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Abstract: We propose a statistical procedure for estimating the asymptotic variances and covari- 
ances of sample autocorrelations from a stationary time series so that confidence regions and tests 
on a finite subset of autocorrelations can be implemented. The corresponding algorithm is 
described. The accuracy of the asymptotic confidence intervals for finite samples is studied by 
Monte Carlo simulations. Further, our method is illustrated with examples from the literature. 
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1. Introduction 

A question that is sometimes addressed in time series analysis is the following: 
given a subset of autocorrelations, are they significantly different from zero, or 
from given values? Routinely the aymptotic standard error of the autocorrelations 
is used, under the assumption of either a white noise or a moving average process. 
More general expressions for variances and covariances of autocorrelations go 
back to Bartlett [3] but rely on the knowledge of the whole autocorrelation 
function. The purposes of this paper are: first, to provide a sound asymptotic 
procedure for estimating these variances and covariances so that confidence 
regions and tests can be implemented; second, to check the validity of the method 
for small samples; third, to illustrate its use. 

Tests and confidence intervals on autocorrelation coefficients are useful both 
at the identification and checking stages of the iterative ARIMA model building 
procedure. For example, at the identification stage, the knowledge of the autocor- 
relation coefficients which are significant can help to specify a more parsimoni- 
ous model. At the checking stage, an alternative way of assessing the adequacy of 
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a fitted model consists in testing whether the sample autocorrelations are compat- 
ible with the theoretical autocorrelation function of that model. 

Let D = { J l , ' " ,  JJ) be the finite set of lags in which we are interested, and 
P = (P J l ' " "  PJ,)' the corresponding vector of autocorrelation coefficients. We 
want either to test the hypothesis H0: p = P0, where P0 is a given J × 1 vector, or 
to determine a confidence region for p. The method described in Section 2 is 
based on a quadratic form in r, the vector of sample autocorrelations associated 
with p. The main difficulty is to obtain a consistent nonnegative definite 
estimator of the covariance matrix of r. Such an estimator for the autocorrela- 
tions is obtained by adapting the method developed by Mrlard and Roy [12,13] 
for the autocovariances. The special case J = 1 was handled by Robinson [15] in 
the time domain and by Brillinger [5] in the frequency domain. 

The theoretical aspects of our method are described in Section 2. The al- 
gorithm is given in Section 3. In Section 4, results from Monte Carlo simulations 
are discussed. The purpose is to study the accuracy of the asymptotic nonpara- 
metric (in the sense model-free) confidence intervals for finite samples. These 
intervals are also compared with the exact asymptotic confidence intervals and 
with the ones obtained under the assumption of a moving average process• Two 
time series taken from the literature are used to illustrate the usefulness of our 
method. 

2. Inference on a finite subset of  autocorrelations 

Consider a time series )(1,..., X,, of length n, generated from a stationary 
stochastic process { X,: t ~ Z } satisfying the condition 

Or3 

g YT<°° 
j ~  --O0 

where ,/j = Cov(Xt, X,÷j) is the autocovariance at lag j .  We also suppose that the 
cumulants of order 4 of the process are zero• Hence the class of processes 
considered includes the stationary Gaussian processes Let p =3 ' /~ '  denote the 

• " j 0 

r(n) (n) (n~ autocorrelation at lag j which is estimated by j = c) / c  o , where 
n- - j  

E 0 j n-1, (2.11 
t = l  

and X = ( 1 / n ) E t = I X ,  is the sample mean. We have p _ j = p j  and we take 
c(_~ ) = c~ '0 and r(_~ )=  ~(n), j > 0. 

We know from Anderson [1], p. 489, that the asymptotic covariance between r i 
and 5 is given by 

lim n Cov(ri, r j ) = o i j  , i, j ~ Z ,  
n ----~ OO 

where 

~ij = ( •i+j Jr- h i_  j -- 2 " ~ i X / ~  0 - -  2"~jXi/rO -~- 2 r / r j X 0 / r g ) / ~ / 2  ( 2 . 2 )  
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and 

O0 

= E i z .  (2.3) 
k = - o o  

Note that X_ i = X i, i > 0. Furthermore, the asymptotic covariance (2.2) remains 
valid without any assumption on the cumulants of order 4. However, that 
assumption is used to derive consistent estimators of the "yj's and of the )t,'s 
along the line followed by M61ard and Roy [13]. 

Denote by r (") the column vector whose components are rj} n), i = 1 , . . . ,  J, J 
being independent of n, and let D = { Jl ,--- ,  JJ } c {1,. . . ,  n - 1}. Under fairly 
general conditions (see Anderson [1], p. 489, Hannah and Heyde [7]), we know 
that v/-n-(r (") - p )  is asymptotically multinormal N(0, 2J) where P is the column 
vector ( & ' i  ~ D)  and ,S is the J x J matrix whose elements are %j, i , j  ~ D. 
Since N is unknown in general, we will replace it by 2 ('o whose elements ~ j  
converge in probability to o~j. 

Under the assumption that the underlying process is MA(q), the estimation of 
~J is much simpler. Indeed, the covariance matrix N is a function of & , . . . ,  Oq 
only and it is natural to replace them by their consistent estimators ,'(n) ,.in) '1  ' ' ' " ' q  2 
This method provides a consistent estimator 2 of N but it does not insure that ~J 
is nonnegative definite. We know from Priestley [14], p. 437, that the sequence 
(~"  j ~ Z) where Sj = 1, I JI ~< q and Sj = 0, I J l  > q is not normegative definite. 
Therefore we cannot assert that the sequence ($jrj" j ~ g) is nonnegative definite 
(see Lobve [9], p. 134). In general, the construction of a nonnegative definite 
estimator of N is not immediate. 

M61ard and Roy [13] studied a similar problem concerning the sample autoco- 
variances. In this latter case, the elements of the matrix N have the simpler form 
X~+j + X~_j rather than (2.2). Robinson [15] had proposed an estimator of )t, 
which converges in the L 1 norm. The present authors modified that estimator in 
order to preserve the nonnegative definiteness of the matrix 2. The latter 
estimator is obtained by substituting w}")c} ~) to ~,~ into (2.3) where (w} ~) = 
w(i /b~)"  i ~ 7) is a positive definite sequence; the function w" N ~ N is continu- 
ous at the origin, w(0) = 1, has at most a finite number of discontinuities and is 
square integrable and (b," n > 1) is a sequence of real numbers such that b~ ~ oo 
in such a way that b,,/n ~ 0 when n ~ oo. 

Consider now the matrix IJ whose elements o~j are given by (2.2). This matrix 
is at least normegative definite for any autovariance function (3'," i ~ 7). Since the 
sequence (w}")c} "~" i ~ Z) is also an autocovariance function (Lo6ve [9], p. 134), 
the substitution of w}'°c} ") to 3'; preserves the nonnegative definiteness of the 
resulting matrix 2 (~). It also leads to a consistent estimator. Indeed, from 
Theorem 1 of M61ard and Roy [13], the estimator ~ )  obtained by the same 
substitution in (2.3) converges in probability to )t~. Since w} ~) ~ 1 as n ~ oo and 
that c} ") ~ , ~  in probability, it follows that w}")c} "~ ~ y~ in probability. The 
element o o being a continuous function in all its arguments, the estimator 8gj 
converges also in probability to oij. 
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Remark.  We have not proved that ~(") is positive definite but o n l j  that it is 
nonnegative definite. Therefore, in the next section, the inverse of 2(") will be 
taken in the generalized sense. 

3. Algorithm for computing confidence intervals and test statistics 

The following algorithm relies upon the results of the previous section. It 
consists in the following steps. The superscript n will be omitted unless it is 
essential for clarity. 

A. Compute cj = c j by formula (2.1), j = 0, 1 , . . . ,  n - 1. 
B. Choose a window w i = w ( i / b , , n )  , 1i1 ~< n - 1, with b,,,n = H v ~ .  

B.1. Modified Bartlett window: 

1-1xl, 
w(x)= 0, 

Ixl <l, 
Ix l>l .  

B2. Parzen window: 

1 - 6 x Z + 6 [ x [  3, 

w ( x ) =  2 ( 1 - 1 x 1 ) 3  , 

O, 

Ixl ½, 
1 ~ < [ x [ ~ < l ,  

Ix[>1. 

C. Compute for i = 0, 1 , . . . ,  n - 1: 

n - - i - 1  

~ i  = ~-- i  = E WkWk+iCkCk+i"  
k =  - n + l  

^ 

Note  that X i-- 0 for 1i1 >/n. 
D. Compute for i, j ~ D (a given subset of {1 , . . . ,  n - 1))" 

+ X,_j- 2w,c,L/Co- 2wj#L/Co + 2w wjc&Xo/C )/4. (3.1) 

E. To test the null hypothesis H 0 • P = P0 against the alternative H 1 • p 4: Po at 
the significance level a, compute 

Q = n - l (  r - p o ) ' ~ - l (  r P0) (3.2) 

and  reject H 0 if Q > x~; t -~,  the quantile of order 1 - a of the X 2 distribution. 
F. To build a confidence interval for pj at the confidence level 1 - a, compute 

[ ^ _ ~ 1 / 2  
Fj -]- U 1 _ a/2 ~ ojj /n  ) 

where u l _ , / z  is the quantile of order 1 - ½a of the N(0, 1) distribution. 

Remarks. 1. The choice of b,,,n is justified by the condit ion imposed on the 
sequence { b, } in Section 2. 

2. The use of the chi-square distribution at step E follows from an argument 
similar to the one evoked in M61ard and Roy [11]. As indicated in the remark at 



G. Mklard, R. Roy/Tests for autocorrelations 35 

the end of Section 2, 2~-1 is the generalized inverse of ~. Therefore, the number 
of degrees of freedom of the chi-square distribution should be decreased by the 
number of zero eigenvalues of ~. 

3. The use of the N(0, 1) distribution at step F relies on results of Section 2. 
4. The test statistic computed at step E can serve either to test that a finite 

number of autocorrelations of the time series under investigation are zero or to 
test that the first few autocorrelations of the generating process are those of a 
completely specified A R M A  (p,  q) process. In the latter case, the autocorre- 
lations of the ARMA process can be obtained with the algorithms of McLeod 
[10] or of Tunnicliffe Wilson [16]. 

5. More generally than F, a confidence region for P is given by 

n-X(r-- O)'~-l(r - p) < X2;1_~. 
The usefulness of that procedure is restricted to small values of J. 

4. Simulation results 

Since the methodology described in the previous sections relies on asymptotic 
results, it is important to study the accuracy of the corresponding approximations 
for finite samples. To investigate this issue, we conducted the following Monte 
Carlo experiment. For three different processes: the moving average process of 
order 4 (MA(4)) with 01 -- 02 = 03 = 0, 04 = 0 = 0.5, the autoregressive process of 
order 1 (AR(1)) with q~ = 0.5 and the autoregressive process of order 4 (AR(4)) 
with q'l = 4~2 = 4~3 = 0, 4)4 = 4)= 0.5, the following eight intervals were compared 
for the series lengths n = 50 and n = 100. 

For the lag j autocorrelation Oj, these intervals are the following: 
11 . Interval based on the exact asymptotic variance: 

\1/2 
5 + ul - . / 2  ( % / n  ) 

where ojj is given by (2.2). 
For the MA(4) process, we find 

{(~ +02) t r f ' j=O'  
Yj = Oof, j =  - 4 ,  4, 

otherwise, 

denotes the variance of the innovation process and 

t 
o4(1 + 402 + 0 ' ) ,  j = 0 ,  

Xj=  - 2 ° 4 0 ( 1  + 0z) '  j =  - 4 ,  4, 

0409, j = - 8, 8, 

0, otherwise. 

For the AR(1) process, we have 

02 UI 
7j = 1 _ q 5 2 ~  , j ~ Z ,  

where a~ 
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and 4(1+02) 
A~= (15°02) z Oi 1 - - ~  5 + i  , 

For the AR(4) process, we get 

"Yj = 1 - -  ~ 2  ' 

O, 

and 

j = 4 k ,  k ~ Z ,  

otherwise, 

(o4 (02 )a  __o 
~, (1 q~2)zq~ 1+  

= _ 1 -  2 

O, 

i>~O. 

i = 4 k ,  k>_0, 

otherwise. 

12. Confidence interval for Oj under the assumption that the underlying process 
is M A ( j -  1): 

rj +_ 

where 

( ) 1 1 +  p2 °2~ = n = (4.1) 

is the asymptotic variance of r k for k >~j and 8~t k is obtained by substituting r i 
to Pi in (4.1). 

In time series analysis, the intervals defined by the values + u 1_~/28Mj are 
routinely computed for testing sequentially that the underlying process is MA( j  
- 1 ) ,  l <~j<~K<~n-1 .  

1, i = 3, 4, 5. These intervals are obtained at step F of the algorithm using the 
modified Bartlett window with b,, H = H¢~-, H = 1,3 and 5 respectively. 

/,, i = 6, 7, 8. These intervals are calculated in a similar way using the Parzen 
window. 

For each model and for each series length, 500 independent realizations were 
generated with N(0, 1) innovations using the subroutine GGUBS of IMSL (1984). 
For each realization and for each lag k (1 <~ k <~ K ) ,  the sample autocorrelation 
r k and the confidence intervals Ij, i = 1, . . . ,  8, were calculated for three different 
nominal levels (80, 90 and 95 percent). For each confidence interval, we checked 
if it contained the exact value of the theoretical autocorrelation pj. The accuracy 
o f / , ,  i = 1, . . . ,  8, was appreciated by comparing its empirical confidence levels to 
the corresponding nominal ones. 

The results of the experiment are reported in Table 1 for the moving average 
process and in Tables 2 and 3 for the autoregressive processes. The entries in 
these tables are empirical confidence levels in percentage, i.e. the percentage 
among the computed confidence intervals which contain the true value of the 
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parameter. We do not present the results for the Parzen window since they are 
very similar to those obtained with the modified Bartlett window. We make the 
following observations. For the three models, we notice that for each nominal 
level and for each interval, the corresponding empirical levels increase in general 
with the lag k. However, the increasing trend is less accentuated for n = 100 than 
for n = 50. Also, the trend is more irregular with the AR(4) model. The interval 11 
cannot be used in a practical situation since the unknown theoretical autocorre- 
lations are involved. However, in the simulation experiment, it will give us an idea 
of the accuracy of the asymptotic variances for finite samples and will serve as a 
reference point. 

From now on, we will discuss the three models separately. For the moving 
average model, the empirical levels of 11 are always greater than or equal to the 
nominal levels. The interval 12 is meaningful only for the lag k = 5 and even for 
this particular lag, its empirical levels are significantly different from the nominal 
ones when n = 50. Among the nonparametric intervals 13, 14 and 15 considered, 
the interval 15 seems the best globally. However, for larger lags, 13 or 14 is 
sometimes better. For all three intervals, the corresponding empirical levels 
behave favorably well with respect to those of 11 . Further, their empirical levels 
are closer to the nominal ones than those of 12. This latter observation em- 
phasizes the importance of using nonparametric intervals. Also, the empirical 
levels of 12 are generally greater than those of 13, 14 and 15. Therefore, a test 
based on one of these last three intervals will be in general more powerful than a 
test based on 12. Finally, we see that the empirical levels of the nonparametric 
intervals are very often greater than the corresponding nominal levels. Hence, 
tests of hypotheses based on these confidence intervals will tend to be conserva- 
tive. 

With the AR(1) process, the empirical levels of 11 for the lags k = 1, 2 are 
systematically smaller than the corresponding nominal levels. The interval 12 has 
no statistical meaning for any lag k since it is based on the assumption that the 
process is M A ( k -  1). However, its empirical levels are astonishly close to the 
nominal levels. Among the nonparametric intervals, 15 seems also the best 
globally although for k > 5, 13 and 14 give very similar results. The empirical 
levels of 15 are as close as or sometimes closer to the nominal levels than those of 
11. 

With the AR(4) process, the empirical levels of 11 are quite different from the 
nominal ones. At lags 4 and 8, they are much smaller and at the other lags, they 
are systematically larger. As expected, the interval 12 behaves rather poorly, in 
particular at lag 2 where the empirical levels are much smaller than the nominal 
ones. Among the nonparametric intervals, 15 seems the best globally although at 
the 90% and 95% confidence levels, 14 gives comparable results. It is worthwhile 
noticing that the empirical levels of 15 are almost systematically smaller than 
those of 11. Also, the empirical levels of 15 are in general closer to the nominal 
levels than those of 15. With our method, not only the estimation of the standard 
error does not seem to reduce the accuracy of the confidence intervals but it also 
leads to shorter intervals in some cases. 
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5. Examples 

In the following examples, unless specified, the modified Bartlett window with 
H = 5 was used. Some preprocessing was needed since the series analyzed in our 
examples are nonstationary whereas our method applies only to stationary ones. 

Let us first consider the airline passengers data (series G of Box and Jenkins, 
[4]). Using the transformation 17V'12 log Xt, where V" and ~712 a r e  respectively the 
ordinary and seasonal difference operators, the sample autocorrelation function is 
given in Table 4. ,' 

Box and Jenkins [4] proposed the multiplicative seasonal moving average 
model 

V'V'~2 log X, = A , -  O A t _  1 - -  O~z~t_12 "]- OOht_13 , ( 5 . 1 )  

where the At's are independent normal random variables with mean 0 and 
variance o 2. The absence of the terms At_2, At_3 , . . .  , At_l l  in (5.1) Call be tested 
by the method of Section 3. Indeed, it is equivalent to test the hypothesis that 
02 = 03 . . . . .  010 = 0. The Q statistic (3.2) with D = (2, 3 , . . . ,  10} is equal to 
13.6, which corresponds to a probability of significance of 0.19 for the chi-square 
distribution with 9 degrees of freedom. Hence, there is no reason to reject the 
hypothesis at the usual probability levels. With H = 1 and H = 3 for the modified 
Bartlett window, we have respectively Q = 15.4 and Q = 14.0. With the Parzen 
window, the conclusions are the same. 

It sometimes happens that an autocorrelation coefficient is very high but we 
are not sure that it reveals something special about the data. For example, let us 
consider the Chatfield and Prothero [6] series whose length is 77. For the series 
171712 log Xt, r n = 0.44 is found. The standard error of r n computed by (3.1) 
with i = j  = 11 is equal to 0.155 for H =  5 and 0.161 for H = 3. Hence rll is 
significantly different from 0. Note that the standard error of r n under the 
hypothesis of a MA(10) model is equal to 0.189. There is less evidence of an 
autocorrelation at lag 11 by that more frequently used method. Table 5 contains 
the confidence intervals obtained by (3.1) for the lags k from 1 to 12, at the 
confidence level 0.95. 

If we test H0:P2 m. it) 3 . . . . .  Pl0 = 0 on the same transformed series, we find 
Q = 34.5 with a probability of significance of about 0.0001. Thus, a model of the 

Table 4 

Autocorrelations § of 17~712 log X r for the airline data 

j = 1  - 0 . 3 4  j = 9 0.18 
2 0.11 10 - 0.08 
3 - 0.20 11 0.06 
4 0.02 12 - 0.39 
5 0.06 13 0.15 
6 0.03 14 - 0.06 
7 - 0 . 0 6  15 0.15 
8 0.00 
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Table 5 
Confidence intervals for 
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Pk, at the 0.95 confidence level, for the Chatfield-Prothero data 

k = l  - 0 . 5 8 + 0 . 2 3  k =  7 - 0 . 1 7 + 0 . 3 2  
2 0.36 +_ 0.30 8 - 0.03 _ 0.36 
3 - 0 . 2 2 + 0 . 3 7  9 0.10+0.35 
4 0.05+__0.37 10 - 0 . 2 6 + 0 . 3 4  
5 - 0 . 0 5 + 0 . 2 9  11 0.44+0.30 
6 0.10+0.26 12 - 0 . 3 6 + 0 . 3 2  

Table 6 
Test on four models for the Chatfield and Prothero data, with ~ = VV~2 log X,; 
probability of significance of the Q statistic 

P is the 

Model Q P 

(A) Wt = -0 .47Wt_a  + A t-O.81A/_12 
(B) Wt = -0 .51Wt_ l -0 .47Wt_12  +0.24Wt_13 + At 
(C) Wt = - 0 . 5 6 W t _ l  + A t - 0 . 4 9 A t _  1 
(D) W t = A t - 0 . 4 4 A t _  1 - 0.85At_12 + 0.37A/_13 

755 0 
28.3 0.013 
74.7 0 
67.3 0 

form (5.1) is rejected. Chatfield and Prothero [6] fitted however that model as well 
as three other ones. These models are given in Table 6. We shall illustrate the use 
of the method of Section 3 at the checking stage of the model building procedure. 
In that purpose, we compare the sample autocorrelations of the transformed data 
with the autocorrelation function of each of these models by means of the Q test 
(3.2) with D = {1, 2 , . . . ,  13). The results in Table 6 show that all the models are 
rejected except possibly model B, if a significance level of 1% or less is used. This 
is not surprising since Chat field and Prothero finally retained model B, essentially 
because of its predictive capability. Obviously none of these models are compati- 
ble with the large value of r u. Mrlard [11] provides a deeper analysis of that 
series. Note that the tests should have been performed with two independent 
realizations, the first one giving the parameter estimates. This is not possible here 
because the series is too short. 

6. Conclusion 

The use of formal inference for autocorrelations has often been restricted to  
some specific cases such as moving average processes. There are at least two 
reasons for that. First, estimating the variance of autocorrelations of a general 
stationary process is cumbersome. Second, that variance depends on the autocor- 
relations themselves, so it has to be estimated in some consistent way. The use of 
more than one autocorrelation has been restricted except in the case of port- 
manteau statistics. This is probably due to the complex correlation patterns 
between autocorrelation estimators. 
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In this paper, we propose sound asymptotic methods for confidence intervals 
and tests for autocorrelation coefficients of general stationary processes. Exam- 
ples illustrate how to apply the proposed methods. Simulation results indicate 
that the probabity levels of the confidence intervals introduced are quite close to 
their nominal values, and that the corresponding significance tests are generally 
conservative. 

In the course of the simulation experiment, we observed that deviations from 
the theoretical values are mainly due to the fact that sample autocorrelations are 
biased estimators. However, their standard deviations are generally well esti- 
mated. This explains why the empirical confidence levels of the intervals 11 and 
15 are often closer to each other than they are to the corresponding nominal 
confidence level. A summary of the main results on the bias of sample autocorre- 
lations is given in Kendall, Stuart and Ord [8], Chapter 48. 

Another improvement of our method would result from using a more accurate 
formula than (2.2) for small and moderate sample sizes. Anderson and De 
Gooijer [2] derived an exact formula for the covariance between two sample 
autocovariances. Of course, an approximation occurs when passing from autoco- 
variances to autocorrelations. Further work is thus needed on the distribution of 
sample autocorrelations. 
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