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Abstract

A method is proposed for estimating, in a consistent way, the asymptotic covariance structure

of serial correlations for a multivariate second order stationary process. To obtain a consistent

estimator of this structure, which is also of the non-negative definite type, results relative to the

scalar case are generalized. The method consists in weighting appropriately the elements of the

sample autocovariance matrices in a generalization of Bartlett’s formula so that the estimators

converge in the L1-norm. Several useful applications of the results of the paper are discussed:

statistical inference in the corner method for transfer function models, inference about vector

autocorrelation coefficients, improvements in other specification procedures for univariate and

multivariate processes, a test of homogeneity of several independent time series and a test of

independence of two multivariate time series.

** This work was supported by the Cooperation between the Province of Quebec and the French
Community of Belgium, the Natural Sciences and Engineering Research Council of Canada and
the Foundation FCAR (Government of Quebec).
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1. Introduction

Let { Z} be a multivariate second order stationary process of dimension p :

. Without loss of generality, we can assume that and let

k Z. Further, let

and the correlation matrix at lag kwill be denoted by ,k Z. Note that

and , k Z.

Let be a realization of length n of the process . The sample covariance matrix

at lag k, 0 k n - 1, is defined by

where is the vector sample mean. For -n + 1 k 0, we let and

for , . The sample correlation matrix at lag k, , is denoted by

, where

Xt;t ∈

Xt
T = (X1t,…,Xpt) E[Xt] ≡ 0

E[XtXt + k
T ] = Γ(k) = (γij(k)), (1)

∈

ρij(k) =
γij(k)

{γii(0)γjj(0)} 1/2 (2)

Γ(−k) = Γ(k)Tρ(k) = (ρij(k)) ∈

ρ(−k) = ρ(k)T ∈

{X1,…,Xn} {Xt}

≤ ≤

C(k) =
1
n

∑
t = 1

n − k

(Xt − X) (Xt + k − X)T = (cij(k)), (3)

X = (1/n ) ∑
t = 1

n

Xt C(k) = C(−k)T≤ ≤

| k | ≥ n C(k) ≡ 0 0 ≤ | k | ≤ n − 1

R(k) = (rij(k))

rij(k) =
cij(k)

{cii(0)cjj(0)} 1/2 . (4)
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In the sequel, we will make use of the asymptotic distribution of the multivariate serial corre-

lations. Before stating the result, let us introduce some more notations. Let

and the convolution square of the covariance (matrix) function

The following theorem which is a generalization of well known results of Bartlett (1946, 1966)

is proved in Roy (1989).

Theorem 1

Let be a multivariate second order stationary process satisfying the assumptions of the

central limit theorem of Hannan (1976). Further, suppose that all cumulants of fourth order are

zero and that the spectral density of each component of is square integrable. Then, any

finite subset of the (k)’s are jointly asymptotically normal with zero mean and covariance

structure given by

where k, h 0.

sij(k) = n 1/2{rij(k) − ρij(k)} (5)

θk(i , j , l ,m) = ∑
u = −∞

∞
γij(u )γlm(u + k). (6)

{Xt}

{Xt}

sij

lim
n →∞

n cov(sab(k), sde(h )) =

1
2
ρab(k)ρde(h )

⎧
⎨
⎩

θ0(a ,d ,a ,d )
γaa(0)γdd(0)

+
θ0(b ,d ,b ,d )
γbb(0)γdd(0)

+
θ0(a ,e ,a ,e)
γaa(0)γee(0)

+
θ0(b ,e ,b ,e)
γbb(0)γee(0)

⎫
⎬
⎭

− ρab(k)
⎧
⎨
⎩

θh(a ,d ,a ,e)
γaa(0) {γdd(0)γee(0)} 1/2 +

θh(b ,d ,b ,e)
γbb(0) {γdd(0)γee(0)} 1/2

⎫
⎬
⎭

− ρde(h )
⎧
⎨
⎩

θk(b ,d ,a ,d )
γdd(0) {γaa(0)γbb(0)} 1/2 +

θk(b ,e ,a ,e)
γee(0) {γaa(0)γbb(0)} 1/2

⎫
⎬
⎭

+
θh − k(a ,d ,b ,e) + θh + k(b ,d ,a ,e)

{γaa(0)γbb(0)γdd(0)γee(0)} 1/2 , (7)

≥
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Given (2), in the sequel (7) will be seen as a function of the (k)’s and of the ’s. Let be an

arbitrary finite subset of the (k)’s stored in a vector and let be its asymptotic covariance

matrix whose elements are given by (7). That matrix is non-negative definite. Very often (see

Section 4) statistical problems require an estimate of (7) since the (k)’s (and consequently the

’s) are unknown.

There is no guarantee, however, that mere substitution of the (k)’s by the (k)’s in (7) provides

a consistent estimator, because of the infinite sums contained in (6). That problem also arises

in spectral analysis (Priestley, 1981). The usual remedy consists in weighting appropriately the

terms in (6). Robinson (1977) has proposed such a solution in the univariate case. However, his

method does not necessarily lead to a non-negative definite estimator of .

In order to insure non-negative definiteness of , Mélard and Roy (1984, 1987) have proposed,

in the univariate case, to replace the (k)’s by weighted estimators (k). The main purpose

of this paper is to generalize to the multivariate case the method of Mélard and Roy. The resulting

estimator of is consistent and non-negative definite.

The non-negative definiteness of is addressed in Section 2. The weighting scheme so that

converges in L1-norm to , hence in probability, is specified more completely in Section 3.

Finally, several applications of the procedure are discussed in Section 4.

2. A non-negative definite estimator of the asymptotic covariance structure

We first prove

Theorem 2

Let

γij θk r

rij Σ

γij

θk

γij cij

Σ

Σ̂

γ w(k)c

Σ

Σ̂ Σ̂

Σ

θ̂k(i , j , l ,m) = ∑
u = −∞

∞
w(u )cij(u )w(u + k)clm(u + k), (8)
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where{ Z} isa non-negativedefinite function. Then,under the assumptionsof Theorem

1, the matrix , obtained by replacing by and (k) by (k) in , is non-negative

definite.

The proof rests on two lemmas.

Lemma 3

Let be a p p matrix function on Z Z. It is the covariance function of a p-dimensional

second order stochastic process { Z} if, and only if, it is of non-negative definite type.

Proof

The proof results as a generalization of Section 37 of Loève (1978). Without restriction to

generality, it can be supposed that the mean vector is equal to . The proof of the "only if" part

is completed as follows. For every finite subset of Z and every set of p 1 vectors

, we have

Hence :

Conversely, suppose that satisfies (9). We shall build a Gaussian stochastic process such

that

Let us consider

w(u ),u ∈

Σ̂ θk θ̂k γij w(k)cij Σ

Γ(t , s) × ×

Xt;t ∈

0

Sm ×

at = (at1,…,atp)T, t ∈ Sm

0 ≤ var
⎛
⎜
⎝
∑

t ∈ Sm

a t
TXt

⎞
⎟
⎠
= E

⎧
⎨
⎩

⎛
⎜
⎝
∑

t ∈ Sm

a t
TXt

⎞
⎟
⎠
⎛
⎜
⎝
∑

s ∈ Sm

a s
TXs

⎞
⎟
⎠

T⎫
⎬
⎭
.

∑
t ,s ∈ Sm

a t
TΓ(t , s)as ≥ 0. (9)

Γ(t , s)

E(XtXs
T) = Γ(t , s). (10)

exp
⎧
⎨
⎩
−

1
2

∑
t ,s ∈ Sm

a t
TΓ(t , s)as

⎫
⎬
⎭
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as a function of the elements of the vectors By (9), this is the characteristic function

of a normal distribution of pm zero-mean random variables. The normal laws of finite subsets

of random variables among the elements of for are consistent since their law coincides

with the marginal law obtained by setting for the omitted corresponding random variables

. Thus, by Kolmogorov’s fundamental theorem on stochastic processes, there exists a

Gaussian stochastic process { Z} which satisfies (10).

Lemma 4

Let { Z} be the autocovariance matrix function of a zero mean second order stationary

multivariate process { Z}. Let { Z} be a non-negative definite function on Z. Then

{ Z} is the autocovariance matrix function of a second order stationary multivariate

process.

Proof

The process being second order stationary, we have . By the "only if" part of

Lemma 3, for every finite subset of Z and every set of p 1 vectors , , we have

By the "if" part of Lemma 3, { Z} is the autocovariance function of a zero-mean second

order stationary process { Z} , that we may select to be independent of { Z} . The

autocovariance matrix function of { Z} is given by

This completes the proof.

at, t ∈ Sm.

Xt t ∈ Sm

ati ≡ 0

Xti

Xt;t ∈

γ(k);k ∈

Xt;t ∈ w(k);k ∈

w(k)γ(k),k ∈

Γ(t , s) = γ(t − s)

Sm × at t ∈ Sm

∑
t ,s ∈ Sm

a t
Tγ(t − s)as ≥ 0.

w(k);k ∈

Yt;t ∈ Xt;t ∈

YtXt;t ∈

E{YtXtXt + k
T Yt + k} = E{YtYt + k} E{XtXt + k

T } = w(k)γ(k).
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Proof of Theorem 2

Following arguments given by Loève for univariate processes, we show that the matrix function

{ Z} defined by (3) is of non-negative definite type . Let , and

, otherwise. We have

for every subset of Z and every set of p 1 vectors . Hence, by Lemma

4, { Z} is an autocovariance function.

The matrix whose elements are given by (7), and the ’s by (6), is non-negative definite

whatever the process, hence whatever the autocovariance matrix function (k). Replacing by

and (k) by is equivalent to replacing (k) by , which proves the theorem.

3. A consistent estimator of the asymptotic covariance structure

Generalizing Mélard and Roy (1984), we point out a particular weighting scheme which ensures

consistency. In (8), the sum reduces to a finite one and we use the notation to represent a

sum for u going from -n + 1 to n - 1 - k. More precisely, we have

Theorem 5

Let

where R R has the following properties : w is continuous at the origin, such that w(0) = 1,

is bounded, square integrable, and has at most a finite number of discontinuity points. The

Yt = Xt − X , t = 1,…,nC(k),k ∈

Yt = 0

∑
t ,s ∈ Sm

a t
TCt − sa s = ∑

t ,s ∈ Sm

a t
T⎛⎜
⎝

1
n

∑
r = −∞

∞
Yr + sYr + t

T ⎞
⎟
⎠
as

=
1
n

∑
r = −∞

∞
∑

t ,s ∈ Sm

a t
TYr + sYr + t

T as

=
1
n

∑
r = −∞

∞ ⎛
⎜
⎝
∑

t ∈ Sm

a t
TYr + t

⎞
⎟
⎠

2

≥ 0

at = (at1,…,atp)T, t ∈ SmSm ×

w(k)C(k),k ∈

Σ θk

Γ θk

θ̂k γij w(k)cij(k) Γ w(k)C(k)

∑u
*

θ̂k(i , j , l ,m) = ∑
u

* w(ubn)cij(u )w((u + k)bn)clm(u + k),

w : →
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sequence of real numbers is such that 0 and as . Then under

the assumptions of Theorem 1, converges to in the L1-norm sense.

We first prove

Lemma 6

Let

Then,

uniformly in k.

Proof

The proof is based on arguments provided by Mélard and Roy (1984). Let

so that

Hence, is bounded by a sum of terms of the form

where and each sum is carried on some subset of {1, 2, ..., n}. By Isserlis formula

(Priestley, 1981, vol. 1, p. 325), (13) is equal to a sum of three terms

{bn;n ≥ 1} bn → nbn →∞ n →∞

θ̂k(i , j , l ,m) θk(i , j , l ,m)

γ̃ij(k) =
⎛
⎜
⎝
1 −

| k |
n

⎞
⎟
⎠
γij(k), | k | ≤ n − 1. (11)

E[{cij(k) − γ̃ij(k)}
2] = O

⎛
⎜
⎝

1
n
⎞
⎟
⎠
,

c̃ ij(k) =
1
n

∑
t = 1

n − k

XitXj , t + k (12)

cij(k) − c̃ ij(k) = −XiX j

⎛
⎜
⎝
1 +

k
n
⎞
⎟
⎠
+

Xi

n
∑

t = 1

k

Xjt +
X j

n
∑

t = n − k + 1

n

Xit.

E[{cij(k) − c̃ ij(k)} 2]

1

n 4
∑
t1

∑
t2

∑
t3

∑
t4

E{Xi1t1
Xi2t2

Xi3t3
Xi4t4

} (13)

i1,…, i4 ∈ {i , j}
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The first term of (14), for example, is bounded in absolute value by

Using Cauchy-Schwarz inequality, the first factor of (15) is itself bounded by

which is since the series in (6) converges, by hypothesis. Hence (15) is , and also

(14) and (13), by similar arguments. The upper bounds do not depend on k and therefore the

convergence is uniform in k.

On the other hand

using once more Isserlis formula. Let us show that the last expression is uniformly in k.

By Cauchy-Schwarz inequality, the first sum is bounded by

A similar argument holds for the second term. The final result then follows from the inequality

1

n 4
∑
t1

∑
t2

∑
t3

∑
t4

{γi1i2
(t1 − t2)γi3i4

(t3 − t4) + γi1i3
(t1 − t3)γi2i4

(t2 − t4)

+γi1i4
(t1 − t4)γi2i3

(t2 − t3)} . (14)

⎧
⎨
⎩

1

n 2
∑

u = −n + 1

n − 1

(n − | u | ) | γi1i2
(u )|

⎫
⎬
⎭
.
⎧
⎨
⎩

1

n 2
∑

u = −n + 1

n − 1

(n − | u | ) | γi3i4
(u )|

⎫
⎬
⎭
. (15)

1
n

∑
u = −n + 1

n − 1

| γi1i2
(u )| ≤

1
n

⎧
⎨
⎩
(2n − 1) ∑

−∞

∞
γi1i2

2 (u )
⎫
⎬
⎭

1/2

O(n −1/2) O(n −1)

E[{c̃ ij(k) − γ̃ij(k)}
2] =

1

n 2
∑

t1 = 1

n − k

∑
t2 = 1

n − k

E{Xit1
Xj , t1 + kXit2

Xj , t2 + k} − γ̃ij
2(k)

≤
1
n

∑
u = −n + k + 1

n − k − 1

{γij(u + k)γij(k − u ) + γii(u )γjj(u )} ,

O(n −1)

⎢⎢⎢ ∑
u = −n + k + 1

n − k − 1

γij(u + k)γij(k − u )⎥⎥⎥ ≤
⎧
⎨
⎩
∑

u = −∞

∞
γij

2(u + k) ∑
u = −∞

∞
γij

2(k − u )
⎫
⎬
⎭

1/2

= θ0(i , j , i , j).

E[{cij(k) − γ̃ij(k)}
2] ≤ 2(E[{cij(k) − c̃ ij(k)}

2] + E[{c̃ ij(k) − γ̃ij(k)}
2]).
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Proof of Theorem 5

We have to show that

for any k, k 0. Denote . Following arguments from Robinson (1977) and adapted

by Mélard and Roy (1984), we decompose the difference in (16) as

Cauchy-Schwarz inequality implies that

where

It can be shown that each term in the left-hand side of (17) goes to zero as n . By Lemma

6, we have : . The limit of the last sum is

which is finite; hence Similarly, we have The term is bounded by

Further, we have

lim
n →∞

E{| θ̂k(i , j , l ,m) − θk(i , j , l ,m)|} = 0 (16)

≥ wnu = w(ubn)

∑u
* wnuwn ,u + k[{cij(u ) − γ̃ij(u )}clm(u + k) + {clm(u + k) − γ̃lm(u + k)} γ̃ij(u )]

+∑u
*[{wnuwn ,u + k − 1}γ̃ij(u )γ̃lm(u + k)] + ∑u

*[γ̃ij(u )γ̃lm(u + k)] − θk(i , j , l ,m).

E{| θ̂k(i , j , l ,m) − θk(i , j , l ,m)|} ≤ {E(e1)E(e2)}
1/2 + {e3 E(e4)}

1/2 + {e5e6}
1/2 + | e7| ,

(17)

e1 = ∑u
* wnu

2 {cij(u ) − γ̃ij(u )} 2, e2 = ∑u
* wn ,u + k

2 clm
2 (u + k),

e3 = ∑u
* wnu

2 γ̃ij
2(u ), e4 = ∑u

* wn ,u + k
2 {clm(u + k) − γ̃lm(u + k)} 2,

e5 = ∑u
*|wnuwn ,u + k − 1| γ̃ij

2(u ), e6 = ∑u
*|wnuwn ,u + k − 1| γ̃lm

2 (u + k),

e7 = ∑u
*[γ̃ij(u )γ̃lm(u + k)] − θk(i , j , l ,m).

→ ∞

E{e1} ≤ 0(n −1)∑u
* wnu

2 ≤ O(n −1bn
−1)∑u

* wnu
2 bn ∫−∞∞ w 2(z)dz

E{e1} → 0. E{e4} → 0. e3

⎛⎜⎝sup
z ∈ℜ

w 2(z)⎞⎟⎠ ∑u
* γ̃ij

2(u ) ≤ ⎛⎜⎝sup
z ∈ℜ

w 2(z)⎞⎟⎠θ0(i , j , i , j) < ∞.

E{e2} ≤ 2∑* wn ,u + k
2 [E{(clm(u + k) − γ̃lm(u + k))2} + γ̃lm

2 (u + k)] ≤ 2(E{e4} + e3
*) < ∞
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where is a term similar to .

Let r be a fixed integer and write where is the sum of the terms of from -r to r

and the sum of the terms from -n + 1 to -r - 1 and from r + 1 to n - 1 - k. For r, and

tend to 0. Then, by continuity of w and since w(0) = 1, 0 as n . The term

is bounded by

where the two sums can be made arbitrarily small by choosing r sufficiently large, since

is finite. Hence 0 and 0. The proof that 0 is similar. To show that

tends to zero, we will make use of the following classical result on convergent series. For any

sequence of real or complex numbers { Z}, if converges, then

The term is bounded by :

Then, by (18), we have :

and

Thus and the proof is completed.

The result of the present section and Theorem 2 can be summarized as follows.

e3
* e3

e5 = s1 + s2 s1 e5

s2 | u | ≤ ubn

(u + k)bn s1 → →∞ s2

⎛⎜⎝sup
z ∈ℜ

|w(z)| + 1
⎞⎟⎠

2 ⎛⎜⎝ ∑
u = −∞

−r − 1

γij
2(u ) + ∑

u = r + 1

∞
γij

2(u )⎞⎟⎠

θ0(i , j , i , j) s2 → e5 → e6 → e7

∑u = −∞
∞ auau;u ∈

lim
n →∞

∑
u = 1

n ⎛
⎜
⎝
1 −

u
n
⎞
⎟
⎠
au = ∑

u = −∞

∞
au. (18)

| e7|

| ∑u
* γ̃ij(u )γ̃lm(u + k) − ∑u

* γ̃ij(u )γlm(u + k)| +

⎢⎢⎢∑u
* γ̃ij(u )γlm(u + k) − ∑

u = −∞

∞
γij(u )γlm(u + k)⎥⎥⎥ .

lim
n →∞

∑u
* γ̃ij(u )γlm(u + k) = ∑

u = −∞

∞
γij(u )γlm(u + k)

lim
n →∞

∑u
* γ̃ij(u )γ̃lm(u + k) = lim

n →∞
∑u

* γ̃ij(u )γlm(u + k) = ∑
−∞

∞
γij(u )γlm(u + k).

lim
n →∞

| e7| = 0
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Theorem 7

Under the assumptions of Theorems 1 and 5, suppose that the function w is non-negative, and

let the matrix obtained by replacing in , by of Theorem 5 and by w(kbn) .

Then is (i) a non-negative definite, and (ii) a consistent estimator of .

Proof

For each n, the sequence {wnk = w(kbn), k Z} is non-negative definite and Part (i) follows from

Theorem 2. Also, part (ii) follows directly from Theorem 5 and the fact that convergence in

L1-norm implies convergence in probability.

4. Applications

This Section is devoted to several useful applications of the results of the paper.

4.1 The corner method

The corner method (Beguin et al., 1980) is one of the methods used for specifying univariate

autoregressive moving average (ARMA) models (e.g. de Gooijer et al., 1986). It has been

extended partially to cover transfer function models (Hanssens and Liu, 1982). Let us consider

the bivariate case. In order to identify the transfer function relating in function of , we

consider, for i 0 and j 1 the determinant (i,j) of the Toeplitz matrix whose (r,s)-th element is

(i + r - s), which is the estimator of (i,j) built similarly with (i + j - 1). Paesmans (1988)

proved a corner characterization theorem for transfer function models, generalizing the theorem

in Beguin et al. (1980), so that a corner of zeros in the array identifies the orders of the

polynomials in the numerator and denominator of the tranfer function.

For ARMA models, Mareschal and Mélard (1988) developed a fast algorithm for the consistent

estimation of the asymptotic standard error of (i,j), based on results of Mélard and Roy (1987),

Σ̂ Σ θk θ̂k γi j(k) ci j(k)

Σ̂ Σ

∈

X2 X1

≥ ≥ Δ̂

r12 Δ ρ12

Δ

Δ̂



14

improving thereby the potentiallynonconsistent estimator of Beguin et al. (1980). That algorithm

can be generalized (Paesmans 1988) to transfer function models by noting that, as n :

where (i,j) is the derivative of (i,j) with respect to the vector = ( (0),..., (K)) , K = i +

j - 1, and is the asymptotic covariance matrix of the corresponding vector , whose elements

are given by (7). The use of the method of this paper to obtain a consistent nonnegative definite

estimator of ensures that the estimate of (19) will never be negative. Note that the approach

of Hanssens and Liu (1982) lacks a statistical yardstick for comparing the determinants (i,j)

to zero.

4.2 Other specification methods

The last remark can be extended to a large number of specification or identification methods in

time series modeling. Among the few methods which involve a statistical appraisal of the

identification statistics, the unified approach based on the extended sample autocorrelation

function (Tsay and Tiao 1984) is probably the most powerful in the sense that it can cope with

nonstationarity. A crude approximation of n-1 is however used as an approximation of Bartlett’s

formula, although a study is said to be needed on the subject. Jeon and Park (1986) go a little

further in this respect but restrict themselves to Bartlett’s formula for moving average models.

The results of Mélard and Roy (1984) can be exploited in these contexts to provide more accurate

significance limits.

For multivariate series, the most usual procedure in applied work consists in displaying

cross-correlation matrices in terms of indicator symbols (Tiao and Box, 1981): a plus sign is

used to indicate a value greater than 2n-1/2, a minus sign a value less than -2n-1/2 and a dot to

indicate a value between -2n-1/2 and 2n-1/2. Athough the authors do not interpret these indicator

symbols in the sense of formal significance tests, standard error estimates better suited than n-1/2

can be a bonus. Davies et al. (1985) described a procedure based on numerical integration for

→∞

var(Δ̂(i , j)) = dT(i , j)Σd (i , j), (19)

Td Δ ρ ρ12 ρ12

Σ r

Σ̂ Σ

Δ̂
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the computation of the exact moments of the sample correlation matrix at lag k, for moving

average processes only. Mélard and Roy (1987) have argued, in the univariate case, in favor of

model-free standard errors which can be used to implement confidence regions and tests for one

or several lags. The latter approach can easily be extended to the multivariate case, using the

results of this paper.

4.3 Vector autocorrelation

By analogy to Escoufier (1973) who introduced a coefficient of correlation between two random

vectors, Cléroux and Roy (1987) proposed the following coefficient of vector autocorrelation

at lag k for a multivariate second order stationary process:

where tr{•} denotes the trace operator. A consistent estimator of (k) is given by

The coefficients of vector autocorrelation provide a much simpler image of the correlation

structure of a multivariate time series than the correlation matrices (k). They can also serve to

test the hypothesis of white noise and to detect nonzero lag autocorrelations.

However, the coefficients defined by (20) and (21) are not fully scale invariant. Alternate

coefficients of vector autocorrelation (k) and (k) that are scale invariant are obtained by

replacing in (20) and (21) (k) and (k) by (k) and (k), respectively. A test for (k) = ( (k)

= 0) requires a non-negative definite and consistent estimator of the asymptotic covariance

structure of the elements of (k). Similarly, when testing the hypothesis of white noise against

autocorrelation at a given lag, the power of the test based on (k) can be evaluated as long as

we have a suitable estimator of the asymptotic covariance structure of the elements of (k) and

(0).

λ(k) =
tr{Γ(k)Γ(k)T}

tr{Γ(0)2}
, k ∈ Z , (20)

λ

λ̂(k) =
tr{C(k)C(k)T}

tr{C(0)2}
, | k | < n . (21)

R

δ δ̂

Γ C ρ R ρ 0 δ

R

δ̂

R

R
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4.4 Test of homogeneity

Mélard and Roy (1984) have already considered testing the equality of the autocovariances of

two univariate time series, using a quadratic form statistic of the form

where is the difference between the vectors = for j = 1, 2, and is a

pooled estimator of the asymptotic covariance matrices of both vectors. A test of homogeneity

and stability was derived from that work (Mélard and Roy, 1983). The method has been extended

to a sequential procedure for testing the homogeneity across time of a sequence of independent

time series (Barone and Mélard, 1989). Using the results of this paper, the previous method has

been extended to testing the equality of the serial correlations (instead of covariances) of

multivariate (instead of univariate) time series.

4.5 Test of independence

Haugh (1976) proposed a procedure to test the independence between two time series and

. First, the individual series are filtered with appropriate univariate ARMA models, leading

to residual series and , respectively. Second, the (2K + 1) residual cross-correlations (k),

k = -K, -K + 1, ..., K, are computed. To test (k) = 0 for all k, the following test statistic is used:

An alternative procedure aimed at being more powerful for certain alternatives was proposed

by Koch and Yang (1986). Like the method of Haugh, it can suffer from the approximation

induced by preliminary filtering. Using the method described in this paper, the filtering step can

be avoided. Indeed, let us consider the statistic

where the vector is composed of (-K), (-K + 1), ..., (K). Under the null hypothesis, Q

is distributed asymptotically as a chi square random variable with 2K + 1 degrees of freedom.

zTΣ̂−1z ,

(c(0),c(1),…,c(K))Tz c j Σ̂

X1t

X2t

u1t u2t r̃ 12

ρ12

n ∑
k = −K

K

r̃ 12
2 (k) ⋅

Q = nrTΣ̂−1r , (22)

r r12 r12 r12
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The method can be further extended to testing the independence between two sets of variables.

Let be partitioned into and , with q and p - q variables respectively. To test the null

hypothesis (k) = for all k, we consider the q(p - q) 1 vector (k) = vec (k) and the vector

composed of (-K), (-K + 1), ..., (K). The test statistic has then the same form as (22), but

the number of degrees of freedom is now q(p - q)(2K + 1). Note that, following Mareschal and

Mélard (1988), it is recommended to use a pseudo-inversion algorithm like the one of Healy

(1968), in order to avoid numerical problems due to near singularity of the covariance matrix,

in the case of highly autocorrelated time series. The number of degrees of freedom is then

adjusted appropriately.
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