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(*) present address: Active Structures Laboratory, Université Libre de Bruxelles,
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Abstract

The North Atlantic Oscillation (NAO) monthly index is studied from 1825

till 2002 in order to identify the scaling ranges of its fluctuations upon dif-

ferent delay times and to find out whether or not it can be regarded as a

Markov process. A Hurst rescaled range analysis and a detrended fluctu-

ation analysis both indicate the existence of weakly persistent long range

time correlations for the whole scaling range and time span hereby stud-

ied. Such correlations are similar to Brownian fluctuations. The Fokker-

Planck equation is derived and Kramers-Moyal coefficients estimated from

the data. They are interpreted in terms of a drift and a diffusion coeffi-

cient as in fluid mechanics. All partial distribution functions of the NAO

monthly index fluctuations have a form close to a Gaussian, for all time

lags, in agreement with the findings of the scaling analyses. This indi-

cates the lack of predictive power of the present NAO monthly index. Yet
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there are some deviations for large (and thus rare) events. Whence sugges-

tions for other measurements are made if some improved predictability of

the weather/climate in the North Atlantic is of interest. The subsequent

Langevin equation of the NAO signal fluctuations is explicitly written in

terms of the diffusion and drift parameters, and a characteristic time scale

for these is given in appendix.

PACS numbers: 05.45.Tp, 05.45.Gg, 93.30.Fd, 89.69.+x; 02.50.Le, 05.40.-a, 47.27.Ak,

87.23.Ge
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I. INTRODUCTION

In order to establish a sound understanding for any scientific phenomenon, one has

to record numerical data and from the latter to obtain laws which can be next derived

theoretically from so called first principle models. The so called inverse model method,

starting from raw data and using statistical analysis as a first step, is of great interest

since it is model free. Some difficulty arises in particular in nonlinear dynamical systems

because of the need to sort out noise from both chaos and deterministic components1,2.

Whence to extract meaningful model-free dynamical equations from chaotic-like data is

an enormous challenge3. Practically one is often led to empirical relationships. This is

often the case in the meteorology/climatology field where there is a widely mixed set of

various (sometimes) unknown influences, over different time and space scales. Often the

fast variations are taken as noise terms in some sort of Langevin equation(s)4,5 as for the

el Niño Southern Oscillation Index (SOI).

In order to quantify weather and climate events in Europe and report large-scale vari-

ability an index has been imagined6 the so called North Atlantic Oscillation (NAO) in-

dex (http : //www.ldeo.columbia.edu/NAO/; http : //www.met.rdg.ac.uk/cag/NAO/;

http : //www.cru.uea.ac.uk/cru/info/nao/;

http : //www − bprc.mps.ohio − state.edu/gpl/NAO/Naobibliography.htm). It is

the normalized sea level pressure (SLP) difference between a station at Ponta Delgada,

Azores and one at Akureyri, Iceland.

Since about the mid-50’s the NAO index was trending from negative to positive values,

but is mostly positive since 1980, a variation attributed to global warming. It is thought7

that the influence of slow changes in the ocean and in the greenhouse gases maybe picked
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up as the fundamental causes of a prolonged (upward) trend.

Until a few years ago, the NAO was not receiving intense attention7, because it was

thought that its phase and amplitude were rather unpredictable, because both involve

many (time and space) scales which are often intrinsic to chaotic behavior; see also

reviews8–10. Yet, evidence has been presented that NAO exhibits ’long-range’ dependence

having winter values residually correlated over many years, with short-term 2-5 year

variations and decadal trends. Note that Wallace11 has argued that the NAO is a local

expression for a Northern Annular Mode (NAM), also called Arctic Oscillation12,13.

In view of the above it seems of pertinent interest to consider again the NAO and

adopt specific data analysis techniques when searching for scaling ranges and stochasticity

features. We start with the Hurst (R/S) method14,15 followed by a detrended fluctuation

analysis (DFA)16,17 of the monthly averaged NAO signal. Such tests supplement classical

analyses based on frequency spectra18–20 which are debatable due to the non stationarity

of the data. Interestingly the data histogram have so called fat tails, resembling the Lévy

flights, signatures of self −organizing systems, today emerging in many areas of physics

as those mentioned here above. Again these facts seem to exclude low dimensional chaos

but support the conjecture of Markov dynamics for atmospheric evolution, as already

suggested in fact many years ago8,21–23.

In the following, we adopt a Markov assumption in order to derive the FPE and

to write down the Chapman-Kolmogorov equation for the conditional probability of the

increments ∆x (of the NAO index) over different time intervals ∆t. This leads to a

numerical derivation of the Kramers-Moyal coefficients which are the moments of such

probability distributions. Up to the second moments, this leads to the diffusion and

drift coefficients appearing in the Fokker-Planck equation (FPE) and are basic to the
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Langevin equation24. It will be noticed that the analytical form of both drift D(1) and

diffusion D(2) coefficients are simple. It will be found that the experimental probability

density functions (pdf) have all a Gaussian form when excluding the (rare) large (so called

extreme) events.

The methods, applied in this paper, are briefly explained in Sect. 2.2 and 2.3 : (1)

the rescaled range analysis and (2) the detrended fluctuation analysis. In all cases results

are tested against surrogate or shortened data for error bar evaluation. Both methods

lead to an exponent characteristic of the classical random walker position fluctuation

correlations. Next, in Sect. 3, we examine how to describe the statistical evolution of

increments for different time scales i.e. establishing a Fokker-Planck equation within a

Markov process assumption. A few comments pertain to considerations on NA weather

causes and predictions in a discussion and conclusion sections.

II. DATA AND THEORETICAL ANALYSIS

A. Data

The

monthly averaged NAO index (available on the web sites http : //www.cru.uea.ac.uk/

ftpdata/nao.dat or http : //www.cru.uea.ac.uk/cru/data/nao.htm and updated at

http : //www.cru.uea.ac.uk/̃timo/projpages/nao−update.htm), i.e. as the normal-

ized sea level pressure (SLP) difference between a station at Ponta Delgada, Azores

(26◦W,38◦N) and one at Akureyri, Iceland (18◦W,66◦N) is represented on Fig.1 from

5



January 1825 to November 2002 (2135 points).1

It is a standard procedure that in order to reduce spurious noise effects, the study is

performed on the integrated series (Fig.2). Such values can be interpreted as mimicking

the successive positions of a random walker15. The amplitude correlations should allow

us below to understand the drift and diffusion process (as that of a walker).

B. The rescaled range analysis

Introduced by Hurst14,29, the rescaled range analysis method computes a ratio R/S

defined as follows. The time series X = {xt, t = 1, ..., N} is divided into l intervals

of equal length n. In the kth box, (k = 1, ..., l), there are n elements, X
(k)
j (n) =

{xj , j = (k − 1)n + 1, ..., (k − 1)n + n(≡ kn)}. The local fluctuation at point j in the kth-

box, i.e.
(

x
(k)
j − 〈x〉(k)

n

)

is calculated as the deviation from the mean 〈x〉(k)
n = 1

n

∑n
j=1 x

(k)
j ,

in that kth-box. The cumulative departure Y (k)
m (n) up to the mth point in the kth-box

(of size n) is next calculated

Y (k)
m (n) =

m
∑

j=1

(

x
(k)
j − 〈x〉(k)

n

)

= (
m

∑

j=1

x
(k)
j ) − m 〈x〉(k)

n (1)

for m = 1, ..., n and in all k boxes and where 〈x〉(k)
n = 1

n

∑n
j=1 x

(k)
j . The rescaled range

function is defined by

R(k)

S(k)
(n) =

max1≤m≤n

(

Y (k)
m (n)

)

− min1≤m≤n

(

Y (k)
m (n)

)

√

(

1
n

)

∑n
j=1

(

x
(k)
j − 〈x〉(k)

n

)2
k = 1, ..., l. (2)

1For completeness let us point out that early instrumental or paleoclimatic data can be used

to extend the North Atlantic Oscillation index back to 1823 or even 167525–28.
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The average of the rescaled range in all boxes with an equal size n is next obtained

and denoted by < R/S >. The above computation is then repeated for different values

of n to provide a relationship between < R/S > and n, - which is expected to be a power

law < R/S >≃ nH if some scaling range and law exist; H is called the Hurst exponent. If

H = 0.5, the signal is uncorrelated (white noise); the ”walk” is like a Brownian motion.

If H < 0.5, the signal is anticorrelated (blue noise); if H > 0.5, there are positive

correlations in the signal (red noise). From Fig. 3 it is found that H = 0.55 ± 0.02 for

the NAO index variations from 10 to 300 months (about 25 years). The departure from

strict linearity on a log-log plot is usually attributed to too small box sizes, or to some

periodic mode not finally taken into account through the assumed constant base line in

Eq. (1); see discussions in references quoted here above and in the introduction. In order

to test the robustness of the result we have checked the scaling properties of NAO index

data series that are shorter than the original one by 5% (107 data points). In both cases

when we delete the first 107 data points or the last 107 data points, the R/S analysis

exponent has roughly the same value. The same goes true (not shown) for surrogate data

series, i.e. when amplitudes are randomly displaced or multiplied by a random sign. It is

certain that the H value near 0.55 indicates a weak deviation of the signal from Brownian

motion.

C. The detrended fluctuation analysis

The detrended fluctuation analysis method has been recently much used in the mete-

orological field19,30–32. The method has the advantages of avoiding (seasonal-like) trends

and non stationarity effects, intrinsic to the finite size of the data. The method consists
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in dividing the time series X = {xi, i = 1, ..., N} into l boxes of equal size n. In the

kth box, the cumulative sum Y (k)
m can be calculated as above, in the so called the first

order DFA. Let Y
(k)
fit,i(n), be the best linear fit to the data in the kth box. The detrended

fluctuation function is next calculated, i.e. dropping the (n), φ
(k)
i = Y

(k)
i −Y

(k)
fit,i. The root

mean square fluctuation is then given by

F (n) =

√

√

√

√

1

N

N
∑

i=1

[φi]
2. (3)

If the values of the time series are correlated, there is a power-law relationship between

F (n) and n: F (n) ≃ nα. A departure from linearity on a log-log plot, and the existence

of crossovers (hereby one occurs near 240 months, see Fig.4) has been discussed17. Fig.

4 shows that α = 0.54 ± 0.02 below 240 months, for NAO index variations. Again

the robustness of the result is confirmed by analysing shorter or surrogate data series.

Various considerations15 indicate that α should be equal to H . Thus we can conclude

that the value of the scaling exponent α is roughly the same as the one obtained within

the rescaled range analysis. Notice that the DFA method, is clearly leading to extend

the scaling properties of the NAO index toward smaller scales, less than 10 months as is

found for the R/S analysis.

The above findings confirm the existence of non trivial correlations (since α 6= 0.5,

even though it is close to 0.50) within precise interval time ranges. They point out to the

existence of physical phenomena described as fractional Brownian motions (Mandelbrot

1982) thus with a fractal-like hierarchy of time scales. The result of α values larger than

0.5 can be interpreted again through a persistence effect in the fluctuations15,29.
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D. The Fokker-Planck equation

In view of the above it is of interest to search whether these weak and persistent

correlations can be found through the solution of a phenomenological evolution equation,

like the Fokker-Planck equation34. Thus we focus on the variations ∆x of the elements of

the NAO series and the more so on their distribution in time. In order to do so we follow

the method of Friedrich et al.35 and reproduce it almost in extenso here below, for the

technique is not necessarily familiar to most readers.

ln order to characterize the statistics of NAO changes, increments ∆x1, ∆x2, ... for

delay times ∆t1, ∆t2, ... at the same time t are considered. This leads to a set of

p(∆xi, ∆ti). Next the joint probability density functions are evaluated for various time

delays ∆t1 > ∆t2 > ∆t3 > ... directly from the given data set, e.g. p(∆x1, ∆t1; ∆x2, ∆t2).

Of course if two increments i.e. ∆x1 and ∆x2 are statistically independent, the joint pdf

should factorize into a product of two probability density functions:

p(∆x1, ∆t1; ∆x2, ∆t2) = p(∆x1, ∆t1)p(∆x2, ∆t2). (4)

leading to an isotropic single hill landscape in the ∆x1, ∆x2 plane.

A complete characterization of the statistical properties of the data set in general

requires the evaluation of joint pdf’s pN(∆x1,∆t1;...;∆xN ,∆tN) depending on N variables

(for arbitrarily large N). In the case of a Markov process (a process without memory but

governed by probabilistic conditions), an important simplification arises: The N -point pdf

pN is generated by the mere product of conditional probabilities p(∆xi+l, ∆ti+l|∆xi, ∆ti)

itself equal to p(∆xi+l, ∆ti+l; ∆xi, ∆ti)/p(∆xi, ∆ti) for i = 1, ..., N − 1. The conditional

probability is given by the probability of finding ∆xi+1 values for fixed ∆xi. As a necessary
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condition of Markov processes, the Chapman-Kolmogorov equation in its integral form

reads

p(∆x2, ∆t2|∆x1, ∆t1) =
∫

d(∆xi)p(∆x2, ∆t2|∆xi, ∆ti)p(∆xi, ∆ti|∆x1, ∆t1) (5)

and should hold for any value of ∆ti, with ∆t2 < ∆ti < ∆t1; see Appendix A for a

discussion in particular concerning large (and thus rare) events. As is well known, such

a Chapman-Kolmogorov equation yields an evolution equation for the change of the con-

ditional distribution functions p (∆x, ∆t|∆x1, ∆t1) and p(∆x,∆t ) across the scales ∆t.

The Chapman-Kolmogorov equation when formulated in differential form yields a mas-

ter equation, which can take the form of a Fokker-P1anck equation35–37,24. It is useful to

use reduced time units, like τ = log2(16/∆t),2

d

dτ
p(∆x, τ) = [−

∂

∂∆x
D(1)(∆x, τ) +

∂

∂2∆x2
D(2)(∆x, τ)]p(∆x, τ) (6)

in terms of a drift D(1)(∆x,τ) and a diffusion coefficient D(2)(∆x,τ) (thus values of τ

represent ∆ti, i = 1, ....) Their functional dependence can be estimated directly from

the moments M (k) (known as Kramers-Moyal coefficients) of the conditional probability

distributions:

M (k) =
1

∆τ

∫

d∆x
′

(∆x
′

− ∆x)kp(∆x
′

, τ + ∆τ |∆x, τ) (7)

for different small ∆τ ’s, such that for ∆τ → 0,

D(k)(∆x, τ) ≃
1

k!
lim∆τ→0M

(k). (8)

2Why ”16” is chosen to be the normalizing value will be made clear below, but it has obviously

not much effect at this stage.
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After calculating such moments from the conditional probabilities, we find (Fig. 5) that

the coefficient M (1) shows a linear dependence for small ∆x, while M (2) can be approxi-

mated by a polynomial of degree two in ∆x. Therefore the type of fluctuation probability

drift term D(1) is well approximated by a linear function of ∆x, whereas the diffusion

term D(2) follows a function quadratic in ∆x. For very large values of ∆x the statistics

becomes poorer and the uncertainty increases.

From a careful analysis of the data based on the functional dependences of M (1) and

M (2) (Fig. 5 (a-b)), the following approximations hold true:















D(1) = −0.52∆x + 0.04 for | ∆x |< 5 (NAO units)

D(2) = 1
2
(0.21∆x2 − 0.02∆x + 4.2) for | ∆x |< 5 (NAO units)

(9)

Notice the range of validity of the simple analytical forms, thus the limit found for what

would be called38 ”extreme events” or ”outliers”. Also observe that except for the in-

dependent term, 2D(2) ≃ (D(1))2, the strict equal sign being a request for indicating an

absolute lack of intermittency in turbulence39–42.

The FPE for the distribution function is known to be equivalent to a Langevin equation

for the variable, i.e. ∆x here, within the Ito interpretation24,34

d

dτ
∆x(τ) = D(1)(∆x(τ), τ) + η(τ)

√

D(2)(∆x(τ), τ), (10)

where η(τ) is a fluctuating δ-correlated force with Gaussian statistics, i.e. < η(τ) η(τ ′)> =

2δ(τ−τ ′). An interpretation of the analogy between these drift and diffusion coefficients

and those usually employed in fluid mechanics is given in Appendix. It may be worthwhile

to emphasize here that (i) a negative slope value for D(1) indicates a sort of restoring or

damping force for the evolution of ∆x; (ii) the observed quadratic dependence of the
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diffusion term D(2) is essential for the logarithmic scaling of the intermittence parameter

in turbulence41,42.

Using those analytical expressions of the empirically derived Kramers-Moyal coeffi-

cients, Eq.(6) can now be integrated, thereby leading to a test of the Markov process

assumption. For the above change of variables, τ = log2(16/∆t), we take the observed

distribution of the time series for ∆t = 16 months thus at ”large time”, as the initial

condition for the integration, - considering that there is no propagation of anomalous

correlation to be expected after such a time lag. Indeed the scaling ranges of H and α

found here above (Figs. 3 and 4) indicate that the correlations are quasi identical for

∆t = 16 months or ∆t = 240 − 400 months, whence justifying the normalization ”16”

as the safest lowest boundary range for quasi Brownian fluctuations. Starting that far

with a Gaussian as initial condition, the results of the integration (for τ = 0,1,2,3,4, or

∆t= 16, 8, 4, 2, 1) are rather trivial. The variance and the mean are found to vary very

weakly. The experimental data pdf’s are shown in Fig. 6, - together even with the pdf

for ∆t = 400 months, - the latter being indistinguishable from the ∆t = 16 months case.

It is readily remarkable that the pdf’s are close to the Gaussian form in the interesting

NAO (∆x) index range, - with some marginal deviation for the extreme (and rare) events.

E. Discussion

It is therefore confirmed that the NAO is a complex phenomenon which is almost

Markovian. This stresses the need to insert appropriate feedback mechanisms into any

model evolution equation(s), with an appropriate (red) noise term. This has been recently

discussed4,5,43,20. Long-range fractionally integrated noise seems indeed to provide a better

12



fit of the NAO SLP wintertime index over the period 1864 – 1998 than does either

stationary red noise or a non-stationary random walk9.

The persistence of the NAO index fluctuations, i.e. SLP fluctuations, is in agreement

with the persistence of the sea surface temperature fluctuations at different sites in the

North Atlantic as found by Monetti et al.44. Some reasons for the above can be found in

studies based on circulation-like models45.

III. CONCLUSIONS

In summary, the aims of this paper are twofold : (i) to search whether scaling ranges

exist in the North Atlantic Oscillation pressure index ; (ii) to derive its FPE and check

the validity of the Markovianity assumption. This allows one to examine different time

scales on the same footing, - a fundamental need in geophysics46.

It is found that the lack of departure from a Gaussian process definitely is a new

quality of the NAO index data set, - not perceptible with a rescaled range analysis, or a

DFA, as done above, nor with spectral studies.

However, it seems that the actual NAO index is not very useful3. Thus one might have

to request other measurements for better predictability of climate and weather in Europe

and the Northern Hemisphere, e.g. at other locations. We might also suggest studies on

”not-monthly-averaged” indices, - a monthly average being strangely unphysical in our

3This is in agreement with conclusions from a recent paper casting doubt on the NAO-global

warming relationship47, and indicating a too strong influence of the Azores data with respect

to the Iceland one. See also Czaja and Frankignoul48
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opinion.

Yet it is emphasized that the FPE provides the complete knowledge as to how the

statistics of correlations in the index distribution change on different delay times. Since

this includes an analysis in time t for a scalar ∆x, it seems that the findings could

be implemented in atmospheric weather low dimensional vector − models49,50. Further

work in line with the above should be to relate the FPE to an analytical solution,e.g.

with a model of the turbulence-like dynamics as was done for financial indices51 or ionic

transport through membranes52 through a Beck-Tsallis53,54 nonextensive thermodynamics

approach.
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Appendix

The coefficients called drift and diffusion used in the main text pertain to the evolu-

tion of the pdf; they are usually describing the motion of particles in fluid mechanics. For

example the diffusion coefficient occurs in the Einstein or Langevin equation of Brownian

motion, as

D =
kBT

6πηa
(11)

where T is the bath temperature, η the dynamic viscosity of the fluid and a the diameter

of the particle, such that the evolution of the particle is described as a function of time t

by < x2 > = 2Dt, solution of the Langevin equation

M
d2x

dt2
= −6πηa

dx

dt
+ R(t), (12)

where M is the mass of the particle and R(t) a random force with zero mean.

The Langevin equation is equivalent to the standard diffusion equation for a proba-

bility density

dp(x, t)

dt
= D

∂2p(x, t)

∂x2
(13)

for which the solution is a Gaussian

p(x, t) =
1

√

(4πDt)
e−x2/(4Dt). (14)

The FPE written in the main text contains an extra term to Eq.(14); let it be rewritten

here as

d

dt
p(x, t) = [−

∂

∂x
D(1)(x, t) +

∂

∂2x2
D(2)(x, t)]p(x, t), (15)
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from which the mean < x > and the variance < σ2 > can be defined as usual. Keeping

only the linear term in D(1), with a coefficient D
(1)
1 and the independent D

(2)
0 and quadratic

D
(2)
2 terms in D(2), from Eq.(9), one easily obtains the evolution of the ”particle” as

〈x(t)〉 = 〈x0(t)〉 e(2D
(1)
1 +D

(2)
2 )t (16)

and a similar equation for the variance, but also containing D
(2)
0 , from which one observes

that D(1) and D(2) are true drift and diffusion coefficients. Note the time scale given by

the inverse of D(1) and D(2), i.e., about 1 month.

Knowing that ∆x is the NAO index, a difference in pressure, (∆P ) we can roughly

rewrite the ”official” diffusion coefficient, Eq.(12), as

< (∆P )2 >=
2kBT

6πηa
t, (17)

and ”interpret it”, suggesting that in further and more precise work, one could develop

a model relating the changes in pressure (between Iceland and the Azores) with a tem-

perature field (in principle a temperature gradient, rather than the mean temperature of

the bath).

No need to say that the solution of a Brownian particle in a (rotating) bath under a

temperature gradient and with a noise force term is indeed what a good weather model

is (or should be).
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Figure Captions

Figure 1 Time evolution of the monthly averaged NAO index fluctua-

tions from January 1825 to November 2002 (2135 points) available on the

web sites http : //www.cru.uea.ac.uk/ftpdata/nao.dat and updated at http :

//www.cru.uea.ac.uk/̃timo/projpages/nao−update.htm)

Figure 2 Integration of the NAO index fluctuations signal shown on Figure 1

Figure 3 Rescaled range analysis of the NAO index signal. Inserts: Rescaled range

analysis of the NAO index signal shortened by 5% at the beginning of the data series (left

upper panel) or at the end (right lower panel)

Figure 4 Detrended fluctuation function of the (integrated) NAO index signal. In-

serts: Detrended fluctuation function of the (integrated) NAO index signal after shorten-

ing by 5% at the beginning of the data series (left upper panel) or at the end (right lower

panel)

Figure 5 Kramers-Moyal coefficients (a) M (1) and (b) M (2) estimated from the

empirical conditional density probability of the NAO distribution values. The solid curves

represent a linear and a quadratic fit, respectively, excluding large events

Figure 6 Raw data (symbols), and theoretical (Gaussian) pdf (solid line) comparing

the NAO fluctuation distribution functions for various time lags, ∆t = 16, 8, 4, 2, 1

months (or for τ = 0,1,2,3,4). The case ∆t = 400 months is also ”shown” for comparison
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