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We study the violation of the Bell-Clauser-Horne-Shimony-Holt �Bell-CHSH� inequality for two-spin sys-
tems, of arbitrary spins j1 and j2, prepared in an entanglement of spin-coherent states of each of the spins. We
show that the Bell-CHSH inequality is quite robustly violated for a wide range of values of the parameters that
specify the spin-coherent states, and, for a particular choice of these parameters, maximal violations are
obtained. That is, the violations can reach the Tsirelson bound, 2�2, for any choices of the spins.
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Over the past 30 years or more, there has been interest in
the question of whether or not classical realism, as embodied
in various versions of Bell’s theorem, is recovered in the
limit of large quantum numbers, generally assumed to be the
classical limit as per the correspondence principle. Some
years ago, Garg and Mermin �1� studied Bell’s inequality for
two-spin j particles in a singlet state, given as

�SS� = �2j + 1�−1/2 �
m=−j

j

�− 1� j−m�j,m�1 � �j,− m�2, �1�

and found violations for measurements along almost all pairs
of directions. However, the magnitude of the violation de-
creased with increasing j, the decrease being the result of the
author’s use of a slowly varying function of the spin compo-
nents which made their method insensitive to the rapidly
varying part of the correlations. Later, Peres �2� pointed out
that the Stern-Gerlach experiment, for arbitrary angular mo-
mentum, measures the dichotomic operator

	ˆ �j� = �
m=−j

j

�j,m��− 1� j−m
j,m� = ei��j−Ĵz� �2�

if the detectors are positioned such that the 2j+1 beams are

well separated. The operator 	̂�j� is just the parity operator
for the D�j� unitary irreducible representation of SU�2�. Us-
ing this observable, Peres found that the violations of Bell’s
theorem, as given in the form of the Clauser, Horne, Shi-
mony, and Holt �Bell-CHSH� inequality �3�, remains con-
stant in the limit j→�. Gerry and Albert �4� proposed an
optical scheme for generating states that are very close to the
spin-singlet states. These were two-mode field states that
could be produced by the action of a 50:50 beam splitter on
an input state containing N photons in one port and the
vacuum at the other. The identification of the output state
with a spin-j singletlike state, with j=N /2, comes about by
introducing a Holstein-Primakoff �5� realization of the SU�2�
algebra for each of the photon modes. The corresponding
violations of the Bell-CHSH inequality, using displacement
operations performed with beam splitters of low transmit-
tance and a strong classical-like field at the other input port,
followed by photon parity measurements, were discussed in
Ref. �4�.

Mermin and Schwartz �6� pointed out that there really is
no reason to expect classical behavior to be approached in
the limit of large spin, as the measurements that discriminate
between the 2j+1 values of M, no matter how large j, have
a nonclassical character. Of course, what really matters is the
degree to which the two particles in the singlet state of Eq.
�1� remain entangled as j→�. The linear entropy for particle
1, given as S1=1−Tr1 �̂1

2, where �̂1=Tr2��̂12�, and where
�̂12= �SS�
SS�, is easily found to be S1=1− �2j+1�−2 which
goes to unity as j→�. Thus entanglement persists in the
spin-singlet state, and in fact, becomes maximal, according
to this measure, in the limit of large spin. However, the vio-
lation of the Bell-CHSH inequality obtained by Peres for the
spin-singlet state is not the maximally allowed violation,
2�2, the Tsirelson bound �7�.

In this paper we study the case of two particles of arbi-
trary spins prepared in an entanglement of spin-coherent
states and show that, under certain conditions, violations of
the Bell-CHSH inequality up to the Tsirelson bound are pos-
sible. Spin-coherent states �8�, also known as atomic coher-
ent states or angular momentum coherent states �9� depend-
ing on context, are analogous to the ordinary coherent states
of a harmonic oscillator in that they both may be considered
as pure, near-classical states of their corresponding systems.
An entanglement of spin-coherent states �as in Eq. �3� be-
low� has a different character than the spin-singlet states
mentioned above. In the latter, there is always a close pair-
wise correlation �actually an anticorrelation� between the z
components of the spins of the two particles, i.e., the spin-
singlet state is a superposition of the product states of the
form �j ,m�1 � �j ,−m�2 and in this sense we could say that the
entanglement embodied in spin-singlet states is microscopic.
Furthermore, the angular momentum states, �j ,m�, of each of
the particles are nonclassical states regardless of the size of
the spin j. In contrast, spin-coherent states are classical-like
and become more so in the limit of large spin. Yet an en-
tanglement of spin-coherent states, especially of distinguish-
able spin-coherent states, would be expected to have strong
nonclassical properties, including nonlocality.

Recall that starting with Bohm’s �10� formulation of the
argument of Einstein, Podolsky, and Rosen �11� �EPR�, Bell
�12� showed that the quantum mechanical spin-singlet states
for �j=1 /2 in Eq. �1�� lead to a conflict with local realistic
hidden variable theories as embodied by violations of certain
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inequality. In the discussions of EPR, and of Bohm and Bell,
the “elements of reality” were to be attached to microscopic
particles. Bohr �13� argued that the elements of reality for
such particles do not have an existence independent of the
measuring apparatus. Certainly, for the spin-singlet state with
j=1 /2 we are dealing with microscopic particles. But for an
entanglement of spin-coherent states of large angular mo-
mentum, the elements of reality are not attached to micro-
scopic particles. This raises the question of the existence of
elements of reality independent of the measuring apparatus
when the particles have macroscopic spins. As recently em-
phasized by Laloë and Mullin �14�, this is an important dif-
ference between demonstrations of violations of Bell-type
inequalities involving the polarization states of two photons
�equivalent to two spin-1

2 particles� and the system under
discussion here.

We first examine entangled spin-coherent states of the
form

��� = N���1,j1�1 � �− �2,j2�2 + ei��− �1,j1�1 � ��2,j2�2� , �3�

where the spin-coherent states are given by �8,9�

��, j� = exp�1

2
�e−i�Ĵ+ −

1

2
�ei�Ĵ−��j,− j�

=�1 + ���2�−j �
m=−j

j � 2j

j + m
�1/2

� j+m�j,m� , �4�

where the complex parameter � is given by �=e−i� tan�� /2�.
The normalization factor N is

N =
1
�2
1 + cos �� �1 − ��1�2�

�1 + ��1�2��
2j1� �1 − ��2�2�

�1 + ��2�2��
2j2�−1/2

.

�5�

Our state ��� of Eq. �3� represents an entanglement of two
particles where particle 1 has spin j1 and particle 2 has spin
j2. We need not have j1= j2. Because of entanglement, the
spin-coherent state of each particle is indeterminate even
though the spins of each particle can be large; that is, the
spin-coherent states individually may represent macroscopic
classical-like spin states. Furthermore, for the state �� , j�
the average of the spin vector has the components 
J��,j
= j�sin � cos � , sin � sin � ,−cos �� and for �−� , j� we
have 
J�−�,j =−j�sin � cos � , sin � sin � , cos �� such that

J��,j , 
J�−�,j = j2 cos�2��. For �=� /2, 
J��,j , 
J�−�,j =−j2, the

directions of the average spin vectors differ maximally, 180°.
Also we have that �
−� , j �� , j��2=cos4j � indicating that the
states have no overlap for �=� /2.

In terms of the angular momentum states �j ,m� we can
write

��� = �
m1=−j1

j1

�
m2=−j2

j2

Am1m2

j1j2 �j1,m1�1 � �j2,m2�2, �6�

where

Am1m2

j1j2 = N�1 + ��1�2�−j1�1 + ��2�2�−j2� 2j1

j1 + m1
�� 2j2

j2 + m2
��1/2

	 �1
j1+m1�2

j2+m2��− 1� j2+m2 + ei��− 1� j1+m1� . �7�

�Note the lack of pairing between the z components of the
spins, as expected for our states.� We define our rotated-
magnet state as ����=e−i�1J1xe−i�2J2x���, and using the same
observables as Peres �2�, a dichotomic operator, namely the
SU�2� parity operators of Eq. �2�, our correlation function is
now

C��1,�2� = 
���	ˆ
1
�j1�

� 	ˆ
2
�j2�����

= ei��j1+j2�
��e−i��Ĵ1z cos �1+J1y sin �1�

	e−i��Ĵ2z cos �2+Ĵ2y sin �2���� . �8�

Using the identity e−i��Ĵz cos �+Ĵy sin ��=e−i�Ĵz/2e−i�2��Ĵye−i�Ĵz/2,
the correlation function may be written as

C��1,�2� = ei��j1+j2� �
n1=−j1

j1

�
n2=−j2

j2

�
m1=−j1

j1

�
m2=−j2

j2

�An1n2

j1j2 �*�Am1m2

j1j2 �

	 e−i��/2��n1+n2+m1+m2�dn1,m1

�j1� �2�1�dn2,m2

�j2� �2�2� , �9�

where the dm�,m
�j� �
�= 
j ,m��e−i
Ĵy�j ,m�. This is the result for

the general case.
For the special case where �1=�2=1, we can analytically

determine a closed form for the correlation function. To see
this, we start, using Eq. �4�, with the corresponding spin-
coherent states for the cases �= �1,

� � 1, j� �
1

2 j �
m=−j

j � 2j

j + m
�1/2

��1� j+m�j,m� . �10�

These states are orthogonal, 
�1, j � �1, j�=0, and satisfy

the relation 	̂�j���1, j�= �−1�2j��1, j�. They can be shown,
after a bit of algebra, to be eigenstates of the angular mo-
mentum operator Jx with eigenvalues �j : Jx��1, j�
= � j��1, j�. The corresponding entangled spin-coherent
states of Eq. �3� are

��� =
1
�2

�� + 1, j1�1�− 1, j2�2 + ei��− 1, j1�1� + 1, j2�2� .

�11�

Defining ����=e−i�1J1xe−i�2J2x���, we have


2


3


1


4







FIG. 1. Diagram showing the arrangements of the auxiliary
angles 1, 2, 3, and 4. We make the choices 1−3=�, 1

−4=−�, 2−3=−�, such that 2−4=−3�.

GERRY et al. PHYSICAL REVIEW A 79, 022111 �2009�

022111-2



���� =
1
�2

�e−i�1j1ei�2j2� + 1, j1�1�− 1, j2�2

+ ei�ei�1j1e−i�2j2�− 1, j1�1� + 1, j2�2� . �12�

It follows that

	ˆ �j1�	ˆ �j2����� =
�− 1�2j1+2j2

�2
�e−i�1j1ei�2j2�− 1, j1�1� + 1, j2�2

+ ei�ei�1j1e−i�2j2� + 1, j1�1�− 1, j2�2� . �13�

Finally, we have as our correlation function for this special
case

C��1,�2� = 
���	ˆ �j1�	ˆ �j2�����

= �− 1�2j1+2j2 cos�2j1�1 − 2j2�2 + �� . �14�

The Clauser, Horne, Shimony, and Holt form of Bell’s
theorem is given as follows �3�: If Alice performs measure-
ments with her detector set at angles �1 and �2 while Bob
sets his detector at �3 and �4, then for

S = C��1,�3� + C��1,�4� + C��2,�3� − C��2,�4� �15�

we have �S��2 for local realistic hidden variable theories
whereas quantum mechanically we can have �S��2�2, the
former condition being the Bell-CHSH inequality, the latter
being the Tsirelson inequality. Experimental values of �S� in
the range 2� �S��2�2 falsify local realistic hidden variable
theories and thus support quantum mechanics. In cases
where �=0 we obtain

S = �− 1�2j1+2j2�cos�1 − 3� + cos�1 − 4�

+ cos�2 − 3� − cos�2 − 4�� , �16�

where 1=2j1�1, 2=2j1�2, 3=2j2�3, and 4=2j2�4 are a
set of auxiliary angles, the angles �i being the actual angles
set by Alice and Bob. For the choices 1−3=�, 1−4
=−�, 2−3=−�, and 2−4=−3�, as indicated in Fig. 1,
we obtain S=3 cos �−cos�3�� which obtains its maximum
value 2�2 for �=� /4.

Note that we obtain maximal violations of the Bell-CHSH
inequality �as long as �1=�2=1� for all nonzero values of the
spins j1 and j2 and that we need not have the spins equal. On
the other hand, the measured angles �i must necessarily be
smaller as the spins increase. The presence of the relative

TABLE II. Same as Table I now for the state of Eq. �17� but for a selection of values of �1 and �2.

�1 �2 �1 �2 �3 �4 Smax

1.15 1.15 −1.3139 0.0016 −0.9236 2.4888 2.6750

0.85 1.15 −1.3145 0.0014 −0.9253 2.4904 2.6511

1.3 1.3 −1.8358 0.0025 −0.1142 2.7283 2.5502

0.85 0.65 −1.8536 0.0028 −0.1217 2.7317 2.6129

1.6 2.35 −2.0470 −0.2554 0.1742 2.9120 2.1264

3 3 −1.1490 −0.0754 0.0399 2.5380 1.4204

1.15 1.85 −2.0591 −0.6124 −1.3205 3.1720 2.0629

2.15 3.55 −1.9728 −0.5660 −0.8390 3.0674 0.9689

TABLE I. Results for Smax for the case with j1=3= j2 and the corresponding angles for various values of
�1 and �2. We have used a search algorithm to obtain the angles which yield the maximal violations of the
Bell-CHSH inequality.

�1 �2 �1 �2 �3 �4 Smax

1 1.55 −1.0470 1.8330 3.0030 3.2800 2.8000

1 3.35 −1.0470 1.8330 2.9690 3.3140 2.5960

0.85 3.45 −1.0499 0.2657 0.1822 2.9641 2.4891

0.85 3.65 −1.0500 0.2657 0.1839 2.9623 2.4660

1.15 1.55 −1.0424 0.2715 0.1508 3.0078 2.7336

1.15 3.35 −1.0492 0.2648 0.1791 2.9662 2.5251

0.65 0.65 −1.2966 0.0006 −0.0848 2.6961 2.2293

0.85 0.85 −1.3027 0.0039 −0.1193 2.7463 2.7129

1.15 1.15 −1.3048 0.0023 −0.1228 2.7465 2.7415

1.55 1.55 −1.2961 0.0006 −0.0835 2.6941 2.2154

1.75 1.75 −1.2864 0.0015 −0.0606 2.6574 2.0089

2.55 2.55 −1.2048 0.1026 0.0729 2.6023 1.5931
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phases � other than zero merely shifts the maximum to other
angular differences; the maximal violation is, of course, still
the Tsirelson bound �S�max=2�2.

The Bell-CHSH inequality is violated, though generally
not maximally, for cases where the condition �1=�2=1 does
not hold. In Table I we list some results obtained numerically
using the general form of the correlation function as given in
Eq. �9� for the spins j1=3= j2. We have used a search algo-
rithm for the angles which yield the maximal violations of
the Bell-CHSH inequality �we have excluded relative
maxima�. We find strong violations as long as one of the
parameters, �1 in our case, is near unity �actually in the range
we consider �1=1.00�0.15� while �2 differs significantly
from unity. When both �1 and �2 differ significantly from
unity the violations become weaker and nonexistent for large
enough deviations from unity.

Another entangled spin-coherent state we could consider
is

��� = N���1,j1�1 � ��2,j2�2 + ei��− �1,j1�1 � �− �2,j2�2� , �17�

where the normalization factor is the same as before. In the
special case where �1=�2=1, we find, using the same meth-
ods as above, the correlation function to be C��1 ,�2�
= �−1�2j1+2j2 cos�2j1�1+2j2�2+��. For �=0, the parameter S
now reads as

S = �− 1�2j1+2j2�cos�1 + 3� + cos�1 + 4�

+ cos�2 + 3� − cos�2 + 4�� , �18�

and thus with the choices 1+3=�, 1+4=−�, 2
+3=−�, and 2+4=−3�, one solution of which is for
1,3=� /2 and 2,4=−3� /2, we again find for �=� /4 that
S=2�2.

For the cases where the condition �1=�2=1 does not hold,
we need to decompose Eq. �17� into the angular momentum
basis as in Eq. �6�. The expansion coefficients are now given
by

Am1m2

j1j2 = N�1 + ��1�2�−j1�1 + ��2�2�−j2� 2j1

j1 + m1
�� 2j2

j2 + m2
��1/2

	 �1
j1+m1�2

j2+m2�1 + ei��− 1� j1+j2+m1+m2� , �19�

where the normalization factor is the same as Eq. �5�. Some

numerical results obtained by following the same procedure
as before are tabulated in Table II. Again the Bell-CHSH
inequality is violated over a wide range of parameters.

Finally, we point out that for the special cases where �
=1, the states �1, j� and �−1, j� are orthogonal, i.e.,

−1, j �1, j�=0. Then from Eqs. �3� and �17� with the choices
of the phase �=0 or �, we have a set of mutually orthogonal
Bell states of the form

��1� =
1

�2
��1, j1�1 � �− 1, j2�2 + �− 1, j1�1 � �1, j2�2� ,

��2� =
1
�2

��1, j1�1 � �− 1, j2�2 − �− 1, j1�1 � �1, j2�2� ,

��3� =
1
�2

��1, j1�1 � �1, j2�2 + �− 1, j1�1 � �− 1, j2�2� ,

��4� =
1
�2

��1, j1�1 � �1, j2�2 − �− 1, j1�1 � �− 1, j2�2� , �20�

in complete analogy with the standard set of Bell states. The
difference here, of course, is that each of the spin-coherent
states consists of 2j1,2+1 states in the angular momentum
basis, and j1 need not equal j2.

In summary, we have shown that it is possible to obtain
maximal violations of the Bell-CHSH inequality for an en-
tanglement of distinguishable spin-coherent states, each of
which could be macroscopic. Possible realizations of en-
tangled spin-coherent states of the form of Eq. �3� or of Eq.
�17� in the context of Bose-Einstein condensates and of op-
tical fields will be discussed elsewhere.

We are indebted to Mark Hillery for assistance on a cru-
cial point. This work is supported by U.S. Army, The Re-
search Corporation, and PSC-CUNY.
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