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Abstract

Turning genes on and off is a mechanism by which cells and tissues make phenotypic decisions. Gene network motifs
capable of supporting two or more steady states and thereby providing cells with a plurality of possible phenotypes are
referred to as genetic switches. Modeled on the bases of naturally occurring genetic networks, synthetic biologists have
successfully constructed artificial switches, thus opening a door to new possibilities for improvement of the known, but also
the design of new synthetic genetic circuits. One of many obstacles to overcome in such efforts is to understand and hence
control intrinsic noise which is inherent in all biological systems. For some motifs the noise is negligible; for others,
fluctuations in the particle number can be comparable to its average. Due to their slowed dynamics, motifs with positive
autoregulation tend to be highly sensitive to fluctuations of their chemical environment and are in general very noisy,
especially during transition (switching). In this article we use stochastic simulations (Gillespie algorithm) to model such a
system, in particular a simple bistable motif consisting of a single gene with positive autoregulation. Due to cooperativety,
the dynamical behavior of this kind of motif is reminiscent of an alarm clock – the gene is (nearly) silent for some time after
it is turned on and becomes active very suddenly. We investigate how these sudden transitions are affected by noise and
show that under certain conditions accurate timing can be achieved. We also examine how promoter complexity influences
the accuracy of this timing mechanism.
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Introduction

Genetic circuits bear resemblance to human-made (e. g.

electrical) circuits, in that both types perform a specific function

or functions and are optimized to be robust against stochastic

fluctuations and, in the former case, genetic mutations. However,

the natural optimization of the genetic circuits seems yet

incomplete and in constant flux. Using such naturally occurring

circuits, synthetic biologists make improvements where nature fell

short as well as devise new and novel motifs previously unseen.

Designing genetic circuits has been a major preoccupation by

researchers working in the field of synthetic biology. Thus far, the

record of successfully designed and implemented biological

systems is noteworthy and still growing. Examples of synthetically

constructed systems include: the toggle switch [1], positive

autoregulation motifs [2], gene networks for tuning protein

degradation [3], complex promoters [4] and many others (see

[5,6] and references therein). In order for this trend of success to

continue, it is imperative that both, theoretical modeling and

experimentation, continue to refine existing designs as well as

invent and test new ones.

Network motifs with positive autoregulation have been studied

extensively [7–10] and their functions are well-known: (i) they slow

the response time to stimuli, (ii) they increase the intrinsic noise

and hence variability among a cell population, and (iii) those

capable of supporting more than one steady state can function as

bistable switches. In some cases these functions work together as,

for example, during an epigenic differentiation where the intrinsic

noise can trigger a random transition from low to high protein

concentration, hence giving rise to two different populations of

cells [11–13]. In other cases the delayed response serves the

purpose of filtering short noisy bursts.

Longer delays – several hundred minutes or more – have been

observed in real biological systems as in, for example, certain

genetic circuits that control cell death [14]. Such delay-generating

circuits usually involve motifs containing several genes, which

makes them less ideal as systems to emulate by synthetic biology.

On the other hand, due to greater degree of freedom and

parameter space, circuits comprised of several genes tend to be

more robust against external fluctuations and genetic mutations.

Somewhere between this practical drawback and functional

advantage lies an optimal design for generating controlled delayed

responses.

Our aim here is to model, using stochastic simulation, a bistable

gene switch capable of behaving like an alarm clock and discover

general design principles that would facilitate its construction.

More specifically, we want to know what makes the time of

switching predictable to a high degree of accuracy. Nature gives us

examples of breathtaking accuracy, e. g. in multicellular organisms

which, during gestation, follow a temporal and spacial pattern so

predictable ‘‘it could be used to set a watch’’ [15]. This

observation inspired us to hope that accuracy in the system at

hand was not asking too much.

To narrow the focus of our study, we set out to answer these

three specific questions: (i) Is accurate switching at all possible in

this type of system? (ii) What effects, if any, does the length of the

delay have on this accuracy? (iii) What are the conditions under

which this accuracy is possible?
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Results

0.1 Intrinsic properties of positive feedback
0.1.1 Delayed response to an external input. In systems

with autoregulation, the proteins encoded by a gene themselves

regulate their production rate; they are referred to as transcription

factors (TF). The dynamical behavior of TF concentration, from

now on denoted as y, is shaped by two forces: production and

degradation. In most cases, the degradation term is linearly

dependent on y, whereas the rate of production is generally a more

complicated function of y, e. g. a Hill function, f (y)~yn=(kzyn),
where k is called the Hill coefficient and is related to y1=2, the TF

concentration at which f ~1=2; n is the Hill exponent, an integer

determined by the promoter complexity. Figure (1) is an

illustration of a promoter with two transcription activation sites

(TAS) to which only these specific TFs can bind; this gives rise to

n~2. Figure (2a) shows graphically the dependence of degradation

on the TFs, ky, and several curves representing different

production rates, f (y). The important feature to notice is the

reduced difference between f (y) and ky as compared to the case of

constant production rate, f (y)~1. This means that systems with

positive feedback will always take longer to reach their steady state

than those without, provided their steady states are the same.

Figure (2b) shows the TF concentration dynamics for each case of

f (y) in (2a) governed by the equation _yy(t)~f (y){ky(t).
0.1.2 Bistability and long delays. When more than one TF

is required for transcription initiation, the system may have more

than one stable steady state and can be induced to evolve from one

to another by changing one or more of its parameters (reaction

rates). Among these, the one that most commonly occurs in nature

is the bistable system [16]. In figure (1d), the curve on the right

represents a bistable configuration: the system rests indefinitely in

either of the two stable steady states, 1 or 3 (point 2 is unstable),

corresponding to _yy~0. If the system starts out at point 1, it will

remain there until an external input, e. g. external chemical,

change in environmental conditions (temperature, pH, light) or a

TF from a different gene, modifies one or more of the system

parameters and hence the curve in such a way that point 3

becomes the only available steady state. Figure (2d) illustrates the

dynamics of this arrangement (the point-dashed curve). The initial

rate of net TF production depends on the difference along the

vertical between the curve f (y) and the degradation line, ky. In

principle, this difference can be arbitrarily small, making the

system linger near point 1 for an arbitrarily long time.

We should point out the fact that multi-stability can only be

achieved for n§2. This can be seen in the rectangle within the

graph of Fig. (2c), showing f (y), for which n~1, and ky. Notice

that only points 2 and 3 are present, 3 being the only stable one.

Dynamics of y for this system are shown in the rectangle within

Fig. (2d).

0.1.3 Switching in the presence of noise. When noise is

taken into account, the situation becomes more complicated. If we

define the delay as the time when the TFs reach one third of their

final steady state concentration (this definition is arbitrary), we

should expect to find a distribution of delays centered near the

value predicted by deterministic models.

Though noise will always be present, there can be significant

differences in delay uncertainty between systems with similar

averaged dynamics but different parameter values. Figure (3a–b)

shows a simulation of two such systems, using the Gillespie

algorithm (see section ‘‘Methods’’). At time t = 0 the promoter

binding rate of each system was increased by such amount that the

averaged delay (as defined above) was very similar &250 min.

One can see that while their average profiles are similar, apart

from their final steady state values, their delay distribution is quite

different. In the following sections we investigate the source of this

difference.

0.2 Taming the noise: how to construct a switch with
predictable delays

0.2.1 Deterministic Model. To go beyond the qualitative

description of the system at hand and understand its dynamical

behavior in terms of chemical reactions, we must include in our

model the interactions of the TFs with their TAS (transcription

activation sites). The rate equations then read:

_zz1~2a1ySz2b2z2{b1z1za2yz1, ð1Þ

_zz2~a2yz1{2b2z2, ð2Þ

_xx~rz2zr0{kx, ð3Þ

_yy~Kxzb1z1z2b2z2{(qz2a1Sza2z1)y, ð4Þ

S~(N{z1{z2): ð5Þ

The variables S, x and y represent the concentrations of the free

TAS, mRNA and TF respectively; the other variables, zi, signify

the concentrations of complexes made up of i TFs and S. The

quantity N stands for total DNA copy number; here, it is set to 1.

The parameters ai and bi denote the rate of association and

dissociation between TF and the activation site respectively. One

can write a2~Ca1 where C is the cooperativity factor. When no

cooperativity is present, C~1, we have a1~a2 and b1~b2; in all

that follows (unless noted otherwise), we will consider only this

case, setting ai~a and bi~b. The other parameters, r0, r, K , k, q
denote, in the respective order, the rates for: basal transcription

(when z2~0), maximal transcription (when z2~1), translation,

Figure 1. Schematic diagram of the gene network. The evolution
of mRNA and protein numbers are governed by the six processes
shown: 1: Transcription; 2: mRNA degradation; 3: Translation; 4: Protein
degradation; 5: TF-promoter associations; and 6: TF-promoter disasso-
ciation. Binding of 2 TFs to the promoter (activation site) enhances the
transcription which in turn increases the rate of TF-promoter
association.
doi:10.1371/journal.pone.0047256.g001
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mRNA degradation, and TF degradation. The factor of 2

appearing in Eqs. (1)–(4) comes from the fact that formation of

z1 and dissociation of z2 can happen in two distinctive ways: TF

can bind to one or the other TAS; and, similarly, when two TFs

are bound to S, each has an opportunity to escape. In writing Eq.

(3) we assumed that only by forming complex z2 does the

transcription rate increase from its basal value r0 to r.

For the purpose of unifying our graphical representations of

Fig. (2a–d) and the model we have just defined, one may decouple

Eqs. (1) and (2) from the others by setting Eqs. (2) and (3) to zero

and solving for z1 and z2 in terms of y:

z1~
a1b2y

b1b2z2a1b2yza1a2y2
, ð6Þ

z2~
a1a2y

b1b2z2a1b2yza1a2y2
: ð7Þ

What allows this approximation is the (experimental) observation

that mRNA and TFs take several orders of magnitude longer to

reach equilibrium than z1 and z2. Further steps can be taken by

expressing x and _xx in terms of y and _yy, differentiating Eq. (4), and

Figure 2. Dynamical properties a system with positive feedback. a) Plot of TF degradation rate, ky (k~1) and TF production rate f (y) as a
function of y=ymax – the fraction of TF concentration relative to its final steady state value. The difference f (y){ky is the net production. b) Plot of TF
concentration as a function of time. c) A gene switch in an on (off) postion when (no) input is present: dot-dashed line (dashed line). d) Evolution of
TF concentration for f (y)~1 (solid line), with no input (dashed line), and with input (dot-dashed line). The small frame in (c) and (d) shows the
situation for a single TAS.
doi:10.1371/journal.pone.0047256.g002

Figure 3. Simulation of TF evolution. A unique input was introduced at t~100 min for each case so as to generate a delay of 250 min. While for
clarity only 10 runs are shown, the delay distribution (shown in the boxes) was computed from 100 runs. A clear difference in delay distribution can
be seen between (a) and (b). The parameter values in inverse minutes are: in a) transcription rate r~9:84, translation rate K~1:32, TF association rate
a~0:04, TF dissociation rate, b~179:22 mRNA degradation rate k~0:024, and protein degradation rate q~0:04; and in b) r~16:74, K~3:36,
a~0:13, b~1453:69, k~0:062, and q~0:069.
doi:10.1371/journal.pone.0047256.g003
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inserting to it the newly expressed x and _xx. This leads to:

€yyz(kzq) _yy~K ½rf (y)zr0�{kqy, ð8Þ

where

f (y)~
c1c2y2

1z2c1yzc1c2y2
, c1~

a1

b1

,c2~
a2

b2

: ð9Þ

With the second derivative in Eq. (8) it is now easy to interpret the

right hand side as a force. For the case c1%c2, the function f (y)
acquires its Hill form discussed earlier with k~1=(c1c2).

Note that while the profile of y as a solution of Eq. (8) is only

approximately equal to that which is a solution of the full system,

(1–4)), their fixed points y1, y2 and y3, and x1, x2 and x3 are

identical.

0.2.2 Exploring the parameter space. Once a determin-

istic model is defined, its dynamical properties can be explored as a

function of its parameters. Here we are interested in a specific

dynamical behavior, namely, delayed response to an external

input. We imagine that the switch is in an off position, i. e. the

lowest fixed point, when the input is introduced. The input may be

a signaling molecule which can, in principle, depending on its

type, change the value of any system parameter, or even several of

them. For our study we chose a to be the control parameter. This

is a reasonable choice as in the real systems, e. g. E. coli, many types

of signaling molecules can change the affinity between TFs and

their TAS. Thus, when the input is zero, the affinity of

transcription factor y to bind its activation region is such that

the system has three fixed points (see Figure (2c)). Once the input is

introduced the TFs undergo a conformational change that allows

them to bind more strongly to their activation sites. This shifts the

curve in Fig. (2c) to the left, leaving only the third fixed point

available.

In order to understand how the delay uncertainty depends on

the system parameters, we first selected 275 different parameter

sets, each satisfying the following constraints: 1) the parameter

values were restricted to a realistic range (see the ‘‘Methods

section’’); 2) only those parameter sets for which f (y) had three

positive roots (fixed points) were considered; 3) a lower bound was

placed on the possible values of the first fixed point x1 (no such

bound was imposed on y1), and was increased incrementally after

every parameter set selection; this ensured that large values of x1

were also selected; in the present case the range we chose x1[½6,30�
(the reason for this choice is explained later in the section) 4) the

distance between points y1 and y2 was kept smaller than that

between y2 and y3; without this constraint the dynamical behavior

would not resemble the switch-like profile of Fig. (2d) (dot-dashed

line); and, lastly, 5) only those parameter sets for which the

distance between x1 and x2 was larger than 4
ffiffiffiffiffi
x1
p

were kept; this

constraint served as insurance that the tail of the probability

distribution of mRNA falls off to zero before it reaches the second

fixed point, i. e. its variance is four times smaller than the distance

between x1 and x2, where the variance is taken as
ffiffiffiffiffi
x1
p

, the true

value for constant transcription rate [17]; this, of course, is only an

approximation, as the dependence of f on y is negligible only up to

certain values of y.

Next, in each set we increased a by such a factor that the

numerical solution of Eqs. (1–5) yielded a delayed response of 300

(+5) minutes.

Figure 4. Relative delay shift vs. relative delay uncertainty. This
scatter plot indicates a linear relationship between the relative delay
uncertainty sr and the relative difference of the observed average and
deterministic delay dr . From an engineering point of view, this tells us
that if one manages to reduce sr , dr is likely to be reduced as well.
doi:10.1371/journal.pone.0047256.g004

Figure 5. Uncertainty distributions. Distribution of relative delay uncertainty sr for 2 and 3 TAS for a delay of 300 min (a) and 400 min (b). Each
bar gives the fraction of all cases with sr between the values indicated on the x-axis +2:5 in %.
doi:10.1371/journal.pone.0047256.g005
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Figure 7. Relative delay uncertainty vs. F. Scatter plot of the relative delay uncertainty sr and the function of F (Eq. (12)) for a) 2 TAS,
d~300 min; b) 2 TAS, d~400 min; c) 3 TAS, d~300 min; and d) 3 TAS, d~400 min.
doi:10.1371/journal.pone.0047256.g007

Figure 6. Relative delay uncertainty vs. G. Scatter plot of the relative delay uncertainty sr and the function of G (Eq. (13)) for a) 2 TAS,
d~300 min; b) 2 TAS, d~400 min; c) 3 TAS, d~300 min; and d) 3 TAS, d~400 min.
doi:10.1371/journal.pone.0047256.g006
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Once the parameter sets were selected in this manner, we

performed a stochastic simulation, using the Gillespie algorithm

[18], 100 times for each set. In each run, we started with S~1,

z1~0, z2~0, x~½x1� and y~½y1� at time t~0, where ½:::� means

rounded to the nearest integer, and let the system evolve to its

equilibrium. When the input was introduced, we set the time to

zero again. Each run was terminated when the protein number

exceeded one half of its value at the final steady state; the time of

termination – the delay – was recorded.

We repeated the above procedure with parameter sets in which

all but the value of as were the same. The new as were chosen so

as to obtain delays of 400 minutes. In order to determine what

effect, if any, does promoter complexity have on the accuracy of

delays, we derived equations similar to Eqs. (1)–(5) for three TAS,

instead of two, and repeated the procedure described above.

Based on our results we observed several trends. First, the delays

predicted by Eqs. (1)–(5) are almost always less than the averaged

delays obtained from the stochastic simulations. Second, the

relative delay shifts and delay uncertainties, defined by

dr~
1

t

X
i

(di{t), sr~
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

(di{t)2
r

, ð10Þ

where di is the delay of the ith run and t~300 or 400 minutes,

approximately follow a linear trend as shown in Fig. (4); this

implies that the more the averaged delay differs from the

deterministic delay, the greater the delay uncertainty. Another

trend can be seen in Fig. (5a–b) where we plotted the fraction of

those cases whose sr falls between the range of values indicated on

the x-axis for both, the two and three TAS. From these, one can

draw two conclusions: transcription initiation requiring high

number of activator sites tends to lead to less accurate delays;

and, the longer the delay is the less accurate it is.

0.3 Correlation between the delay uncertainties and
system parameters

Since the system parameters completely define a model, any

stochastic quantity can, in principle, be calculated in terms of

them, whether one uses a stochastic algorithm or the master’s

equation. This is also true for dr and sr. However, obtaining an

analytical expression for, say, sr as a function of the system

parameters is not feasible. The most one can do is find a trend

between some function of the parameters and sr. Earlier we

hypothesized that the initial mRNA number, which is approxi-

mately given by r0=k, is a factor in determining sr. Figure (6a–d)

shows that this trend indeed exists; however, the fact that many

points fall far off the fitting line implies that the story is more

complicated and requires cooperation of the other parameters.

To obtain a more accurate relation between sr and the system

parameters we took an ansatz

F (l)~ P
M

i~1
(li)

ni , ð11Þ

with fl1:::lMg being the set of system parameters and fn1:::nMg a

set of integers, such that
P

i ni~0 (since zero is the dimension of

sr). The best fit is given by

F (l)~
(kq)2

rr0(Ka=b)2
: ð12Þ

Figure (7a–d) shows the plot of the correlation between F (l) and

sr. As a final step, we searched for an optimal linear combination

of k=r0 and F (l) and found that

sr&
k

r0
1zci

kq2

r(Ka=b)2

" #
:G(l), ð13Þ

with c2~0:0724 for two TAS and c3~0:177776 for three TAS,

gives the best fit, which can be seen in Fig. (8a–b).

While Eq. (13) does not provide an exact relation, it does shed

light on the condition that needs to be satisfied in order to

construct a switch with accurate delays, namely that G(l) must be

small. A more general approach, one that does not depend on the

coefficient c, would be to require that F be as small as possible

while keeping r0=k large. To put this into a test, we generated one

hundred parameter sets for two TAS and kept the first five for

which F was the smallest; the same was done on the opposite end,

corresponding to the largest F . For all ten sets, r0=k was kept

above 20. Performing the same stochastic simulations as before

showed that the first group, with small F s, all had sr below 0.1

(10%), while the latter averaged at 18%. We repeated this

procedure, again for two TAS with cooperativity, C,equal to 2,3,4

and 5 (a2~Ca1). Table 1 presents the average scores and

deviations for all ten cases. Regardless of the cooperativity, all five

cases show significant discrepancy in sr between low and high

values of F .

Figure 8. Relative delay uncertainty vs. G. Scatter plot of the relative delay uncertainty sr and the function of G (Eq. (13)) for a) 2 TAS,
d~300 min and d~400 min; b) 3TAS, d~300 min and d~400 min.
doi:10.1371/journal.pone.0047256.g008
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Discussion

In the introduction we posed three specific questions: (i) Is

accuracy in delayed gene switching achievable in the system at

hand? (ii) What effect, if any, does the length of the delay have on

the delay’s accuracy? and (iii) What are the conditions that allow

this type of switch to generate predictable delays? Our study shows

that it is indeed possible to have accurate delays under certain

conditions. With regards to the second question, we found that the

relative variance of the delays is sensitive to the delay’s length: the

longer the delay, the greater the variance tends to be. And finally,

in order to answer the third question, we have derived

approximate phenomenological relations between the system

parameters and the relative delay uncertainties for two and three

TAS and demonstrated that, although these relations are not

exact, they can be reliable in distinguishing systems which support

accurate delays from those that do not.

The reader should keep in mind that all our results were based

on a simple stochastic model that ignored all other sources of

noise, e. g. basal TF complex formation, mRNA splicing, etc.

However, simple models have proven to be useful in the past and

can provide insight into general properties of real systems. By

virtue of its simplicity, our model system can be constructed in

simple organisms such as E. coli [19] and the aforementioned

results can be verified.

Materials and Methods

Each parameter was assigned a random value restricted to a

range based on several experimental sources [20–22] (and

references therein).

Max transcription rate (r) : 2{20 min{1

Min transcription rate (r0) : 6|10{3{0:1 min{1

TF-TAS association rate (a) : 0:01{1 min{1

TF-TAS dissociation rate (b) : 0:01{1 min{1

Translation rate (K) : 0:5{10 min{1

mRNA degradation rate (k) : 0:005{0:1 min{1

TF dissociation rate (q) : 0:005{0:1 min{1

All simulations were done using the Gillespie algorithm [18] in

Mathematica. The chemical reactions for the two TAS are:

Szy ?
a1

z1

z1 ?
b1

Szy

z1zy ?
a2

z2

z2 ?
b2

z1zS

1 ?
r0

x

z2 ?
r

x

x ?
K

y

x ?
k

w

y ?
q

w

where w stands for degradation.

Optimization of the parameters fn1:::nMg, Eq. (11) (there were

constrained to be integers) was done using the default global

minimization algorithm in Mathematica. The fitting parameters,

fc2,c3g, Eq. (13), were calculated analytically by minimizing the

distance function

D~
X

n

kn

r0n

zcFn{sr(n)

� �2

, ð14Þ

for the case of two and three TAS, the result of which is

c~

P
n

Fn½(kn=r0n){sr(n)�P
n

F2
n

, ð15Þ

where n labels a particular parameter set.
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