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Abstract

In this note, we consider a stochastic network of interacting points to which we associate an energy. We study

the variational convergence of such an energy when the typical distance of the network goes to zero. We prove

that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic

and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to

cross-linked polymer networks. To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340
(2005).

Résumé

Dérivation mathématique d’une densité d’énergie hyperélastique pour des polymères réticulés. Dans

cette note, nous considérons un réseau stochastique de points en interaction auquel nous associons une énergie.

Nous étudions alors la convergence variationnelle de cette énergie lorsque la distance caractéristique du réseau

tend vers zéro. Nous démontrons que l’énergie limite s’écrit comme l’intégrale d’une densité d’énergie déterministe,

hyperélastique et objective. Cette dérivation couvre en particulier des modèles de réseau de polymères réticulés.

Pour citer cet article : A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

As a starting point, we consider a particular case of the stochastic networks introduced by Blanc, Le Bris

and Lions in [4,3]. In what follows, (Ω,F , P ) denotes a given probability space. Let Λ = {xi}i∈Zd ∈
(

R
d
)Z

d

be a set of points. We say that Λ is an admissible set of points if it satisfies the three following conditions:
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i. there exists R > 0 such that #Λ ∩ B(x, R) > 0 for all x ∈ R
d ;

ii. there exist R′ > 0 and k ∈ N such that #Λ ∩ B(x, R′) ≤ k for all x ∈ R
d ;

iii. there exists r > 0 such that d(xi, Λ \ {xi}) ≥ r for all i ∈ Z
d.

In particular, to each admissible set of points Λ one can associate a Delaunay triangulation D(Λ).

A stochastic lattice L : Ω →
(

R
d
)Z

d

is said to be admissible, if for P -almost every ω ∈ Ω, L(ω) is an ad-
missible set of points, and if the Delaunay triangulation is regular in the sense of the interpolation theory.
Given a measure preserving group {τk}k∈Zd acting on Ω, L is said to be stationary if L(τk(ω)) = L(ω) − k

for all k ∈ Z
d and ergodic if, for any A ∈ F , τk(A) = A implies P (A) = 0 or P (A) = 1. Note that in two

dimensions, any admissible set of points has a regular Delaunay triangulation. In three dimensions, the
conditions i., ii. and iii. are not sufficient to ensure the existence of a regular triangulation.

To each realization ω of the stochastic lattice, we associate an energy which only depends on the
realization. For all regular bounded open subset A of R

d, and all u : L(ω) → R
n, we define the energy of

the lattice by

E(u, A)(ω) =
∑

xi∈L(ω)∩A

∑

xj 6= xi ∈ L(ω) ∩ A

[xi, xj ] ⊂ A

J(xj − xi)f

(

u(xj) − u(xi)

|xj − xi|

)

, (1)

where J : R
d → R and f : R

n → R are given functions that do not depend on ω and A and where
[xi, xj ] = txi + (1 − t)xj , t ∈ [0, 1]. The precise forms of J and f will be prescribed in the following
section.

In what follows we consider a scaled version of the energy in (1); i.e. for all ε > 0, and uε : εL(ω) → R
n,

we set

Eε(uε, A)(ω) =
∑

xi∈εL(ω)∩A

εd
∑

xj 6= xi ∈ εL(ω) ∩ A

[xi, xj ] ⊂ A

J

(

xj − xi

ε

)

f

(

uε(xj) − uε(xi)

|xj − xi|

)

. (2)

2. Derivation of a macroscopic model

2.1. Main result

We make the following set of assumptions (H) on the energy Eε:

(H)



























There exist p > 1, C1, C2 > 0, such that C1|v|
p − 1 ≤ f(v) ≤ C2|v|

p + 1, ∀v ∈ R
n

J ≥ 0 and inf
B(0,4R)

J(z) > 0
∫

Rd

J(z)dz < ∞

In particular, if n = d and for all w ∈ S1(Rd), f(w) = 0, then u : x 7→ x is a minimizer of the discrete
energy and the lattice is a ground state of the system of interacting points. This may model in particular
the ground state of a rubber-like polymer at the scale of the polymer chain (see [11]).
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For all ω ∈ Ω, let T = {Ti}i∈Zd be the set of the triangles of a regular Delaunay triangulation associated
to εL(ω). In what follows, in order to study the asymptotics of the energy in (2) as ε → 0 in the framework
of Γ-convergence (see [5] for an introduction to the subject), we identify each u : εL(ω) → R

n with its
continuous piecewise affine interpolation on T .

Theorem 1 Let D be an open bounded subset of R
d, L : Ω →

(

R
d
)Z

d

be an admissible stationary and
ergodic stochastic lattice, and let f and J satisfy Hypotheses (H). For P -almost all ω ∈ Ω, Eε(·, D)(ω)
Γ − Lp(D) converges to E(·, D) which is finite on W 1,p(D) and defined by

E(v, D) =

∫

D

Whom(∇v(x))dx, (3)

where Whom is an homogeneous in space quasiconvex energy density satisfying a growth condition of order
p, and given by the following asymptotic formula

Whom(ξ) = lim
N→∞

1

Nd

∫

Ω

inf
{

E1(u, (0, N)d)(ω), u(z) = ξ · z for z ∈ L(ω),

dist(z, ∂(0, N)d) ≤ 2R
}

dP (ω),

(4)

In addition, infimum problems with prescribed boundary conditions also converge.

2.2. Sketch of the proof

The details of the following proof will be given in [2].

Individual compactness. The first step of the proof consists in obtaining individual compactness. For
all ω ∈ Ω, we prove that there exists a subsequence εn, such that Eεn

(·, D)(ω) Γ-converges to some
E(·, D)(ω) on W 1,p(D), for any open bounded regular subset D ⊂ R

d. To this end, one proceeds as in [1].
The estimates are however more delicate to get. Fixed a regular Delaunay triangulation associated to ω,
one first singles out the contribution to the energy due to the interactions between nearest-neighbors,
by which we mean two vertices of the same triangle, and, using the coercivity hypothesis on f , obtain
the coercivity of the Γ-liminf. Up to introducing a coarser periodic reference lattice, one can classify
the interactions according to their range. This allows us to adapt the argument used in [1] where the
periodic-lattice case is considered in the deterministic setting and to get the growth condition from above
and the measure property as set function of the Γ-limsup Eε(u, A) for any regular open set A ⊂ R

d. Using
then the compactness property of Γ-convergence and the integral representation result in [6], we prove
that, up to extractions, there exists a Γ-limit E(·, D)(ω), which can be expressed in terms of an integral
functional. The second part of the proof is devoted to show that E(·, D)(ω) does not depend on ω and
that the associated energy density Whom does not depend on the space variable.

Ergodicity of subadditive processes. The result is achieved if we prove the existence of the limit (4)
for the asymptotic formula. The proof relies on the subadditive ergodic theorem, and more precisely on
the variant used in [8]. The energy E1(·, D) is not subadditive since the interactions are not local. So
is its infimum. One may however introduce a modified energy defined on the borelians of R

d, which is
subadditive and such that the asymptotic limits of type (4) coincide for both energies, the convergence
of one implying the convergence of the other. Doing so, the ergodic theorem shows the existence of (4)
and therefore concludes the proof. Let us quickly define the modified energy in the case of finite-range
interactions, namely ∃L ∈ N : J(z) = 0 if |z| > L. Let B ∈ B(Rd) be a bounded borelian set. We
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denote by C(B) the union of the finite number of closed unit cubes C centered in points of Z
d such that

C ∩ B 6= ∅, and by C(B) the interior of C(B). For all α > 0 and for all ξ ∈ Md(R), we set

Gξ(B)(ω) = inf{E(u, C(B))(ω), u(xi) = ξ · x if d(xi, ∂C(B)) ≤ R} + α perim(C(B)),

where perim denotes the perimeter of the set. For all ξ, there exists α big enough such that Gξ is a

subadditive set functional. In addition, for regular sets B, lim
|t|→∞

1

|tB|
α perim(C(tB)) = 0. Therefore, [8,

Prop. 1] implies the existence of lim
|t|→∞

1

|tB|
Gξ(tB)(ω) and its independence upon ω, which concludes the

proof.

3. Remarks and extensions

Some comments are in order. First, it is easily shown that Whom is frame-invariant. Second, if there
exists a stationary action group of rotations, then Whom is isotropic.

Volume effects are not taken into account in Theorem 1. Given a regular Delaunay triangulation
associated to the lattice, one can slightly modify the energy of the lattice by adding a term penalizing
volume changes on each triangle of T and satisfying a growth condition of order p from above. In such a
case, Theorem 1 also holds. However, this modification does not cover incompressible behaviours and does
not preserve the orientation. To obtain more realistic energy densities, one may proceed in two steps: first
use a cut-off η on the ‘realistic’ volumetric energy (see [7]) in order to make it satisfy a suitable growth
condition and pass to the limit as ε → 0, and then let the cut-off parameter η go to infinity to recover the
‘original’ volumetric properties. However it is not clear whether it is possible to switch the limits. These
remarks and extensions will be detailed in a forthcoming paper [2].

We finally point out that the variational convergence of stochastic energies defined on a one-dimensional
periodic network of points in interaction has been considered in [9,10].
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