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ABSTRACT

‘The evolutionary spectrum theory is re-examined and generalized.
First, a more general definition of a spectral density matrix is
given for a multivariate (purely non-deterministic) nonstationary
process. On the basis of that definition, the coherence between

two components is time-dependent like tha other spectral functions.
Several examples siiow that these functions can be easily computed.
 Statistical estimation of the spectral density matrix is considered.
In particular a new upper bound is given for the bias of the estima-
tors and a simple approximation for the variance. A comparison with
the evolutionary spectrum theory is performed. An illustration based
on artificial data shows that the spectral functions can be estimated.
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1. INTROCUCTION

This paper consists in a re-examination of the evolutionary spectrum theory
worked out by Priestley (1965, 1966) and his colleagues (Priestley and Tong, 1873,
Subba Rao and Tong, 1972,.and several other papers). Two aspects are considered :
the class of processes under study and the properties of the estimators.

Spectral analysis for nonstationary processes can be used in a large variety
of domains : speech and vibrations, meteorology, oceanography, geophysics, eco-
nomics, demography, ecology and others. The field of application of the present
paper isbecoming larger every day because of the huge data bases maintained by firms
and public organizations and because of the enormous amount of data collected by
cheap microprocessors {(fluids, energy, pollution, weather, health, e.g. EEG and
ECG recordings). The time series data in certain domains are now longer and more
reliable. The assumption of stationarity has been previously required because of
the short Tength of the series and the low computing capability. In the time do-
main, efficient recursive estimation is now routine (e.g. Ljung and Soderstrom,
1983). 1In the frequency domain an empirical way of dealing with spectral analy-
sis of nonstationary processes has been advocated by Granger and Hatanaka (1965),
Bendat and Piersol (1966}, Brillinger and Hatanaka (1968), Otnes and Enochson
(1972), Harper et al (1974) and others, There is however a need for a more ri-
gorous treatment of nonstationarity by first defining time-dependent spectral con-
cepts, and then estimating the spectral functions from the data. This has been
the major objective of Priestley (1965) and his followers. The resuiting evolu-
tionary spectrum theory is nicely summarized in Priestley (1981, chapter 11)
where the reader can also find references to some other approaches. Grenier (1983)
and Kitagawa and Gersch (1985) propose alternative approaches and provide recent
references. Martin (1981) has extended Priestley's results to discrete spectra.

In the evolutionary spectrum theory, the attention is restricted to a class
of processes called oscillatory processes. Such a process admits a multitude of
oscillatory representations ("family of oscillatory functions" in the original
terminology).! To each of these representations corresponds a spectrum. The
spectral estimates are obtained by complex demodulation and are supposed to approach




more closely the spectrum associated to asn-called natural representation. The
definition of natural representation relies on taking & supremum over the mul-
titude of representations. That task has never been undertaksn except by Mélard
(1985),0n a process which is non zero at only two points. In this paper, instead
of considering a multitude of representations,we shall restrict ourselves to the
one that can be obtained most easily : the innovation or Wold-Cramér repre-
sentation , as Mélard (1975), Tjdstheim (1976) and others have done in the uni-
variate case. We shall also consider multivariate processes. A feature of the
multivariate evolutionary spectrum theory is that the coherence of a bivariate
process does not vary with time. The other spectral functions are time-depen-
dent, not the coherence. That problem will be solved by using a wider class of
processes than the one of Priestley and Tong (1975). Priestley (1965) assumes
the existence of and some properties for a certain Fourier transform. We shall
make the same assumption in order to guarantee the physical interpretation of
the spectrum and the concept of frequency but other conditions can perhaps be
stated. - The conditions imposed by Priestley imply that the variange of the pro-

cess is bounded.

Once the various spectral functions have been properly defined, there re-
mains the statistical problem of estimating them at some frequencies and at some
time points, by means of a single time series. Hence the properties of the esti-
mators need to be studied. The method of complex demodulation is known to pro-
vide, in an efficient way, approximate estimates of time-dependent spectral den-
sity functions. We shall derive similar results within the more general framework
stated before and using different data windows for each component of the. process.
Two causes of bias can arise : 1° the bias due to the frequency Teakage, already
present in the spectral estimation of stationary processes (e.g. Priestley 1981,
chapter 7); 2° the bias which is related to nonstationarity of the process. It
is for the latter that we propose some new bounds that are compared to those pro-
vided by the evolutionary spectrum theory. The innovation is important for the
following reason : in order to be able to derive some bounds, Priestley (1965)

restricted the class of processes to define what he calls the characteristic
width of the process. The definition makes use of the knowledge of the process
from - to . On the contrary our bounds only rely on the local behaviour of

the process.
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The paper is organized as follows. In Section 2 we shall provicde defini-
tions for the population spectral functions called evolutive spectra. The evo-
lutive spectral density is simply the evolutionary spectral density associated with

the Wold-Cramér decomposition of the process. These definitions will be illus-
trated on several examples in Section 3 : the non-stationary white noise, the
univariate time-dependent ARMA process, the time-varying regression model and a
bivarijate time-dependent ARMA({1,1) process. The statistical problem is dealt with
in Section 4. A comparison with the evolutionary spectrum theory on some selected
points is the object of Section 5. An artificial example adapted from Kiehm and
Melard (1982) will be treated in Section 6. It will show that the concepts defi-
ned in this paper can be effectively used. Exampies on real data sets would not
illustrate our argument as well. The interested reader is referred to Grenier
(1983) and Kitagawa and Gersch (1985) for other examples. It should be emphasized
that, except at the level of some basic definitions, the whole evolutignary spectrum
theory remains unchanged. Consequently, all the results obtained are still valid
under the alternative assumptions proposed here, with some minor modifications.




2. NOTATIONS AND DEFINITIONS

Let (;t; t € ZZ) be a (non-stationary) p-variate second-order, purely non-

deterministic stochastic process with (constant) maximum rank. Without restriction

to generality, we suppose that E(gt) = 0. The process can be considered in the
Z
be the

Hilbert space spanned by all its components Zi,t’ for all E. Let Hf
subspace spanned by ail the components up to time t, and Pf the orthogonal pro-
jection operator onto H%. The innovation T, is defined by T, = Z, - P%Ll(zt)’

It is known (Cramér, 1961) that all pairs of components of 3& and E;, s # t, are
orthogonal. Llet 5, be the covariance matrix of Ei. There exists a one-
sided infinite moving average representation or Wold-Cramér decomposition of the

process

NIN ' (1)
whose convergence in the mean is guaranteed, implying that

S, . U1, <o

I Yy 245 Ly

j=0
(T denotes transposition, * denotes conjugate transposition).
It is assumed that §_t has maximum rank for each t. e consider the unique positive
definite square root of matrix_gt,_§%/2, and define the normalized innovations

By = §£1/2 Et so that (1) can be rewritten as
@ . o~ (12
Tp 7 D)oy ey MR Mgyt s S0y (2)
where
¢ T
Voo b, <eo, (3
oo g L )

Note that Lts the orthenormal principal components of'zt, is a p-variate (statio-
nary} white noise process with the identity matrix I as covariance matrix.Because of
the assumption made onlgt, which slightly restricts the class of processes under
consideration, the representations (1) and (2) are uniquely determined. They will




be used to yield a unique definition of spectral functions associated with the p-va-

riate process, after some other concepts are recalled,.

let (Z(B); B €%F), where &¢ is the Borel class on ]-m, ] , be a p-variate
second order random complex measure (Rozanov, 1967) and denote
E {Z(Bl) z*(Bz)} = _u_(B1 n 82) its pxp covariance matrix, with Bl’ 82 € &. If

we assume that each measure u;. of u is absolutely continuous {with respect to

iJ
the Lebesgue measure), we simply write

E {E(dm) g*(dw)} = f(w) dw. (4)
It is well known that the stochastic integral representation

T .
z, - Jr_“ et F(dw)

provides the suitable definitions and interpretations of spectral concepts for
second-order stationary processes. Assuming absolute continuity of p, f(w) is
then the spectral density matrix of process gt.

Similarly, the following representation

m
z, - J_n 8¢ (0) z(do) (5)

(Karhunen, 1947), where the elements ¢1j(m) of ﬁt(w) are square-integrable with
respect to Ms5 has been used in several attempts to extend spectral functions
to non-stationary processes. However (5) is not unique without assumptions on
it(”)' A simple set of restrictions will now be proposed in order to extend the

spectral concepts.

The normalized innovation process ¢ admits a stochastic integral represen-

tation

- =J“ eiwt 2(dw) (6)

&
t -0

where E {E(d@) gﬁ(dw)} = (2n)'1_£. Consequently, by putting (6) in (2), we obtain




6.
T 5wt
Z, = j-ne _A_t(u) Z(dw) (7)
where all the elements of
Aoy = £ e 19y 8
t 520 23 (&)

are square-integrable with respect to the Lebesgue measure by {(3) and the Riesz-
Fisher theorem. The covariance function of the process is thus represented by

-1 [T Jle(tes) ,

_;t(w) &;(‘-‘3) dw, (9)

) et [

which justifies, by analogy to the stationary case, the following definitions :

- The Hermitian positive definite matrix

£o(0) = (20)7F Agle) Ap(w) (10)

is called the evolutive spectral density function provided that scme condition
on At(w) are satisfied. In some sense, this is a special case of Priestiey's
evolutionary spectral density matrix in the case of univariate processes. This

point will be made clearer in Section 5. In the univariate case, the definition

(10) was proposed independently by Tjdstheim (1976) and M&lard (1975) (see the
reference in Huyberechts, 1975). However, it had also appeared earlier in a less
precise form in Granger and Hatanaka (1974), Miller (1969}, Meyer (1972), Subba
Rao and Tong (1974), Bowden (1975). In the multivariate case, the defintion is

due to De Schutter-Herteleer (1976, 1977).
The dummy variable w will sometimes be called a frequency, by an abuse of

language. Because

n
e zf - e [ age) aGe) s, (1)

jt(u) dw reflects the infinitesimal contribution of w to the covariance function

of the process at time t.

th . j
- The j~ diagonal element of.ft(w), f%(m), is the (real) evolutive spectral den-

sity of the component Zt in the multivariate process Zt.

J




- The (j,k)th element (j#k) of f (.) f%k( ), 1s the (complex) cross-spectrum

between components Z,. and Z,, in the multivariate process Z,; furthermore
ik K t sk " Kt 7 [ ik
f% (w) = {ft (w )} . We denote cy (w) = ZHe {’ (w) ¢ and at (w) =L//é 1ft (u)}.
ik f“( )
- Ct (w) = {%3 11/2 is the complex coherence between components th and
Zig
- Kt {w —_— (12)

f1(w) fil(o)

is the (square-modulus) coherence between components th and Ztk‘ [t can be
interpreted as a squared correlation coefficient between th and Ztk at w.

1£3K () |
(0) = ———

fi(w)
t
as the regression coefficient of th with respect to Ztk at the point (t,w).

jk . . .
- R% is the gain of th with respect to Ztk' It can be interpreted

ik S ik, (1
- w% (w) = tan {q%k(u)/c%k(w)} is the phase of Z_. with respect to Ztk' It can

tJ
be interpreted as a delay, around time t, between the infinitesimal contribu-
tions of ij and ztk at w, expressed in the same unit as w.

The properties of these spectral functions (Loynes, 1968) can be studied in
the same way as Mélard (1978) for the univariate case. Furthermore ICJ () <
and 0 s:K%k(m) < 1. Three features of these definitions must be po1nted out :

1° contrarily to the stationary case, W has in the strict sense no physical inter-
pretation as a frequency. If suitable conditions on At(m) imply that it is a
slowly varying function of time,such as those of Priestley (1965) or alternative
conditions, an approximate interpretation of w as a dominant frequency can be
entertained, see the discussion in Priestley (1965, p. 207). We shall always

assume that these conditions are fulfilled.




c® jt@g) is not the Fourier transform of anything making sense; recall that the
covariance function {9) depends on t and s, not just t-s;

3% all the spectral functions are defined with respect to the multivariate process;
for instance f%(m) does not coincide with the evclutive spectral density of
the univariate process (th; t € Z), except in special cases (see De Schutter-

Herteleer, 1976).

Obviously, the fact that these properties hold in the stationary case is
a consequence of the simplifying assumption of stationarity.

That procedure can he reproached with entirely relying upon a time-
domain representation. However, using results from Hallin (1984, 1986) for pure
moving average processes and from Hallin and Ingenbleek (1983) for pure autore-
gressive processes, it is possible to derive such a representation simply from the
knowledge of the covariance function.




3. EXAMPLES

The examples shown in this Section will prove that the theory of Section 2

is extremely simple to apply.

Example 1 - The non-stationary white noise process

Let (Xt; t € Z) be a sequence of uncorrelated random variables with mean O
and variance 1, and (gt; t € Z) a finite positive non-random function of time.
Then the process (Zt = 9 Xt; t € Z)Z is a purely non-deterministic process with
evolutive spectral density ft(m) = gt/(Zn), by direct application of the defini-

tion in Section 2.

Example 2 - The evolutive ARMA process

Let (Zt; t € Z) be a purely non-deterministic process with innovations

€robes where var(et) = 1, satisfying the equaticn

. 2 8, &, -
to't .
J

B MO

£-3 + 1 etjet-j‘
A necessary condition on the coefficients can be found (Hallin, 1978, Mé&lard
1985a) in order that the process be purely non-deterministic. Contrary to
what is frequently stated { ~ Subbg Rao, 1970 p. 313 and more

recently Grenier, 1983 p. 908) the evolutive spectral density is not

g, - X 8

to -1 t3

1
2n

For instance, for the first order autoregressive process

Zy = 0p Lo+ 8y &y




we have the following Wold-Cramér decomposition

AT I S LTS B AT SE LSE LTS S

-1 . i 21 2
ft(w) = (2m) [et * 9,84 1 8 @y 048p.1084.0 € vy oo

instead of
2
] %t |
?F Il _ ¢t e]w12

With the Tatter formula, (11) is not fulfilled since

b -t (h 2
(@) - 57 ) o)
t J-=0 k=o t'k t'J

Note also that the necessary condition mentioned above is

- . 2 .2

RN S REERILT S FUD R
J=1

and that the condition that al?l [¢t|'< 1 in the case where 8eo = 1 (Abdrabbo and

Priestley, 1967) is too restrictive,

Example 3 - Thg simple regression model with time-varying regression coefficient

We consider the model Yt = tht + dtst where (et; t € Z)is a sequence of
uncorrelated random variables with mean 0 and variance 1, (Xt; t € Z)is a pu-
rely non-deterministic process with normalized innovations £y and Wold-Cramér

decomposition

X, = & y .8 ..

t 520 tivt-J
We assume also that Xt is uncorrelated with £cs for all t, s € Z and that dt
and Bt are finite non-random functions of time. We want to study the bivariate
process (gt; t € Z)\uithﬂgt = (Xt,Yt)T. Using the notations of Section 2 and

. Z _ X 3 Z _ pX
the direct sum operator ® , we have HE = Ht & Ht and PT~1(Xt) = Pt-l(xt) and




11.

Z _ X
Pf-l(Yt) = By Pt_l(xt). Hence
. T ‘32 3 !‘~2
~ ( "to "t ) s = <"to t "to ) )
2+ T N ) t 22 2 .2
By Vo St * It ft Bt Yo Py tto * 9t
and
.2 2
1/2 Vo * Yo e Pt Yo
Sg TVt 5. 2 62 2 4 a2, y ’
t Yto t Yto T St T Yeo %t
where
_f.2 2 21-1/2
Yt * {Bt Vgo * (o * 4t } : (13)
The Wold~Cramér decomposition of Zt is written
~ tJ ~
Z, =g, + Z <' ) Lo
Tt e g0 s 0 £
or, in terms of the normalized innovations g, !
2 2
=y (’wto t ¥t dt Bt Yto c
=t t 2 2 2 2 =t
Bt Yto By Vg * 9t ¥y
+ ;:o v W (wt'j’o i dt‘j Bt-j Yt-3,0 ) .
Cy o ted Tt ! =t-j*
3=1 Belheg,0 * Yeeg) BePeoj ¥-3,0
Consequently
All(o) = ; v v, . {u +d, ) Y
t jmo b3 Yt-3,0 7 Tt
12 ~Tw]



21 11
Ap(o) = 8 ALT(0) = vy wy, dy By
22 _ 12 . ‘
At (w) Bt At (w) + 't dt(pto + dt),
Then
11 2 12 2
ft (@) = tAt (L)1° + lAt {w)]

12 21% 11 i2
Ft (w) = ft (L) = [}t ft (w) + 2 dt {(wto + dt) At (@) - li’to Bt Ail(w)}

1]

22 2 .11 2 ' 12
foo{w) =B ft (w) + dy +2 Vi dt By {(wto + dt) Re {At (w)}
-y, B, Re {All(w)}J (14)
to "t t !
To compute the coherence (12) we need
2
|

2 2 2., 12, .. 11
Fe 201 = o) 72 G0) - a2 fllw) + o8 dd i(uy, + d,) ATE(W) VioBihy (w)

= i) 15 ) - ()

by using (13), where we have let

12, 2
£2(0) = v a2 [(v,, + d) ATH(0) + beo By AL2(w) |2

t t 9%
Hence
fi ()
Kif(w) = 1 - t

f%l(w) fiz(w)

Since K%z(m) depends on t, the process is not oscillatory.

In the stationary case, wtj a &i for all j, Bt = R and dt = d, for all t,

and if wedefine

Pw) = X wj e
J=0

jw]

the preceding formulae are specialized as follows :




13.

All(w) = v(wo + d) ¥(w)
Al2(0) = vy, B (),
where

N {32 ve + (Vg + d)2}'1 5

o) = o]

£22(0) = 8% o) + d°

(o) = 2 6 1o, + )2 w(o) + 8202 w1 = & Ju(o)|?
2

1? d

K s 1 -

) f="(w)

in agreement with e.q. Priestley (1981, chapter 9).

This example is due to De Schutter-Herteleer (1976). A generalization to
the model

Yt =

4
“

B

S
+ Z
0 =

. ) 8, . .
t3 Xt'J J 0 t3 Et'J

™M

where Xt is a moving average process with time-dependent coefficients is considered

by M&lard and Wybouw (1984).

Example 4 - An evolutive bivariate ARMA process

Let's consider the bivariate ARMA(1,1) process with time-dependent coeffi-

cients
O A R TR T |

where the z, are the normalized innovations, ¢, and 8, are 2x2 matrices with time-
=t =t -t

dependent elements, and




I~

[

Appropriate conditions on 2, and 2, are given by Hallin (1978) and Mé&lard (1985} .
P 2t =t

It is easily seen that

A - =
it—k> (#4541 7 Stege)s 372

On the other hand

v e
5072 = (2 v, 72 ( t ot ) with v, = 1+ (1 - 09)Y/2.
- vVt

Given these preliminaries, it(w) can be calculated in the same way as before.
In particular, if Oy =8 = 0, then it(w) = (211)'I it and Kt(w) = pi.
This very simple process has a time-dependent coherence. Therefore it is not an
oscillatory process, according to the definition proposed by Priestley and Tong
(1975). We shall comment on this in Section 5.
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4, THE STATISTICAL ESTIMATION OF EVOLUTIVE SPECTRA

Granger (1964), Priestley (1965) and Brillinger and Hatanaka {1969) have
described the estimation method which makes use of complex demodulation {e.q.
Priestley 1981, chapter 11). Priestley (1955, 1966) and Subba Rao and Tong
(1972) have given approximate results on the bias and the covariance matrix of
the estimators. Goodman and Dubman (1969} and Droesbeke (1977) have attempted
to provide asymptotic distributions. Our contribution is new by the following
aspects : 1° each component will be demodulated using the most appropriate fil-
ter, not necessarily the same one for all components; 2° we'shall give a new
bound for the bias of the estimators; 3° some computational aspects will be
emphasized, especially in the formula for the approximate variances.

Let us consider the estimation of a component f%k(w) of_jt(w) at time t =
and in a band centered on w = A. We have a realization (gt; t € T) of the
process, where the interval of observation is T = {1, ..., n}, say. For the
j?h component of‘gt we select a Tow-pass symmetric filter with coefficients
gJ such @hat : 1° gu =0, u¢g U » where UJ is a set of integers surrounding O,
and 27 gﬂ = gfu, with u, -u € UJ For example, the g can be defined by the
product of convolution of several simple moving averages. We define

oy gz

uey.,
J

%-u o~ TA{t-u} (15)

For the components (j,k) of Zt’ we select a Tow-pass filter with coefficients
v%k such that ka 0, m¢g MJk’ where HJk is a set of integers surrounding O.

We define

A-k . *
500 =y T k23 () 2% (), (16)
J' .

where the factor ij will be determined later.

\le shall need the following assumption : for each t, Agk(u) is a bounded
function of w, Let T = Uj K {t-m; m € Mjk}. Consider the smallest non-negative

constant BJk such that




k (17)

for all u € U » L ET oY €] -m, n}. 1% should be noted that the Bik's provide

bounds on the non- stat1onar1ty of the process around time r (Mélard, 1978).
In particular, if Ajk(m) does not depend on t in T , we have 8Jk = 0. Let
BJ = max, {BJk}. Ye introduce the following notat1ons :

; (UEU.IUHQ‘&I)-I

J

o
"

ik i [,k ik -ist
r% (0,8) = L N {A%“u(w) - A% (w)} e”10%, (18)
UEUj

Both b and b' are related to the "width" of the filter g . The following upper
bound of (18) for t € T , will be used :
ir

ooy < i 3K < g
iw,0)] {uguj 31 ful} 8% <edsm,. (19)

By substituting(7) in (15), we obtain

. p n . . N
Jryy = [ Je j2 iwea)t
Zt(k) = zfl J-H{Gj(w-k) Ay (w) + ry (u,mwk)} e (w-2) zi(du).
Hence, with the notation Ujk = Uj y Uk’ we have similarly to £q. ( ) of Priestley
(1865) :
Iy 2%l o SN 3k, .
E {Zt(A) Zt (A)} = \ugu 9, gu) j ij(w)ft (Aw)dw + I+ 1, + 1 (20)
ik B
where




17.

and for 12 an expression simiiar to Il’ J being interchanced with k.

We can bound |11| by using (19), Schwarz inequality, the fact that Gj(w) is
real and periodic with period 2r, Parseval's identity and (11) :

L (" 6. (o ; pdt )1} (Kb, ) d
<4z [ tegonl {2 o) el @

vz (" 12 [ e
b ) [ feaf do o E gt ] “]
= p1/2(8%/0, bY) {var zfz)}l/2 . 21)
Similarly
11,0 < p(ed B0 b, (22

Going back to (15), we see that

ad 3 i T j

e (5 0) ng (2 o) o) = R [ o) HR ) do vias}.  (23)
T R uel,, 0 T men, I 3K m

] ]

In order that %ik(k) be an estimate of averaged values of f%k(w) around
t=7and w =21, the sum of weights should be 1. Given (20), there remains to
impose that

. . -1
z wgk =1 and H*k = ( b2 gﬂ 95)
' o .
mEMjk UEUjk
so that the first term of (23) becomes
JL ik
row j (0) 35 (ar0). (24)

-
me! Ijk




p—
g}

Besides the bias has the following upper bound, derived from (21-22)

(L1/2 k . i . Rd oy oy ] oK -
ij 1p / [(BT/b bj) vi + (Bi/bjbk) VT} +p (Bi Br/bjbk)} (25)
where
: . 1/2
! .
Vi = sup ivar(zi)}

t€1'

For a stationary process, AJ (w) defined by (8) does not depend on t. Hence
BJ = Bk 0, and (25) is equa1 to zero,

In the following discussion, it will be assumed that all the components are

analyzed by us1ng the same filters, hence U, =U., = U, M, =M, gJ =
K Ko ek u
W' = W Gj s) = G{w), jk(m) = Glw), b = b, k = bj =b for all j and k,

Furthermore, (24) and (25) can be written respectively :

? m ik
'S T w Blo) #7° () do, (26)
meM T J'-rr “-m
p1/2 (85 w3+ 83 WK (or/b) + p 8Y 8K (b))

For a non-stationary process, B“ # 0 in general. The bias as well as the
quality of approximation of f“ (A) reached by (26) will depend mainly on the form
of the coefficients 9, If E(-) is highly concentrated in the region of 0, so
that the degree of resolution in the frequency domain is high, then the ratio
b'/b will be relatively large, suggesting a certain amount of bias due to non-
stationarity and low resolution in the time domain. Conversely, if the resolu-
tion in the fregquency domain is lTow, the resolution in the time domain will be
higher, This is the uncertainty principle given by Priestley (1965).

Priestley {1966) has obtained an approximate formula for the variance of
the evolutionary spectrum estimator within the framework of semi-stationary process.
Subba Rao and Tong (15972) have generalized these results to multivariate processes.
The derivation is heuristic. It can be adapted to the evolutive spectral densi-
ty function ET(A) using a unique modification. The assumptions are :

(a) (Zt; t € Z) is a process with the same first four moments as a Gaussian

process;




(b) all the functions Gj(w) are more concentrated around w = 0 than the
A‘%k(u) are;
(c} Tlet

ik ~jum
WY oe ;

'.-'.’.k((a) = I o ;

mEMJ.k |
it is assumed that all the functions wjk(u) are more concentrated around
w = 0 than the Gj(“) are;
(d) the matrices 5%fm(u) do™rio vary too much when m € My» forall teT.

The last assumption is invoked at one place in the derivation where the Fourier-
Stieltjes transform of At(w) was used by Priestley (1966, p. 233). Its role is
to support approximations like

2 2 5k ik iw'{m-m'
A L Gl LT AT M~ gl g 1?
Jk Jk
The final approximations give
var {%i(k)} ~ ij {fi(l)}z
.: L j
o B} 2 [ e (S} - )
-s L j
e ) =S [ o - e - oo
cov {qgk(k), aik(k)} ~ Lk Cik(k) qik(l), e
where
k12 {, ] ky 12
LmEM {w% } ] [uéu {(QJ "9 )“} ]
™Mk ik I x g J ok
ik Jz el [ ky2 T B S Sy
(2n) [z (9)) ]] L (g,) ] "k
UEUJ- "UEUk
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Note that these formulae are computationnally more convenient than those given

by Priestley (1966) and Subba Rao and Tong (1972), which involved several inte-
grals. Less efficient but equivalent formulae were used by De Schutter-Herteleer
(1976, 1977) who showed through Monte Carlo experiments that they are more accurate
than could have been feared because of the numerous approximations leading to (27).
When two different time points 3 and T, (or two different frequencies M and Az)

are considered, not too close to each other, the covariance between two estimators,

e.qg.

cov {%il(l)s T‘:iz(l)} {or cov {%i(ll)’ %i(kz)})

is approximately equal to zero.
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5. COMPARISON WITH THE EVCLUTIONARY SPECTRUM THEORY

The comparison between the approach described in Sections 2 and 4 and the
evolutionary spectrum theory can be made at two levels : the assumptions about
the class of processes and the bounds of the bias due to nonstationarity. e
shall first explain why the restrictions put in the definition of an oscillatory
process lead to a concept of coherence which is time invariant and why the evolu-

tive coherence (12) can be time-varying.

Let consider (4) and (5) in the following special case :

1° the measures Hik are absolutely continuous;

2° f {w) is a full rank pxp matrix almost everywhere;

3° Et(w) = exp(iwt) gt(m), where gt(m) is a diagonal matrix whose elements e%(m)

are square-integrable with respect to the Lebesgue measure.

Almost everywhere in J-m,n], f(w) is a Hermitian positive definite matrix with
elements ka(w), so that we can define g(w) = {f(u)}lfz and z(dw)

(2m)" Y2 g7Hw) F(dw). MNote that

l.l-

e {za) 22| = (2m)7h g ) £l 87w = (o)

The stochastic integral representation of the process is thus

m .

zy = e[ €t g 0) gl z(ew) (28)
- |

or (8) where we have let 5t(m) = (211)1/2 gt(u)_g(u). In accordance with (10) we

define

[ROEFROEIOENSE

. ] * ] [ . + . » .
For instance fik(m) = eg(w) ei {w) ka(m). This is precisely the definition of the

cross-spectral density given by Priestley and Tong (1973, Eqs (4.4)-(4.8)). In
this case




L2
K‘jk(w - !f‘]k(w)]
¢ £33 () £

(o)

which is actually time-invariant. The reason is that ét(w) depends on t through
a diagonal matrix factor. The more general definition (8) makes use of a matrix
Et(m) without this restrictive property, although f(w) is replaced by a scalar
matrix. A good illustration of the restrictions induced by (28) is given by
Examples 3 and 4 of Section 2. Clearly, ﬂt(m) cannot be put under the form
(Zn)l/z.gt(w)_g(w) where_gt(m) is diagonal, and, as an obvious consequence, the

coherence is time-dependent.

Another aspect of the evolutionary spectrum theory are the assumptions made
on At(w) in order to express that it is a slowly-varying function of time. Res-
tricting ourselves to univariate processes for thesake of clear exposition,a gene-
ral representation(5)is firstassumed such that ¢t(w) = exp(iut) At(w) and At(w),
as a function of t, admits a Fourier-Stieltjes transform Dw(e) such that
]Dw(de)[ has an absolute maximum at & = 0, The characteristic width of At(w)

is then defined by

T (29)

.1
B(A) = [sup J o] [Dw(de)l] : .

-
An oscillatory process is termed semi-stationary if there exists at least one
such function At(w). There may exist many others, each inducing a different
integral representation (5) and a different spectral density function of the
same form as (10). A so-called natural representation is characterized by a
function Aﬁ(w) such that B(AN) reaches (or is arbitrarily close to) the supremun
BZ of B{A) over all functions At(m) with the properties mentioned above: For an
example of a derivation of Bz, the characteristic width of the process, we

refer the reader to Mé&lard (198%b).

It should be noted that the assumptions and definitions, such as (29}, are
ad hoc. Instead of the integral of |3] fDm[de)[ we could have used le]zﬁ)m(de)l
for instance. It was shown by Mélard (1975) that the results are simpler.
Priestley (1965, p. 212) admits that there are various ways of defining a slowly
varying function. In order to guarantee the interpretation of the spectrum we
shall assume that such a condition holds even if we do not use that assumption

explicitely.
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Priestley (1965, 1966) argues that, among the multiple spectral density
functions, the estimation procedure leads automatically to the evolutionary
spectrum with respect to the natural representation, with characteristic width
BZ‘ Indeed, the expression he has found for an upper bound of the bias is pro-
portional to {B(A)}'l. Clearly that bound is minimized when the natural repre-
sentation is used.Before going any further,it should be pointed out that we
cannot rely on properties of convergence. The best we can do is to evaluate an
upper bound of the bias (Priestiey, 1966) but the bias itself cannot be determi-
ned and it cannot be made smaller by taking longer realizations. Let ff(x) be the
spectrum assaciated with the natural representation and fs(l),the evolutive
spectrum, associated to the Wold-Cramér decomposition. First, it is not because
an upper bound of bE(A) = E {[?T(k) - fﬁ(x)]} is smaller than an upper bound of
bS(r) = E (|F_(3) = f5(2)[}, that we can conclude that bf(x) <bE(r). The
smallest upper bound on the bias does not imply the smallest bias. Furthermore there
is no reason for believing that the upper bound based on the characteristic
width is the smallest. Indeed, use is made of the whole behaviour of the process,
from ~= to =, On the contrary, the upper bound obtained in Section 4 is purely
local and does not require know]edgg of the process outside the observation in-
terval [1,n]. It may happen that ng is small but that Bf& is higher, This
means that non-stationarity can be more pronounced aroundkr' than around <.

Since it is practically impossible to compute 8Z exactly except in some simple
cases (Mélard, 1985b) we cannot proceed any further with the comparison without ad-

ditional assumptions.

Suppose that the natural representation exists and coincides with the repre-
sentation induced by the lold-Cramér decomposition. Given that

e 18U L 1 = - ey e7EUN

with n € [0,1}, (17) can be written

[l

Aty ‘o _ia
R y(o) = Ao = 1] ™5™ - 1) o (ee))
-1

]an eift {- jeu exp(-ieun)} D _(ds) ]




Hence we can take B_ = B;l in (17). Presumably there exists a smaller upper
bound which may depend on t, does not use the process from -= to = but reflects
only the amount of non-stationarity around t = ¢, The following exampie will

illustrate the point. Let
e t # 10%

L, =
t { 1000001 &,  t = 104

where {st; t € Z1 is a white noise process, so that

1 ¢ # 10°
4

1000001 t =10

and

.4
D, (de) = (am)™! {5(0) + 108 110 8} de

using Dirac's § function, Then

ity
)™t [T Je] ¢ = 3 165,

6
()" |

fom} - {fﬂ lo] [0 (ds)]| = 10

If we have data in the interval [1,1000], we can take-BT = 0 which results in
an absence of bias due to non-stationarity. Obviously BT <:{B(A)}'l.
Only if we are interested in f.(x) in the neighbourhood of < = 10% must we

take non-stationarity into account. There
5
JAt_u(m) - At(w)l <10

and the bias will be much higher,
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6. JLLUSTRATION

This Section is partly based on Kiehm and Mélard (1381). Let consider two
special cases of the evolutive bivariate ARMA(1,1) process discussed in example 4

of Section 3 :

(’o 0 0.5 0.5
t
- ¥ (_0_1)
0.5 0 -0.5 0.5
0 o) ><05 05)
8, = +
=t \o 0.5 01/ \o.5 0.5

In both cases p, = (2t/401)-1. These relations are used for t such that 1<t < 401.
For t <0, we take the value at t = 1. Since we shall use time series of length

400, values for t = 401 are not needed. Note that (A) is a bivariate non-stationary
white noise so that_ﬁt(m) does not depend on w. The coherence Kt(w) = p% is a
quadratic function of t decreasing from 1 (at t = 0) to O (at t = 200.5), then

-——
we]
o
je-
o
H
¥ o4

|+

{
\

-

increasing to 1 (at t = 401).

For case (B), the theoretical evolutive spectral density function has been
calculated using the Wold-Cramér decomposition (A) and neglecting of the terms

for j =2 500. From that, f%(m), f%(w) and Kiz(w) have been obtained.

One hundred time series of length n = 400 have been generated from the Gaussian
processes (A) and (B), using the algorithm of Marsaglia, Macl aren and Bray (1954)
and the RANF generator of the C.D.C. Cyber system. The method of Section 4 has then
heen applied under the following conditions

40 + 64(i-1),
(i-1)1/6,
95 = (g « g)u, where 9, * Lo

-
[H

wy >
o =t
[H ]




As discussed by Kiehm and Mélard (1981), the estimates of the coherence should

be biased when the true value is close to 0. Therefore, we have estimated the

complex coherence Clz(m) on +he 100 series, computed the arithmetic mean of the esti-

mates ave ‘¢ éz(w) = ave {ctg(w)} + 1 ave fqéz(w)] and taken the square modulus
[ave {Cl“( )‘}2 + [ave (qiz( )3 }2 denoted by 212( ).

Table I contains the values of K%Z(m) and Klz(w) for process (A). Despite

the fact that K%z(m) varies considerably in function of t, it can be estimated fairly
well.

Table II and III refer to process (B). It can be observed that fi( ) varies much

more 1in function of t and w than fl(w) does. Table II shows the va]ues of f2( )
?i(w) = ave {f ( )}, the arithmetic mean of the estimates,and SE £2 ¢(w), the stan-
dard error of the estimates of fg( ) over the simulations. It can be seen that the
estimates are very good in spite of the large variations in function of t and w.
As.indicated by the theory of Section 4, the standard error seem to be proportion-
al to the evolutive spectral density. Here Kiz(w) varies also with respect to w

but the results are as good as before.

These examples show that the theoretical evolutive spectral elements can be
effectively computed from the process and that they can be estimated very well,
even with short, highly nonstationary time series, and also outside the framework
stated by Priestley and Tong (1973). Some other simulation results are renorted
by De Schutter-Herteleer (1976L by Kiehm and Mélard (12%1), and by Mé&lard and

Mybouw (1984).

Table 1 : Values of the true coherence Kiz(m) on the first Tine and the square mo-

dulus of the average of complex coherence estimates K%z( ) on the second

1ine, for process (A).

t 40 104 168 232 296 360

Klz(m), all w 642,234 028 .023 .220 .619

0 608  ,215  ,029 .008 .236 ,510
/6 | .631 .192 .014 .024 .206 .631
2#/6 | .632 .199 .034 .011 .201 .575
3n/6 | .610 .137 .025 .086  .222  .500
4n/6 | .613  .235 .019 015 .163  .590
5r/6 [ .605 .178 .012 ,033 .181 .586
n 591,168 025 .023 .246  .542
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Table I1: Value of the true evolutive density functicn on the first line,

2

process {B).

?t(w) on the second line and

S.E. ft(w) on the third line, for

. ¢ 50 106 168 232 296 360
9 #2u) 19 .64 1.23  1.94 2.5 2.5
() 20 .62 1.39 1.83 2.70  2.19

SE f2(w) (.02) (.08)  (.11) (.15) (.25) (.16)

/6 55 .89 1.3¢  1.82 2.7 2.1l
55 .79 1.37  1.82 2.0  2.01

(.03)  (.05)  (.07) (.11} (.12) (.13)

21/6 1.48  1.44  1.53 1.6 1.77 1.75
1.51  1.39  1.55 1.70 1.58  1.76

(.07)  (.08)  (.08) (.09) (.10) (.11)

3/6 2.62  2.00 1.67 1.55 1.55  1.58
2.94 1.8 1.7 1.69 1.51 1.5

(\19)  (.12)  (.11)  (.09)  (.09)  (.09)

4n/6 3.66 2.4 1,78 1.49  1.43  1.50
3.57  2.33  1.87 1.47 1.3d  1.48

(.20)  (.12)  (.12) (.09) (.08) {(.09)

51 /6 4,37  2.73 1.8 1.5 1.36 1.47
470 2.75  1.86 1.41 1.44  1.50

(.29 (.17)  (L11)  (.09)  (.08)  (.09)

. 462 2.83 1.8 1.43 1.34  1.45
457  2.90  1.82 1.27 1.50  1.55

(.35)  (.26)  (.14) (.12)  (.12) (.13)
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Table IIl:Value of Kéz(u) on the first line and R%z(w) on the second line for

process (B).

w t 40 104 168 232 256 350

0 K12 () 016 .019  .005  .008  .141 554

kel (w) 004 .015  .009 .00l  .172  .497

/6 .537 . 160 .019 016 .158 462

.514 L147 013 .009 .131 442

27/6 .697 .259 .028 .020 .167 .482

673 .231 .027 .004 .123 418

3n/6 .729 .293 .034 026 .220 .590

.680 .187 .020 .062 221 .486

4n/6 .750 .334 .044 .037 307 710

721 .328 .030 .030 .294 .654

5n/6 767 371 .054 .048 .392 .802

.728 .298 031 056 .327 .765

n 774 .385 057 .053 427 .837

716 .300 .050 .045 .404 753
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