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Abstract The three-body Schrödinger equation of the H+
2 hydrogen molecular ion is

solved in perimetric coordinates using the Lagrange-mesh method. Energies and wave

functions of the four lowest vibrational bound or quasibound states for total orbital

momenta from 0 to 40 are calculated with high accuracy. A simple calculation using

the associated Gauss quadrature provides accurate quadrupole transition probabilities

per time unit between those states over the whole rotational bands.
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1 Introduction

The H+
2 bound rotational-vibrational spectrum possesses about 420 bound states as

well as about 60 narrow quasibound levels corresponding to the Σg electronic configu-

ration and three loosely bound states corresponding to the Σu electronic configuration.

For this simple three-body system, the Schrödinger equation involving Coulomb po-

tentials can be solved with a high accuracy for both energies and wave functions.

Because of the symmetry of the two protons, electric dipole transitions are forbid-

den. The more complicated electric quadrupole transitions are the dominant mode of

deexcitation. A systematic study of all transitions for states up to L = 20 within the

Born-Oppenheimer approximation has been published with two significant figures in

Ref. [1]. We present accurate E2 transition probabilities without Born-Oppenheimer

approximation [2]. They are obtained from three-body wave functions calculated with

the Lagrange-mesh method in perimetric coordinates [3]. The Lagrange-mesh method

is an approximate variational calculation using a basis of Lagrange functions and the

associated Gauss quadrature [4]. It has the high accuracy of a variational approxima-

tion and the simplicity of a calculation on a mesh [5].
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2 Transition probabilities with Lagrange-mesh method in perimetric

coordinates

For the three-body Schrödinger equation with central two-body forces, the total orbital

momentum L and parity π are good quantum numbers. The rovibrational states in

the Σg band are characterized by Lπ and the level of excitation v, equivalent to the

vibration quantum number. The parity and the proton spatial symmetry are both given

by (−1)L.

If atomic units are used, the oscillator strength for a transition with multipolarity

λ from an initial state (Li, vi) with energy Ei to a final state (Lf , vf ) with energy Ef

reads

f
(λ)
i→f =

(2λ+ 1)(λ+ 1)

[(2λ+ 1)!!]2λ
α2λ−2

(

Ef − Ei

)2λ−1 S
(λ)
if

2Ji + 1
, (1)

where α is the fine-structure constant, S
(λ)
if = |〈Livi||O

(λ)||Lfvf 〉|
2 and O

(λ)
µ is the

electric multipole operator. The transition probability per time unit for Ef < Ei is

given by

W
(λ)
i→f = 2α3(Ei − Ef )

2f
(λ)
i→f . (2)

For H+
2 , the electric dipole operator is proportional to the electron coordinate and is

therefore odd. Transitions within the Σg bands are thus forbidden.

The coordinates are expressed as three Euler angles ψ, θ, φ defining the orientation

of the triangle formed by the three particles, and three internal coordinates x, y, z

describing the shape of this triangle [6]. Each of these coordinates is the sum of two of

the side lengths of the triangle minus the third one. The wave function is expanded as

Ψ
(Lπ)
M =

L
∑

K=0

DLπ
MK(ψ, θ, φ)Φ

(Lπ)
K (x, y, z), (3)

where DLπ
MK(ψ, θ, φ) are normalized parity-projected Wigner functions. In practice, the

sum over K can be truncated at some value Kmax.

The perimetric functions Φ
(Lπ)
K (x, y, z) are expanded in Lagrange functions [4,5]

Fijk(x, y, z) ∝
LN (x/h)

x− hui

LN (y/h)

y − hvj

LNz
(z/hz)

z − hzwk
e−(x+y)/2he−z/2hz (4)

where the mesh points ui, vj , wk are defined by LN (ui) = 0, LN (vj) = 0, LNz
(wk) = 0

and h and hz are scale parameters. Because of the symmetry of the protons, the

expansion must be symmetric with respect to x and y. This basis is equivalent to a

basis of products of Laguerre polynomials times the square root of the product of their

weight functions. The Lagrange functions verify the Lagrange property

Fijk(hui′ , hvj′ , hzwk′) ∝ δii′δjj′δkk′ , (5)

i.e. they vanish at all mesh points but one. Because of this property, when the consistent

Gauss quadrature is used, the variational approximation of the Schrödinger equation

takes the simple form of mesh equations. The potential terms are given by

〈Fijk|V (x, y, z)|Fi′j′k′〉 ≈ V (hui, hvj , hzwk)δii′δjj′δkk′ . (6)

The potential matrix is diagonal and no integrals are required. The transition proba-

bilities (2) are then also easily evaluated with the same Gauss quadrature.
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Fig. 1 Energy levels of calculated wave functions in the four lowest rotational bands.

Table 1 Convergence of energies Ei and Ef and of transition probability W with respect to
N and Nz for the (30+, 2) → (32+, 0) transition.

N Nz Ei(30
+, 2) Ef (32

+, 0) W (10−10s−1)

30 20 −0.508 263 395 −0.511 783 811 69 2.391 488
35 20 −0.508 263 437 6 −0.511 783 811 805 9 2.391 465 808
40 20 −0.508 263 438 21 −0.511 783 811 807 25 2.391 465 579
40 30 −0.508 263 438 21 −0.511 783 811 807 25 2.391 465 577
Ref. [7] −0.508 263 438 18 −0.511 783 811 71

3 Results

The mesh equations are solved with N = 40 and Nz = 20 (h = 0.14, hz = 0.4) and

Kmax = 2. The calculated states, i.e. v = 0− 3 for L = 0− 40, are depicted in Fig. 1.

The convergence of the energies and of the transition probabilities is illustrated in

Table 1 for the transition between the (30+, 2) and (32+, 0) states. It is typical of all

calculated states [2]. The accuracy on the energies reaches 13 digits for v = 0 and 11

digits for v = 2. The transition probability displays a convergence at 10 digits with

respect to N and Nz . However the accuracy is limited to 6-7 digits with Kmax = 2

because of the neglect of interference terms like between K = 0 and K′ = 3.

Oscillator strengths are displayed in Fig. 2 for all transitions with Lf = Li +

2 between the states of Fig. 1. The oscillator strengths decrease when ∆v = |vi −

vf | increases. The ∆v = 1 strengths vanish near L = 20 where the direction of the

transition changes (see arrows in Fig. 1). They also vanish when the reduced matrix

element Sif changes sign.

The lifetimes of the different states are displayed in Fig. 3. They are very long in

the v = 0 band for L < 15. The lifetime of the L = 2 vibrational ground state is 3300

years. The lifetimes of the other states are comprised between 4 and 20 days.
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Fig. 2 Oscillator strengths relating Li and Lf = Li + 2.
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Fig. 3 Lifetimes of the states in the four lowest rotational bands.

4 Conclusion

The Lagrange-mesh method in perimetric coordinates does not only provide accurate

energies but also accurate wave functions. With these wave functions we have deter-

mined 6-digits transition probabilities [2]. The same wave functions can be used to

calculate other observables such as the static and dynamic polarizabilities of H+
2 [8].
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