þ ¼
Fxwðf Þ

Fwwðf Þ
: ð28Þ

The transfer function measured when the controller is OFF is also
shown in the same Figure to demonstrate the effect of the
feedback operation. Fig. 14 shows the corresponding RMS
integrated displacement calculated from Fxðf Þ. At 1 Hz, one sees
that the feedback control has reduced sxðf Þ from 4.7 to 1.4 nm, i.e.
a reduction by a factor 3.5. The same experiment has been also
conducted during the night, when the ground motion is even
lower. In this case, sx is reduced from 1.8 to 1 nm at 1 Hz.
Although this value corresponds to the requirements (Fig. 1(a)),
the controller still needs to be improved to reach this required
value during the day, i.e. in conditions similar to a realistic, active
accelerator environment. Better results are anyway expected from
an optimized combination of the feedback and feed forward, and a
more adapted hardware.
6. Conclusions and future work

First of all, some key experiments of quadrupole stabilization
have been compared. In order to fulfil both the stabilization and
positioning requirements, it has been chosen to mount the
structure on stiff supports. Then, a concept of six legs derived
from a Stewart platform has been presented. The stabilization
strategy has been studied numerically on a simplified model of
the quadrupole. It has been shown that a SVD controller can be
applied to stabilize the quadrupole in both the vertical and the
lateral direction. Additionally, it has been shown that a decen-
tralized strategy improves also the global stability of the
structure.

Finally, the stabilization strategy has been validated experi-
mentally on a scaled single d.o.f. set-up. This experiment has
shown that the RMS integrated displacement is reduced by a
factor 3.5 at 1 Hz during the day, and by nearly a factor 2 during
the night, leading to the required value of sx ¼ 1 nm at 1 Hz. This
also shows that, although better results are expected from a more
powerful hardware, the current equipment is already capable to
work at this high level of precision.

Before stabilizing and positioning experimentally the long
quadrupole, the next step will be to consider first a heavy
compact object, in order to address all the difficulties of the
stabilization and positioning of the long quadrupole (except its
flexibility), which are mainly load compensation, jointure design,
control optimization.
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