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Nucleation of vortices in a superconductor below the first critical field can be assisted by transverse sound
in the gigahertz frequency range. Vortices will enter and exist the superconductor at the frequency of the sound.
We compute the threshold parameters of the sound and show that this effect is within experimental reach.
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A superconducting cylinder rotated at an angular velocity
� about its symmetry axis develops a magnetic moment
M=−�mc /2�e��, where m and e are bare electron mass and
charge, and c is the speed of light. This effect predicted by
London1 has been subsequently tested in experiment and
proved with an accuracy to many significant figures. It is a
consequence of a more general gyromagnetic effect pre-
dicted by Barnett:2 “A substance which is magnetic must
become magnetized by a sort of molecular gyroscopic mo-
tion on receiving an angular velocity.” The Barnet effect is,
in its turn, a consequence of the Larmor theorem:3 In the
rotating frame of reference the action of the rotation on
charged particles is equivalent to the action of the magnetic
field H�=� /�,3 where � is the gyromagnetic ratio. For an
electron’s orbital motion �=e / �2mc��0.9�107 G−1 s−1.
Thus, in practice, the fictitious field in the reference frame of
a rotating macroscopic cylinder can hardly exceed a fraction
of a milligauss. This would be well below the lower critical
field Hc1 when the temperature of the superconductor is not
too close to Tc. Due to the Meissner effect4 �considered in
the frame of the rotating cylinder� such a field would be
expelled from the bulk of the cylinder by a superconducting
current induced at the surface. Writing B=H�+4�M=0 for
the total field in the bulk, one obtains London’s magnetic
moment, M=−H� / �4��=−�mc /2�e��. Due to the symme-
try of the problem it is the same in the rotating and labora-
tory frames.

In this Brief Report we would like to take this problem a
little further and look at the consequence of an angular ve-
locity well beyond the experimental limit. In particular, we
are interested in the rotational velocity of a magnitude that
would generate a fictitious magnetic field that exceeds Hc1. If
Larmor’s theorem still holds, then it must be the case that a
superconducting vortex enters the bulk of the cylinder. This
would require the angular velocity to be of order 109 s−1,
clearly surpassing the feasible experimental value for a me-
chanical rotation. While this scenario is merely a thought
experiment we will use it as a motivation to study the effect
of local rotations generated in a superconductor by high fre-
quency ultrasound. Interaction of sound with vortices has
been studied in the past.5–7 Radiation of phonons by super-
sonic vortices,8,9 phonon contribution to the vortex mass,10–12

and decoherence of flux qubits by phonons13,14 have been
investigated. In this Brief Report we are addressing a com-
pletely different problem—possibility of the nucleation of a
vortex by sound.

Within continuous elastic theory, local deformations are
described by the displacement vector field, u�r , t�. We will
be interested in the effect of transverse sound waves. Such
waves create shear deformations of the crystal lattice, such
that

� · u = 0. �1�

In the long-wave limit they do not affect the density of the
ionic lattice but result in a local rotation at an angular
velocity15

��r,t� = 1
2 � � u̇ . �2�

The frequency of ultrasound achievable in experiment with,
e.g., surface acoustic waves can easily be in the ballpark of
f �1010 s−1.16 According to Eq. �2� a sound of such fre-
quency and amplitude of a few nanometers can provide �
�109 s−1 that can generate fictitious magnetic fields above
Hc1. For practical purposes, it may be convenient to loosen
the restriction on the frequency and amplitude of ultrasound
by applying an external magnetic field H near, but less than,
Hc1. We shall see that within 1% of Hc1, vortices can be
ignited by the ultrasound in the gigahertz frequency range.

For a vortex to enter a superconductor, the Gibbs free
energy of the system must be lowered. We compute the extra
free energy due to the vortex and determine the condition at
which it becomes negative. It should be noted that the system
under consideration is dynamical, and therefore is not at a
thermodynamical equilibrium. However, we are interested in
the free energy of the Cooper pairs which can adjust to the
changes of state in a time scale orders of magnitude shorter
than the period of the sound. This time scale is proportional
to the relaxation time � of the cooper pairs, i.e., ��10−12 s.
As mentioned before, the period of the sound T=1 / f will be
always greater than 10−10 s. Under these conditions, our sys-
tem is adiabatic and the thermodynamic equilibrium can be
safely established. The calculation that follows is similar to
the conventional calculation of Hc1. The presence of �,
however, introduces another feature into this calculation so
we will follow it all the way through to show how the sound
enters the problem.

It is convenient to calculate the extra free energy in terms
of the magnetic field and its spacial derivatives. The electric
field produced by the time derivatives will be neglected. The
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kinetic energy of the superfluid is 1
2nsmv2 where ns is the

number density of the superconducting electrons and

v =
e*

m*c
��c

e*
� � − A� �3�

is the velocity of the Cooper pairs with � and A being the
phase of the superfluid wave function and the magnetic vec-
tor potential, respectively. The stared quantities represent the
effective mass and charge of cooper pairs. We will take them
to be m*=2m and e*=2e. The normal electrons experience
viscous forces as they move relative to the nuclei contribut-
ing zero average normal current. The ionic charge per unit
volume consisting of the nuclei and the normal electrons is
therefore exactly opposite to that of the Cooper pairs. The
total current is then

j = ens�v − u̇� , �4�

where u̇ is the velocity of ions. Equation �4� reflects the fact
that the electric current corresponds to the motion of elec-
trons relative to ions. It is invariant with respect to the mo-
tion of the reference frame. With Eq. �3� in mind we can
write the gauge invariant current in terms of � and u as

j =
nse�

2m
��� −

2e

�c
Aef f� , �5�

where

Aef f = A +
mc

e
u̇ �6�

is the effective vector potential felt by the electrons in the
rotating frame of the ions.12 In terms of the total current j,
the kinetic energy of the superconducting electrons may be
expressed in the form

KEe =� d3r
nsm

2
� 1

nse
j + u̇�2

. �7�

The energy of the sound is

Es =� d3r
1

2
�	0u̇2 − 
iklmuikulm� , �8�

in which 	0 is the combined mass density of ions and normal
electrons, 
iklm is the tensor of elastic coefficients, and uik

= 1
2 ��iuk+�kui� is the strain tensor. Using Maxwell equation

��B= �4� /c�j and combining Eqs. �7� and �8� the expres-
sion for the total Gibbs free energy yields

G = F0 +
1

8�
� d3r�B2 +


2

f�r�
�� � B�2	

+
1

4�
� d3r

mc

e
u̇ · �� � B� −

1

4�
� d3rH · B

+� d3r
1

2

	u̇2 − 
iklmuikulm� . �9�

Here, F0 is the free energy in the absence of currents, fields,
and sound, 
=�mc2 /4�nse

2 is the London penetration depth,
f�r�= �� / ���2 in which � is the complex order parameter

and ��  =�ns /2 is the order parameter in the absence of
gradients and fields, and 	=	0+nsm is the total mass density
of the superconductor. The fourth term can be recognized as
the interaction of the external magnetic field with the mag-
netization. It is this term that is responsible for the nucleation
of vortices in the absence of sound when HHc1.

Before we can calculate the free energy of Eq. �9� we
must first work out the magnetic field. This can be done by
replacing the current in the Maxwell’s equation ��B
= �4� /c�j with Eq. �5� and defining a gauge invariant vector
potential Q=A− ��c /2e���, so that we obtain the following
equation:


2 � � �� � Q� + f�r�Q = −
mc

e
f�r�u̇ . �10�

For ��=0 �Q=A� Eq. �10� becomes equivalent to London’s
equation with a source. When a vortex enters a supercon-
ductor the phase must be quantized according to the condi-
tion ��� ·dl=2�. For certainty we consider a transverse
standing sound wave having one node at the center of a
superconducting slab of thickness d large compared to the
coherence length �. The external field is applied parallel to
the slab, see Fig. 1. In this case 
s=2d. Generalization to
standing waves with many nodes is straightforward. If the
field is close to Hc1, a vortex will periodically enter and exit
the slab. The boundary condition on the current is J� ·n=0,
where n is the direction of the surface. If the thickness of the
slab d is of order or less then 
, this boundary will distort the
cylindrical symmetry of the vortex. We can satisfy the
boundary condition by placing image vortices of alternating
sign a distance d apart on the outside of the slab. The equa-
tion for the magnetic field, in the region r�� where �  =1,
can then be written in two parts, namely B=B0+Bv, such
that the first term satisfies


2 � � �� � B0� + B0 = −
2mc

e
� , �11�

while the second is a solution of

d

z

x

y

H

u

FIG. 1. Standing wave in a slab with one node at the center. The
vortex is generated at the node where � is maximum.
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2 � � �� � Bv� + Bv = �0ez �
n=−�

�

�− 1�n��r + ndex� ,

�12�

where �0=hc /2e is the flux quantum. Notice that Eqs. �11�
and �12� can be obtained by taking a curl of Eq. �10� with the
account of the vortex cores represented by the delta func-
tions.

Since we are interested in standing sound waves we can
choose the displacement vector u to be

u�r,t� = u0 sin�kx�sin��t�ey . �13�

The quantity k=� /v=2� /
s=� /d is the wave number with

s and v being the wavelength and the speed of sound, re-
spectively. It is easy to see from Eq. �2� that � is maximum
at the nodes. The corresponding solutions to Eqs. �11� and
�12� with the boundary condition B=H at x= �d /2 are

B0�x� = BM + Bs, �14�

Bv�r� = �
n=−�

�

�− 1�nb�rn� , �15�

where

BM = 2H
sinh�d/2
�
sinh�d/
�

cosh� x



� , �16�

Bs = −
2mc

e

�

1 + k2
2 , �17�

b�rn� =
�0

2�
2K0�r + ndex/
�ez, �18�

and K0 is a zeroth-order Hankel function of imaginary argu-
ment. The first term in Eq. �14� is the Meissner field while
the second is due to the sound.

Let us now integrate by parts the third term in Eq. �9� and
insert B=B0+Bv. By doing so we obtain

G = G0 + �E +
1

4�
� dr3Bv · �2mc

e
� + Bs	

+
1

4�
� d3r


2

f�r�
�� � Bv� · �� � Bs� , �19�

where G0 is the Gibbs free energy without a vortex and

�E =
1

4�
� d3r


2

f�r�
�� � BM� · �� � Bv� +

1

8�
� d3r

��Bv
2 +


2

f�r�
�� � Bv�2	 −

1

4�
� dr3H · 
Bv + BM�

�20�

is the vortex energy. One can simplify the volume integrals
in Eq. �19� by separating the integration over the core from
the integration over the volume outside of the core. When the
latter is integrated by parts, the integrals outside the core

cancel, and the free energy in Eq. �19� with the help of Eq.
�11� becomes

�F = �F1 + �F2 + �F3 + �E , �21�

where

�F1 =
1

4�
�

c

dr3Bv · �2mc

e
� + Bs	 , �22�

�F2 =

2

4�
�

c

Bv � �� � Bs� · ds , �23�

�F3 =
1

4�
�

c

d3r

2

f�r�
�� � Bv� · �� � Bs� . �24�

The subscript c indicates an integration over the core. The
surface integral in Eq. �23� is over the boundary of the nor-
mal core. Near the vortex core f�r�= �r /a�2, where a��. It is
straightforward to check that in the limit r→0 the exact
solution to Eq. �10� for the vector potential As�r� is

As�r� = −
2mc

e
�0xey . �25�

Then the magnetic field Bs=��As�r� generated by the
sound at the center of the core is

Bs�r� = −
2mc

e
�0ez, �26�

where

�0 =
1

2
u0k� =

�

2

u0

d
� . �27�

It can be shown that near the vortex core, ��Bv�r and �
�Bs�r3. The expression under the integral in Eq. �24� is
therefore proportional to r3 near the center of the core and to
rK1�r /
� at r��. Thus, the integral in Eq. �24� can be ne-
glected in the limit of k
�1

The case of k
1 is rather involved as it requires explicit
knowledge of the structure of the vortex core. For k
�1 Eq.
�17� provides that Bs�−�2mc /e�� in all regions of space,
so that �F1→0. In this limit the Meissner field BM and the
fields due to images can be neglected. The total interaction
energy per unit length of the vortex acquires the simplest
form at �=
 /��1 as follows:

�F2

L
= −

mc

2�
�0�0� k


�
�2

ln � , �28�

where L is the dimension of the slab in the z direction.
If one excludes small contribution from the vortex core in

Eq. �20�, then the integration by parts yields
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�E

L
=


2

8�
� Bv � �� � Bv� · ds −

1

4�
� d3rH · Bv.

�29�

This approximation is good if 
 and d are large compared to
the coherence length �. Then the vortex energy per unit
length is

�E

L
=

�0
2

�4�
�2 ln � −
�0H

4�
. �30�

The first term in this expression is the self-energy of the
vortex, while the second term is the energy of the interaction
of the flux quantum with the external field.

The condition for the nucleation of the vortex, �F2+�E
=0, yields

2mc

e
�0� k


�
�2

ln � = �Hc1, �31�

where

� = 1 −
H

Hc1
�32�

and Hc1=�0 ln � / �4�
2� is the first critical field that follows
from Eq. �30� at �E=0. Substituting Eq. �27� into Eq. �31�,
one finds the conditions on the frequency f and amplitude u0
of the sound needed to nucleate a vortex in the geometry
shown in Fig. 1 as follows:

f =
v

2d
, u0 =

�

4
� d

�

�4��2

mv
. �33�

While the last formula was derived under the conditions
����
�d, our numerical analysis shows that it holds even

for d��
 at ��1 and is true by order of magnitude for �
�1. In this case the expression for Hc1 carries the signature
of the surface barrier:17 Hc1=��0 ln � / �4�
2�, where

� =
1 − 2�ln ��−1�1

�
�− 1�nK0�dn/
�

1 − 2 sinh�d/2
�
sinh�d/
��−1 . �34�

For the speed of the transverse sound v�3�105 cm /s, in
a slab of thickness d��
�6�10−5 cm and ��2, with H
within 1% of Hc1, one gets from Eq. �33� f �3 GHz and
u0�0.2 nm. These are accessible values of frequency and
amplitude of ultrasound.

As � changes its sign every half a period of the sound,
vortices are periodically attracted and repelled by the stand-
ing acoustic wave in Fig. 1. Periodic entering and expulsion
of vortices should result in the elevated attenuation of the
ultrasound and in the ac voltage across the slab at the sound
frequency. In a different experiment one can assist vortices to
enter or exit the superconductor with the help of the surface
acoustic waves �SAWs�. Like in the problem with a slab,
local rotation of the crystal produced by the SAWs may as-
sist nucleation of the vortex at the field just below Hc1.

In conclusion, we have demonstrated that nucleation of a
vortex in a superconductor can be assisted by ultrasound. In
the presence of a standing sound wave, vortices will periodi-
cally enter and exit the superconductor. The required ampli-
tude and frequency of ultrasound are within experimental
reach.
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