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Abstract

We consider the situation where a basic preconditioner is improved with a coarse
grid correction. The latter can be implemented either additively (like in the standard
additive Schwarz method) or multiplicatively (like in the balancing preconditioner).
In a previous study, Nabben and Vuik compare both variants, and state that a the-
oretical comparison of the condition numbers is not possible: whereas it is admitted
that the condition number is in most cases smaller with the multiplicative variant,
they provide an example for which the converse is true. Here we show that the
multiplicative variant has in fact always lower condition number when the basic pre-
conditioner is appropriately scaled. On the other hand, we also show, again assuming
an appropriate scaling, that the condition number of the additive variant is at worst
a modest multiple of that of the multiplicative variant. Hence both approaches are
qualitatively equivalent. Eventually, we show with some examples that both the up-
per and lower bounds on the condition number of the additive variant are sharp: it
can be in some cases equal to the condition number of the multiplicative variant, and
in other cases arbitrarily close to the aforementioned modest multiple of this latter
value.

Key words. multigrid, domain decomposition, convergence analysis, coarse grid
correction, preconditioning

AMS subject classification. 65F10, 65F08, 656N55

*Supported by the Belgian F.R.S-FNRS (“Directeur de recherches”); ynotay@ulb.ac.be
fSupported by the Belgian F.R.S-FNRS (“Aspirant”); anapov@ulb.ac.be


http://dx.doi.org/10.1016/j.apnum.2012.12.001

1 Introduction
We consider the iterative solution of large sparse n x n linear systems
Au = b (1.1)

with symmetric positive definite (SPD) coefficient matrix A. It is common to perform this
solution by combining the conjugate gradient method [I3] with some SPD preconditioner
M that approximates the system matrix while remaining cheap to construct and invert
(see, e.g., [1, 10, 25] for examples). The convergence rate then mainly depends on the
spectral condition number

A (M1 A)

/@(M—lA) = —)\min(MilA) ,

where Apax(+) and Ayin(+) stand for the smallest and the largest eigenvalue, respectively.

In practical applications, A has often some very small eigenvalues, and standard pre-
conditioners may fail to move them sufficiently away from 0; i.e., M~'A has still some
fairly small eigenvalues. This may be cured by supplementing the action of the precondi-
tioner with a coarse grid correction step, in which an approximate solution of the residual
equation is computed on a coarser grid. This combination of basic preconditioner and
coarse grid correction is at the root of multigrid methods (e.g., [12, 28]), where the basic
preconditioner is called smoother. In the context of these methods, the number of coarse
unknowns is generally large and the coarse grid system is therefore solved only approxi-
mately, combining again a smoothing iteration and a coarse grid correction (the latter is
thus used recursively).

Coarse grid correction is also used in a number of other methods. Often, the (first)
coarse grid has then sufficiently few unknowns to make affordable an exact solution of
the corresponding system (no need for recursive use). This includes domain decomposition
methods (e.g., [24] 26, 27]), where the coarse grid has usually only a few unknowns per sub-
domain, and also approaches where one attempts to approximate directly the eigenvectors
of M~ A corresponding to small eigenvalues [9], 30, 3] 132]; see also [22, 23].

To define a coarse grid correction one needs to set up a n X n, rectangular matrix which
“prolongates” on the fine grid a vector defined on a coarse grid with n. unknowns. Ideally,
the range of P should span a subspace containing good approximations of the eigenmodes
that are converging slowly with the basic preconditioner M. Given P, the coarse grid
correction step is implemented with

B. = P(PTAP)'PT .

There are basically two ways to combine it with the preconditioner M at hand. One is
additive and amounts to use as inverse preconditioner (that is, as approximation to A™!)

By, = wM™ + P(PTAP)'PT | (1.2)



where w > 0 is scaling parameter. This approach is followed in, e.g., [22, 23] and in
standard two-level additive Schwarz methods [3, 5 [6, 24 26, 27]. Often, the scaling is
applied instead to the coarse grid correction term. This is however unimportant when
B, . is used as preconditioner for the conjugate gradient method since then only the
relative scaling of both terms matters.

On the other hand, a multiplicative correction is obtained by first considering a station-
ary iteration with the basic preconditioner followed by a coarse grid correction step. The
resulting iteration matrix is

Tow = (I—-PPTAP)'PTAY (I —wMA),

and the equivalent inverse preconditioner is the matrix B,, ,, such that I -B,, , A =1T,, . ;
this yields

By = PPPAP)'PT + oM™ — wP(PTAP)'PTAM™. (1.3)

This preconditioner is used, e.g., in the two-level hybrid Schwarz method as defined in [26],
Algorithm 2.3.5]. It is nonsymmetric and can therefore not be used with the conjugate
gradient method. A symmetric version is obtained by performing the coarse grid correction
twice; that is, defining the inverse preconditioner B,,, ., such that I — B,, A =T, «
with

T w = ([ —=P(PTAP)'PTAY (I —wM A (I - P(PTAP)'PT A) .
This yields

Bp..w = P(PTAP)'PT + w(I—P(PTAP)'PTAYM ' (I-APPTAP)'PT)

(1.4)
which is used in the two-level hybrid Schwarz method as defined in [27, eq. (2.11)], and
in the balancing Neumann-Neumann domain decomposition methods [14, [16, 26] 27].
Because the form ([L4]) first appeared in the latter context, this variant is sometimes
called balancing preconditioner. B,,, . is in general more costly to apply than B,,
but, as pointed out in [27, Section 2.5.2], if one uses the conjugate gradient method with
uy = P(PTAP)"'PTb as initial approximation, all residual vectors are kept orthogonal
to the range of P and hence the application of B,,, . requires in practice only the multi-
plication by w (I — P(PTAP)*PT A)M~L.

An important remark here is that B, , A and B,,, . A have identical eigenvalues.
Indeed, for any pair of square matrices F' and G, F'G and G F have same set of eigen-
values (see, e.g., 21, Lemma A.1] for a proof covering the case where both F' and G
are singular). Hence, Ty, » = T o(I — P(PTAP)™'PT A) has same eigenvalues as
(I —P(PTAP)'PTA)T,, o = Ty, Since By, . is positive definite, the eigenvalues
of By, ., A are therefore real and positive, and one has in particular

)\max(Bm,w A) - )\max(Bms ,w A) 3 Amin(Bm ,w A) - )\min(Bms S w A)



and

K(Bm,wA) = K(Bp, »A) .

In the following, we formulate our results with respect to the eigenvalues of B,,, , A, but
one should keep in mind that they apply verbatim to B,, ,, A as well.

In the context of multigrid methods, the symmetrization is generally performed differ-
ently, applying smoothing iterations both before and after the coarse grid correction step.
If M; is the pre-smoother and M, the post-smoother, the iteration matrix for a two-level
method is then

Trg = (I —My"A) (I — P(PTAP)'PT A) (I — M['A) , (1.5)

and the corresponding inverse preconditioner B,,,, defined from I — B,,jA = T,,,, is
symmetric when M; = M . Here, one may note that T},, has same eigenvalues as

(I—P(PTAP)'PTA)(I-M*A)(I-M;*A) = I-PPTAP)'PTA)(I-M'A),
where M is the matrix such that
(I-M1A) = (I-M7A) I —-M'A); (1.6)

that is, M is the equivalent preconditioner which brings in one step the effect of post-
smoothing followed by pre-smoothing. It follows that B,,,A has same eigenvalues as B,, 1 A
(and By, 1A) with M defined in this way. Therefore, the analysis below also indirectly
applies to the standard form of multigrid preconditioning. Note that this requires M SPD,
which is in fact a natural condition to ensure that B,,, is SPD, see, e.g., [, 20].

Now, the purpose of this work is to compare the condition numbers (B, ., A) and
K(Bm, » A) associated with the additive and multiplicative variants. The theoretical anal-
yses in [II] and [29, Section 5.7] allow to bound the convergence of the multiplicative
method as a function of the condition number of the corresponding additive precondi-
tioner. However, these analyses involve extra factors; i.e., they are not accurate enough
to tell which method is better. From a practical viewpoint, it is observed in [26] 27] that
the multiplicative variant has often better convergence properties, and it is suggested in
[15], that the multiplicative variant has always lower condition number. However, in [19]
an example is provided showing that the converse can be true. Here we solve the issue by
taking into account the scaling parameter w . It is indeed clear that multiplicative iteration
matrices like T}, ., or T, ., can be effective only if the basic preconditioner is properly
scaled. In fact, we prove that the multiplicative variant has always lower condition number
if W Apax(M~LA) is equal to or slightly larger than 1.

On the other hand, to our knowledge, there is so far no general bound on the condition
number of the additive variant that would depend only on the condition number of the mul-
tiplicative variant. Hence one could not guarantee anything for an additive implementation
using solely the convergence analysis of a method based on the multiplicative implemen-
tation (like, e.g., the analysis of the balancing Neumann-Neumann domain decomposition
method [27]). In this paper, we show on the contrary that x(B, , A) is at worst a modest

4



multiple of k(B,,, , A). Here again, this requires a proper scaling of the basic precon-
ditioner, namely that w Apax (M ~1A) &~ 1. In particular, the choice w = Apax(M1A)™1
yields k(By w A) < 4K(Bp, wA).

We have thus a two-sided bound on x(B, ., A). Eventually, we provide examples show-
ing that x(B, ., A) may be arbitrarily close to either limit, and hence that both upper and
lower bounds are sharp.

Note that, besides the additive and multiplicative implementations referred above, a
coarse grid correction may also be used for deflation [9 17, B0, BT, 32]. This amounts
to decompose the solution of the linear systems in two components, one in the range
of P and one in a complementary subspace. Since the former is easy to compute, the
preconditioned system can be deflated; that is, the iterative solution process is run in a
restricted subspace, in which it has better (effective) condition number. We do not discuss
this approach here because we have little to add to the extensive comparison by Nabben
and Vuik with the additive and multiplicative variants [I7, I§]. In fact, it is shown in [1§]
that the conjugate gradient method combined with either the deflation or the symmetrized
multiplicative preconditioner B,, . produces identical iterates if the latter is used with the
special starting vector ug = P(PTA P)~'PTb mentioned above, whereas the zero vector
is used as initial approximation for deflation. Moreover, the spectrum of B,,, ., A is the
spectrum of the deflated system with, in addition, the eigenvalue 1. Hence both approaches
are very close to each other. Regarding the additive variant, the main result in [I7] is a
proof that deflation always leads to lower condition number. A detailed analysis is also
given for the special case where the range of P coincides with an invariant subspace of A .

The paper is organized as follows. Our general analysis is developed in §2 and is
supplemented in §3] with the detailed investigation of two particular examples. Concluding
remarks are given in ¢4l

2 Analysis
The following constant plays an important role in our analysis:

g 2" M (I — P(P"M P)~'P" M) z )
wo= max( ) ’ zelgilf?d\}EO} 2T Az : ( : )

Note that, equivalently, u may be defined as the smallest number such that the following
weak approximation condition holds:

I

Yu e §Rn dv € §Rn such that Hu — PV”?\/I S m HV”IQL‘ .

(2.2)

Ithe deflated system has n. zero eigenvalues, which plays however no role in the solution process



It is also worth noting that u > 1 since

z' Az z" M(I — P(PTM P)"'PT)z
e VP zl Az
z! M([ — P(PTM P)_1PT) z
> max
z ZTMZ
= 1.

Theorem 2.] contains our analysis of the multiplicative scheme. The role of p is well
known in this context, and the stated results are straightforward corollaries of Theorem 2.1
in [21], which, in the symmetric case, is itself only a slight extension of the analysis in [§] (see
also Section 3.2 in [29]); the extension allows to cover arbitrary positive definite matrix M
whereas the original result was restricted to matrices M defined via (L) with M; = M .

Theorem 2.1 (Multiplicative variant) Let A, M be n x n SPD matrices and let P be
anxn, matriz of rank n. < n. Let By, ., and p be defined by (L4) and 2.1]), respectively.
Setting Ay = Amax (M1 A) , there holds

1 < Apax(Bm, wA4) < max(l,wAy), (2.3)
A
Amin(Bm. A) = min (1“’—”’) (2.4)
i
and
max (—— 1) < k(B A) < max e — wAy |- (2.5)
W = s > - min(1,w Ay)

Moreover, the upper bound (2.3)) is minimal for any w such that
1 < wly <, (2.6)

and in this case one has

—— < K(Bm, oA < u. 2.7
S S KB d) < 27)

Proof. By Theorem 2.1 in [21], B,, ., A as defined by (L3) has n. times the eigenvalue 1,
and the remaining n — n,. eigenvalues are the inverse of the nonzero eigenvalues of

w At M(I — P(PTM P)~'PT M) . Since B,,, , A and B,, ,, A have the same eigenval-
ues, this yields (2.4) and the left inequality (Z3); the right inequality (2.3]) is proved in
[21], Corollary 2.1]. Combining (Z4) and (23] gives

max (L 1) < K(Bm,,wA) < max(l,wAy) - max (LL)

Wiy W A

v
_ L why, — M
e ( A min(l,w)\M)) ’



hence (21 since g > 1. The last result (2.7)) is straightforward to check from (2.5]). u

The next theorem contains our results for the additive scheme. It is novel in several
aspect. Firstly, additive schemes are seemingly for the first time analyzed in term of the
constant p defined in (2.1]) or (Z2). Next we provide both upper and lower bounds, showing
that the role of this constant is as crucial as it is for the multiplicative scheme.

Theorem 2.2 (Additive variant) Let A, M be nxn SPD matrices and let P be a nxn,.
matriz of rank n. <n. Let B, ., and p defined by (L2) and [2.10), respectively.
Setting Ay = Amax(MYA) , there holds

max(l, wAy) < Aax(Ba,wA) < 14+wiy, (2.8)
1
@ Z )\min(Ba wA) Z W)\M (29)
% ’ 1—|—w)\M %
and a )2
iz +wWAM
- < k(B, ,A) < - 2.1
min(l,wAy) — MBawd) < 1 w Ay (2.10)
In particular,
p < min k(By wA) < 4p. (2.11)

Proof.  Amax(Ba.w A) cannot be smaller than the maximum of A\yax (M1 A) and A\pan (P A7 PT A)
(= 1), and cannot be larger than their sum, hence (2.8)). To prove ([29), let A, = PTAP,
M,=PT'MP and S. = A, + w M, . One has

(WM™ +PA'PT) (0 'M —w M PS;'PTM)
= I+w'PA =S —w AT M.S Y PT M
= I +w!'PANS.— A, —w 'M)S P PTM
=1

Y

hence B, |, = w™'M—w™>M P S;'P" M (which could also be concluded from the Sherman-
Morrison-Woodbury formula, see, e.g, [10, p. 50]). Moreover,

wHwM ' =S NS, AT M, = w N wM 'S, —1)A' M, = T,

(¢

showing that

WMt =87 = w(Sc AT M) T = w (Mo w T MAM,)

Therefore, plugging into the above expression of B ’lw the expression of S;! that can be
deduced from this relation, one obtains

By, =w ' (M—-MPM'"P"M +MP (M, +w 'MA'M,)"'P"M) .



Hence, for any z € R"\{0},

sz_lM(I—PMc_lpT)z < zTBa*’lwz
z' Az - zT Az
2" w ' M(I - PM'P" M)z + 2" M PM;'A-M;'PT Mz
- z' Az

and therefore, since A, = PTAP,
U

IN

A (A1B7L) < PMPTM|? .
W)\M ( a,w) = W)\M + H c ”A

Since Amax(A™'B; ) = Amin(Ba,w A) ", this shows the left inequality (2.9). The right one
also follows because P M PT M is a projector, hence ||P M 'PTM| 4 = ||[[-P M 'PTM|| 4
by Kato’s Lemma (e.g., [29, Lemma 3.6]), whereas, letting # = I — P M 1PTM |

AR

U VE
_ 't Mnrz 2" 7T Arn z
ToAM A zI'mT Ar z zl' Az
2T M7z 2’ T A7 oz
= Au . 2Tl Arz o zT' Az
>l -

Eventually, the inequalities (2.10) are straightforward consequences of ([2.8)), (2.9), whereas
the last result (2.7)) is straightforward to check from (Z.I0). m

In Theorem below, we eventually compare both variants. This theorem directly
follows from the two previous ones and highlights the main results of our analysis: on the
one hand, the condition number of the additive method is at worst a modest multiple of
the condition number of the multiplicative method; on the other hand, with an appropriate
scaling, the multiplicative method is always faster.

Theorem 2.3 (Comparison) Let A, M be n x n SPD matrices and let P be a n X n,
matriz of rank n. < n. Let B, ,,, Bm, v, be given by (L2), (L), with w = w, and
W = Wy, , respectively.

If w,, = w, , there holds

K(Ba.wy, A) < KBy o A) (1 +wa Aar)? (2.12)
and if wp Ay < p, one has
K(Ba w, A) > K(Bmy wn A) - (2.13)

for any w, > 0.



Proof. The inequality (2.12]) is obtained by combining the right inequality (ZI0) with the
left inequality (2.7]), and (2.13)) is obtained by combining the left inequality (2.10) with the
right inequality (2.5]) (the given condition on w,, ensuring that the maximum in the right
hand side of (23]) is the first of the two terms, which is just the lower bound in (2.I0)).
u

We first comment on the condition (2.6 to have minimal upper bound on the condi-
tion number of the multiplicative method. It also guarantees, see (Z.13)), that the condition
number of this method is always better than that of the additive one. In a number of ap-
plications this condition is easy to met. With, incomplete LU factorization preconditioning
[22 23], the largest eigenvalue of the preconditioned system . (Mt A) is slightly larger
than 1 and hence, for realistic values of u, (2.6]) holds with w = 1; i.e., no additional scal-
ing is needed. With additive Schwarz preconditioning [24], 26], 27], a sharp upper bound
on As is known and hence it is not difficult to select w such that w Ay &~ 1. On the other
hand, when applying our analysis to symmetric two-grid schemes defined from (LH) (with
M; = M), one is restricted to w = 1: it is not possible to rescale M because it is only im-
plicitly defined from (L6)). However, for any M such that (L) holds with M; = Ml one
has [ — AY2M~1AY? = (1 — AV2 M AV (T — AV2M T AY?) . Hence T — AY2M 1 AY? is
nonnegative definite, entailing that Ay, < 1, with, in fact, near equality in most practical
situations. Then, (2.6]) is also (approximately) satisfied, although only w = 1 is feasible.

Now, considering also the lower bound (2Z.7)) on x(B,,, . A), it seems advantageous to
further select w such that w Ay approaches p. Then, k(B,,, ., A) may indeed be signif-
icantly smaller than its upper bound. However, this remark is of little practical interest
because how large is u is often unknown. Moreover, it follows from Statement 4 of The-
orem 2.1 in [21] that Apax(Bm, «A) is in fact the maximum between 1 and the largest
eigenvalue of w AY2M =1 A2 projected orthogonally onto a given n — n. dimensional sub-
space. If M~!A has many eigenvalues close to the largest one, the upper bounds in (2.3)),
(2.5) and (2.7) are then likely very tight. Hence there is little hope to really improve the
conditioning by raising w up to the upper limit indicated in (2.6).

Regarding the additive method, the lower bound (2I0) on k(B, . A) is optimal for
any w > \,; , whereas the upper bound is minimized when w = \;; . In the latter case,
the condition number of the additive preconditioner is at most four times that of the
multiplicative variant, which is itself equal to its optimal upper bound p. As seen on
an example below, the scaling factor that effectively minimizes x(B, , A) may however
differ from the best theoretical value w = A}/ . The additive variant is actually somehow
sensitive to the scaling of the basic preconditioner, in fact more than the multiplicative
variant for which only the condition (2.6]) is important. This is a further advantage of the
latter, besides a lower condition number, which is guaranteed as soon as w Ay < pt.

3 Examples

Regarding B,,, , A, our analysis in Theorem 2.1l produces an identity for A, and an
upper bound for A...; the latter, according to the discussion above, is expected to be



accurate in practical situations even in cases where the interval defined in (2.3) would
not be tight. On the other hand, more uncertainty is left on the eigenvalues of B, , A;
in particular, there is a factor of (1 + w Ayr)? between the upper bound ([2I2) and the
lower bound (Z.I3]) on the condition number. In this sections we show that our analysis is
nevertheless sharp in the sense that, in some cases (as in Example 1) (B, ., A) is indeed
equal to its lower bound, whereas in other cases (as in Example 2) it can be arbitrarily
close to the upper bound.

The setting of the examples is kept simple to allow the derivation of meaningful ex-
pressions for the eigenvalues, but general enough to bring some perspective on realistic
problems. In both cases, we consider prolongations of the form

o (9).

where the identity block is of size n. x n.. This prolongation structure resembles to the
one of (generalized) hierarchical basis methods [2], 4, [33]. We further restrict ourselves to
M = I; that is, the coarse grid correction aims to accelerate simple Richardson iterations.
Note that we have then

M(I—P(P"™MP)'P"M) = <é 8) : (3.1)

Example 1

In the first example, we consider a block diagonal system matrix

Ap
A = :
(" 1)

This example is thus along the line of the analyzes that consider the case where the columns
of P are (linear combinations of) the eigenvectors of A corresponding to the the n. smallest
eigenvalues [9, 17, 18, 22 23]. Here we are slightly more general, and we just assume, for
the sake of simplicity, that Apax(A11) > Amax(Asgo) ; hence

>\M = )\maX(A) = )\maX(All) .

Note that withn =2, n, =1, w =1, Apax(A11) = Amin(A11) = 101 and A\ax(Asn) =
Amin(Ag2) = 100, one recovers as a particular case the example in [I9] that demonstrates
that additive coarse grid correction may lead to smaller condition number.

Now, since

-12-1
w ATV M(I - P(PPM P)"'PTM) = (“’ 6411 8) , (3.2)

we have

on = K,(AH).
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On the other hand, one may check (by direct computation or using |21, Theorem 2.1]) that
the eigenvalues of By, ., A are the inverse of the nonzero eigenvalues of the matrix (3.2))
plus n. times the eigenvalue 1, which yields

Amax(Bm, wA) = max(w Amax(A11), 1) = max(wAy, 1),
Anin(Bn, o A) = min(w Apin(Ap) , 1) = min (220, 1)
Hence we reproduce (2.4]) whereas A\« is equal to its upper bound (23]). We have then
K(Bm,,wA) = w(An) = p
if

1 1
w

- <w <
Amax(A11)  Amin(A11)
which is nothing but the condition (2.6]).
On the other hand, direct computations yield

)\max(Ba,w A) - max(w )\max(All) 5 1+w )\max(AZQ))

— max (w)\M, 14wy ;:75;‘22;) , (3.3)
)\min(BaA) = min<w )\min(A11> ) 1+w )\min(A22))
— min (% 1+w)\min(A22)> . (3.4)

These expressions are well in agreement with ([2.8), (2.9) (since Apax(A22) < Amax(A11) by
assumption, whereas the lower bound in (2.9) is always lower than 1). In particular, Ay
is equal to its lower bound (2.8)) if the maximum in the right hand side of (3.3)) is the first
of the two terms, whereas A\, is equal to its upper bound (2.9) if the minimum in the
right hand side of (3.4) is also the first of the two terms; then one has:

K(By,wA) = Kk(An) = p. (3.5)

The conditions to obtain this are, on the one hand w > (Amax(A11) — Amax(A22)) ™" (for
having the first term in the right hand side of ([33) larger than the second one), and on
the other hand either Apin(A11) < Amin(As2) or w < (Amin(A11) — Amin(A22)) ™t (for having
the first term in the right hand side of (8.4) smaller than the second one). Considering
both requirements altogether, (3.5]) thus holds if either

1

)\min A - )\min A S d S
(A1) (A22) 0 an Amax (A11) — Amax(A22) ¢

or

O S )\min(All) - )\min(AZZ) S )\maX(All) - )\maX(AZQ)

1 1
and < w < .
Amax(A11) — Amax(A2e) — T Amin(A11) = Amin(A22)
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Hence if A\pin(A11) — Amin(A22) < Amax(A11) — Amax(Aso) , the additive variant is as
efficient as the multiplicative one for some range of the scaling parameter w. This range

can be wide, but it does not contain the value w = )\]Tj that optimizes the upper bound in
(210). For this latter value,

K(Ba.wA) = K(An) <1+%) .

On the other hand, if Apnin(A11) — Amin(A22) > Amax(A11) — Amax(As2) , one may check that
K(Bg,wA) > Kk(Aqq) for any w.

Example 2

To analyze the next example, the following lemma is useful.

al CT
A= (c bI)

Lemma 3.1 The matriz

has extremal eigenvalues

a+b++/(a—0)?%+4]|C|?
)\max<A) = \/ 9 )

a+b—+/(a—0b)2+4]C|>?
i :

)\min(A) =

Proof. Let ny, ny be the size of the top left and bottom right blocks, respectively. Without
loss of generality (both blocks play a symmetric role), we assume ny > ny. From

det BH 312 = det(Bn) det(BQQ — Bngl_llBlg) s
By B
one finds, assuming \ # a,

det(A—XI) = det ((a —A),,) det ((b— A1, — (a—N)"'CCT)
= (a=A)""" det ((a—N)(b— NI, —CCT).

Hence ) is an eigenvalue of A that is not equal to a if and only if
(a=AN)b=XN)—v; =0,

where v; is an eigenvalue of C'CT . Noting that all these v; are nonnegative, one sees that
the largest \ (# a) is obtained by taking the largest of the two roots with the largest v;,
and that the smallest A is obtained by taking the smallest of the two roots with again the
largest v;. Knowing that the largest eigenvalue of CTC is ||C||?, the proof is completed

12



by noting that a can be neither smaller than the given expression for Ay, (A) nor larger
than the given expression for Ap.x(A) . u

In our second example we consider

4 — ((1—(}&)[ (1€T5)[) |

where C' is any matrix of appropriate size and where «, § are positive parameters. We
also assume A scaled in such a way that A\yy = Apax(M1A) = A\pax(A) = 1. With the
above lemma, one may check that this holds if and only if

ICII* = af. (3.6)
On the other hand, with this condition, Lemma [B.1] also implies
)\min(A) = 1—0(—ﬁ .
Because the present study is restricted to symmetric positive definite matrices, we therefore
assume o + § < 1. We also restrict ourselves to the case n. < n —n., where n,. is the size
of the bottom right block.
Now, (3] implies that

wlSTt 0
w ATV M(I - P(P"TM P)'PTM) = ( *A 0) : (3.7)

where Sy = (1 — a)l — (1 — 8)7'CTC is the Schur complement of A taken with respect
to its bottom right block, and where the exact expression of the block denoted by a * is
unimportant. It follows that, using (B.6),

1 1 18

T A=l —(1=5)C7C)  1—a-£Z  XmlA)

Further, one may check (by direct computation or using |21, Theorem 2.1]) that the eigen-
values of B,,, , A are the inverse of the nonzero eigenvalues of the matrix (31) plus n.
times the eigenvalue 1. Moreover, the condition n. < n — n, implies that the smallest
eigenvalue of CTC is equal to zero, hence

Amax(Bm, wA) = max(1l, w(l —«))

(in agreement with (2.3) since A\py =1 > 1 — a) and

(A
)\min(BmS7w A) = min (1, M) = mmin (17 g)
1-p It

(as expected, we reproduce (24])). Therefore, since u(l —a) > 1,

2 ; 1
if wiy < -

R P it

wAM
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Here one can thus obtain a condition number smaller than p by choosing w close to its
upper limit in (2.6]). Note, however, that

1—a = dam(A) + 8 = 1— (1t — DAmin(A) .

Then, recall that we wish to consider a realistic situation. A coarse grid correction is
useful if A\pin(A) = k(A)™! is pretty small, and further one should have 1 << Apin(A)™*
since otherwise the coarse grid correction would not be efficient. This implies 1 — a ~ 1
and the optimal condition number is not significantly smaller than .

On the other hand,

hence, letting £ = {/w (w + ﬁ) ;

 (w(l =) cct
BilbABLL = ( cc <w<1—5>+1>1)'

Lemma [3.1] then yields, with (3.6,

DA (BywA) = w(@—a—B)+1%/(1+wla—B) +4&|C|?

min

= W1+ Anin(A)) +1£ \/(1 +wla—B)° +4wkaf+4wa/(1-p)
— (1 Ain(A) + 14/ (1 —w(a + 8)) +4wa(l + B/(1 - B))

— (1 A A) + 1 (1= @+ w0 Ain(A)) + 4w (1= 1/p)

Now, assuming again Ay (A) < p~!, one obtains

wt+1E/(1-w?2+4dw(l—1/p)
2

w41 4w
- o <li\/1‘7u<w+1>z> |

1

Amax (B, , A)

Further, if 4, despite being much smaller than A, (A)~
has

, remains relatively large, one

Amax(Ba,wA) = w4+l = wiy+1,

w W AN

plw+1)  pwdy +1)

Q

)\min(Ba,w A)
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Hence, the situation is opposite to that in the preceding example: \..y is close to its upper
limit in (2.8)) and Ay, close to its lower limit in (Z9). One has then

KBy wA) =

(wAar + 1)2 _ %(WAM—FQ? i
WAM

f
(B, o A) (Wi + 12 if wiy < -2 ;

that is, k(Ba o A) is close to its upper bounds (2.10), (2.12) and in fact can be made
arbitrarily close to them by selecting a/, § such that Apin(A) is sufficiently small and p
sufficiently large.

4 Conclusions

We have developed an analysis of preconditioning methods that combine a basic precondi-
tioner with a coarse grid correction. This analysis emphasizes the role of proper scaling of
the basic preconditioner. With the multiplicative variant, the scaling is appropriate when
the largest eigenvalue associated with the basic preconditioner is equal to or slightly larger
than 1. With the additive variant, the best scaling is more problem dependent, but, in
the absence of additional information, the bound on the condition number is optimal when
this largest eigenvalue is equal to one.

When these scaling rules are followed, our analysis proves that the condition numbers
for the additive (k(B, , A)) and multiplicative (k(B,, . A)) variants are related by:

K(Bm, wA) < Kk(BawA) < 46(Bp, wA) .

Hence the condition number is always smaller with the multiplicative variant, but the
improvement is at most by a modest factor. Our analysis also shows that these bounds
are sharp, as, depending on the case at hand, (B, ,, A) may be either equal to the lower
bound or arbitrarily close to the upper bound.

References

[1] O. AXELSSON, [terative Solution Methods, Cambridge University Press, Cambridge,
1994.

2] R. E. BANK AND T. F. DUPONT, Analysis of a two-level scheme for solving finite el-
ement equations, Tech. Rep. CNA-159, Center for Numerical Analysis, The University
of Texas at Austin, Texas, USA, 1980.

(3] J. H. BRAMBLE, J. E. PAsciAK, AND A. H. ScHATZ, The construction of precondi-
tioners for elliptic problems by substructuring. I, Math. Comp., 47 (1986), pp. 103—134.

[4] E. CHOW AND P. S. VASSILEVSKI, Multilevel block factorizations in generalized hi-
erarchical bases, Numer. Lin. Alg. Appl., 10 (2003), pp. 105-127.

15



[5]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. DRYJA, An additive schwarz algorithm for two- and three-dimensional finite ele-
ment elliptic problems, in Domain Decomposition Methods. Second International Sym-
posium on Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Périaux,
and O. B. Widlund, eds., Philadelphia, PA, 1989, STAM, pp. 168-172.

M. DryJA AND O. B. WIDLUND, Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems, in Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski,
J. Périaux, and O. B. Widlund, eds., Philadelphia, PA, 1990, STAM, pp. 3-21.

R. D. FALcouT AND P. S. VASSILEVSKI, On generalizing the algebraic multigrid
framework, STAM J. Numer. Anal., 42 (2005), pp. 1669-1693.

R. D. FaLcouT, P. S. VASSILEVSKI, AND L. T. ZIKATANOV, On two-grid conver-
gence estimates, Numer. Lin. Alg. Appl., 12 (2005), pp. 471-494.

J. FRANK AND C. VUIK, On the construction of deflation-based preconditioners,
SIAM J. Sci. Comput., 23 (2001), pp. 442-462.

G. H. GorLuB aND C. F. VAN LOAN, Matriz Computations, 3rd ed., The John
Hopkins University Press, Baltimore, MD, 1996.

M. GRIEBEL AND P. OSWALD, On the abstract theory of additive and multiplicative
Schwarz algorithms, Numer. Math., 70 (1995), pp. 163-180.

W. HACKBUSCH, Multi-grid Methods and Applications, Springer, Berlin, 1985.

M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

J. MANDEL, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9
(1993), pp. 233-241.

—, Hybrid domain decomposition with unstructured subdomains, in Domain Decom-
position Methods in Science and Engineering, J. Mandel, C. Farhat, and X.-C. Cai,
eds., Providence, RI, 1994, AMS, pp. 103-112.

J. MANDEL AND M. BREZINA, Balancing domain decomposition for problems with
large jumps in coefficients, Math. Comp., 65 (1996), pp. 1387-1401.

R. NABBEN AND C. VUIK, A comparison of deflation and coarse grid correction
applied to porous media flow, SIAM J. Numer. Anal., 42 (2004), pp. 1631-1647.

— A comparison of deflation and the balancing preconditioner, STAM J. Sci. Com-
put., 27 (2006), pp. 1742-1759.

— A comparison of abstract versions of deflation, balancing and additive coarse
grid correction preconditioners, Numer. Lin. Alg. Appl., 15 (2008), pp. 355-372.

16



[20]

[21]

[22]

28]

[29]

[30]

[31]

[32]

Y. NoTAY, Algebraic multigrid and algebraic multilevel methods: a theoretical com-
parison, Numer. Lin. Alg. Appl., 12 (2005), pp. 419-451.

—, Algebraic analysis of two-grid methods: the monsymmetric case, Numer. Lin.

Alg. Appl., 17 (2010), pp. 73-97.

Y. NoTAY AND A. VAN DE VELDE, Coarse-grid acceleration of parallel incomplete
factorization preconditioners, in Iterative Methods in Linear Algebra II, S. Margenov
and P. Vassilevski, eds., Series in Computational and Applied Mathematics Vol.3,
IMACS, 1996, pp. 106-130.

A. Pabpry, O. AXELSSON, AND B. POLMAN, Generalized augmented matrixz precon-

ditioning approach and its application to iterative solution of ill-conditioned algebraic
systems, STAM J. Matrix Anal. Appl., 22 (2000), pp. 793-818.

A. QUARTERONI AND A. VALLI, Domain Decomposition Methods for Partial Differ-
ential Equations, Oxford Science Publications, Oxford, 1999.

Y. SAAD, Iterative Methods for Sparse Linear Systems, STAM, Philadelphia, PA, 2003.
Second ed.

B. SmiTH, P. BJgRSTAD, AND W. GROPP, Domain Decomposition, Cambridge
University Press, Cambridge, 1996.

A. ToseLLt AND W. WIDLUND, Domain Decomposition, Springer Ser. Comput.
Math. 34, Springer-Verlag, Berlin, 2005.

U. TROTTENBERG, C. W. OOSTERLEE, AND A. SCHULLER, Multigrid, Academic
Press, London, 2001.

P. S. VassiLEVSKI, Multilevel Block Factorization Preconditioners, Springer, New
York, 2008.

C. VUIK, A. SEGAL, L. EL. YAAKOUBI, AND E. DUFOUR, A comparison of vari-

ous deflation vectors applied to elliptic problems with discontinuous coefficients, Appl.
Numer. Math., 41 (2002), pp. 219-233.

C. VUuik, A. SEGAL, AND J. A. MEUERINK, An efficient preconditioned cg method

for the solution of a class of layered problems with extreme contrasts in the coefficients,
J. Computational Physics, 152 (1999), p. 385403.

C. Vuik, A. SEGAL, J. A. MEUERINK, AND G. T. W1IMA, The construction
of projection vectors for a deflated ICCG method applied to problems with extreme
contrasts in the coefficients, J. Computational Physics, 172 (2001), pp. 426-450.

H. YSERENTANT, On the multi-level splitting of finite element spaces, Numer. Math.,
49 (1986), pp. 379-412.

17



	Introduction
	Analysis
	Examples
	Conclusions

