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Summary . In this paper we tackle the ANOVA problem for directional data (with particular em-
phasis on geological data) by having recourse to the Le Cam methodology usually reserved for
linear multivariate analysis. We construct locally and asymptotically most stringent parametric
tests for ANOVA for directional data within the class of rotationally symmetric distributions. We
turn these parametric tests into semi-parametric ones by (i) using a studentization argument
(which leads to what we call pseudo-FvML tests) and by (ii) resorting to the invariance princi-
ple (which leads to efficient rank-based tests). Within each construction the semi-parametric
tests inherit optimality under a given distribution (the FvML distribution in the first case, any
rotationally symmetric distribution in the second) from their parametric antecedents and also
improve on the latter by being valid under the whole class of rotationally symmetric distri-
butions. Asymptotic relative efficiencies are calculated and the finite-sample behavior of the
proposed tests is investigated by means of a Monte Carlo simulation. We conclude by applying
our findings on a real-data example involving geological data.

1. Introduction

Spherical or directional data naturally arise in a broad range of earth sciences such as
geology, astrophysics, meteorology, oceanography, studies of animal behavior or even in
neuroscience (see Mardia and Jupp 2000 or the recent Ley and Verdebout 2013 and the
respective references therein). Although primitive statistical analysis of directional data
can already be traced back to early 19th century works by the likes of C. F. Gauss and
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D. Bernoulli, the methodical and systematic study of such non-linear data by means of
tools tailored for their specificities only begun in the 1950s under the impetus of Sir Ronald
Fisher’s pioneering work (see Fisher 1953). We refer the reader to the monographs Fisher
et al. (1987) and Mardia and Jupp (2000) for a thorough introduction and comprehensive
overview of this discipline.

An important area of application of spherical statistics is in geology, in particular
for the study of palacomagnetic data, see McFadden and Jones (1981), McFadden and
Lowes (1981), Fisher and Hall (1990) or the more recent Acton (2011). These data are
usually modeled as realizations of random vectors X taking values on the surface of the
unit hypersphere S¥~1 := {v € R¥ : v/v = 1}, the distribution of X depending only on its
angular distance from a fixed point @ € S¥~! which is to be viewed as a “north pole” for
the problem under study. A natural, flexible and realistic family of probability distribu-
tions for such data is the class of so-called rotationally symmetric distributions introduced
by Saw (1978) — see Section 2 below for definitions and notations. Roughly speaking such
distributions allow to model all spherical data that are spread out uniformly around a cen-
tral parameter @ with the concentration of the data waning as the angular distance from
the north pole increases. This class of distributions contains, for instance, the most used
and best studied directional distribution: the so-called Fisher-von Mises-Langevin (FvML)
distribution which will be defined in details in Section 2. Within this setup, an impor-
tant question goes as follows : “do several measurements of remanent magnetization come
from a same source of magnetism?” As recognized in the seminal paper Graham (1949),
a positive answer to this question provides precious information about the stability of the
remanence. Consequently, he developed the classical fold test for palacomagnetic data; for
more technical insights, see McFadden and Jones (1981) for the two-sample and McFadden
and Lowes (1981) for the multi-sample problem. In mathematical terms, the fold test can be
described as follows. Suppose that there are m different data sets spread around i sources
of magnetism 8; € S*~!, i = 1,...,m. The question then becomes that of testing for the
problem Hy : 01 = ... = 0, against H; : 31 < i # j < m such that 8; # 0, that is, an
ANOVA problem for directional data. Of course, this problem is also of interest for the
other above-mentioned branches dealing with directional observations.

Motivated by the fold test, the ANOVA problem has been largely studied in the statis-
tical literature. The difficulty of the task, however, entails that most available methods are
either of parametric nature (assuming, as in McFadden and Jones 1981 and McFadden and
Lowes 1981, that the data follow a FvML distribution; see also Sections 10.5 and 10.6 of
Mardia and Jupp 2000, where several FvML-based procedures are discussed), suffer from
computational difficulties/slowness (such as Wellner 1979’s permutation test or Fisher and
Hall 1990’s and Beran and Fisher 1998’s bootstrap test), lack desirable geometric proper-
ties or are restricted to the circular (k = 2) setting (e.g., Eplett 1979 or Eplett 1982) or
are confined to the two-sample case (e.g., Jupp 1987 or Tsai 2009). To the best of the
author’s knowledge, the only semi-parametric, computationally simple, rotationally equiv-
ariant, asymptotically distribution-free test for the general multisample null hypothesis Hg
above is the test given in Watson (1983), which is most efficient under FvML assumptions.
The purpose of the present paper thus is to complement this literature by constructing tests
that

(i) are optimal under a given m-tuple of distributions (P, ..., P, ) which need not be of
FvML type

(ii) do not assume that the P;’s are all equal (thus allowing for distinct concentrations of
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the data), and

(ili) remain valid (in the sense that they meet the nominal level constraint) under any m-
tuple (Q1,...,Qm) satisfying the general null hypothesis H involving a large family
of spherical distributions.

In particular, the tests we propose are asymptotically distribution-free within the semi-
parametric class of rotationally symmetric distributions. Obviously the applicability of our
ANOVA procedures is not reserved to geological data alone, but directly extends to any
type of directional data for which the assumption of rotational symmetry with location
parameter @ seems to be reasonable.

The backbone of our approach is the so-called Le Cam methodology (see Le Cam 1986),
as adapted to the spherical setup by Ley et al. (2013). Of utmost importance for our
aims here is the uniform local asymptotic normality (ULAN) of a sequence of rotationally
symmetric distributions established therein and which we adapt to our present purpose in
Section 3. In the same Section 3 we also adapt results from Hallin et al. (2010) to determine
the general form of a so-called asymptotically most stringent parametric test for the above
hypothesis scheme Hy against H;. Due to its parametric nature the optimality of the
(Py, ..., Py)-parametric test is thwarted by its non-validity under any m-tuple (Q1, ..., @Qm)
distinct from (Py, ..., Py,). In order to palliate this problem we have recourse to two classical
tools which we adapt to the spherical setting: first a studentization argument and second
the invariance principle. While we apply the former method to the case where (P, ..., Ppy,)
is a m-tuple of FvML distributions (due to their prominent role) leading to so-called pseudo-
FuML tests, the latter method yields general (Py, ..., Py, )-optimal rank-based tests. Both
families of tests are of semi-parametric nature. Moreover, the Le Cam approach enables us
to calculate the behavior of our tests under sequences of local alternatives, hereby allowing
for exact expressions of the powers of our tests.

While the construction of the tests is mathematically involved, the respective test statis-
tics (4.8) and (5.10) have a concise form and are computationally simple. Therefore, for
readers preferring to skip the technicalities of Sections 3, 4 and 5, we briefly summarize in
the next two paragraphs the intricacies of our procedures.

The idea behind the pseudo-FvML test of Section 4 has the same flavor as the pseudo-
Gaussian tests in the classical “linear” framework (see, for instance, Muirhead and Wa-
ternaux 1980 or Hallin and Paindaveine 2008 for more information on pseudo-Gaussian
procedures). More concretely, since the FvML distribution is generally considered as the
spherical analogue of the Gaussian distribution (see Section 2 for an explanation), our first
approach consists in using the FvML as basis distribution and “correcting” the (parametric)
FvML most stringent test, optimal under a m-tuple (P, ..., Py,) of FvML distributions, in
such a way that the resulting test ¢(™ remains valid under the entire class of rotationally
symmetric distributions. We obtain the asymptotic distribution of the asymptotically most
stringent pseudo-FvML test statistic Q™ under the null and under contiguous alternatives.
As it turns out, the test statistic Q(™) and the test statistic Q(Wn;,tson provided in Watson
(1983) are asymptotically equivalent under the null (and therefore under contiguous alter-

natives). As a direct consequence, we hereby obtain, in passing, that Watson (1983)’s test
(n)

Watson
The optimality property of (b&;mon and ¢(™ is, by construction, restricted to situations

in which the underlying m-tuple of distributions is FvML. In Section 5 we therefore make
use of the well-known invariance principle to construct a more flexible family of test statis-

also enjoys the property of being asymptotically most stringent in the FvML case.
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tics. To this end we first obtain a group of monotone transformations which generates the
null hypothesis. Then we construct tests based on the maximal invariant associated with
this group. The resulting tests (that are based on spherical signs and ranks) are, similarly
as ¢(Wn;tson and ¢(™) | asymptotically valid under any m-tuple of rotationally symmetric den-
sities. Our approach here, however, further entails that for any given m-tuple (P, ..., Pp,)
of rotationally symmetric distributions (not necessarily FvML ones) it suffices to choose the
appropriate m-tuple K = (K1, ..., K,,) of score functions to guarantee that the resulting
test is asymptotically most stringent under (P, ..., Py,).

The more detailed outline of the paper is as follows. In Section 2, we define the class
of rotationally symmetric distributions and collect the main assumptions of the paper.
In Section 3, we summarize asymptotic results in the context of rotationally symmetric
distributions and show how to construct the announced optimal parametric tests for the
ANOVA problem. We then extend the latter to pseudo-FvML tests in Section 4 and to rank-
based tests in Section 5, and study their respective asymptotic behavior in each section. A
comparison between both procedures on basis of asymptotic relative efficiencies as well as
via a Monte Carlo simulation study is provided in Section 6. We apply our findings on a
real data application in Section 7. Finally an appendix collects the proofs.

2. Rotational symmetry

Throughout, the m(> 2) samples of data points X;1,...,X;,,, ¢ = 1,...,m, are assumed
to belong to the unit sphere S¥~! of R*, k > 2, and to satisfy

AssuUMPTION A. (ROTATIONAL SYMMETRY) For all i = 1,...,m, X;1,...,X;,, are i.i.d.
with common distribution Py, f, characterized by a density (with respect to the usual surface
area measure on spheres)

X = Ck,f; fi(Xloi), X € Sk_l, (2.1)

where 6; € S*71 is a location parameter, f; : [—1,1] — R is absolutely continuous and

(strictly) monotone increasing and cg, ¢, is a normalizing constant. Then, if X has density
(2.1), the density of X’0; is of the form

ts filt) = %ﬁ(f)(l —tH)F=D2 <<,

202
where wy, = 27¥/2/T'(k/2) is the surface area of S*~! and B(-,-) is the beta function. The
corresponding cumulative distribution function (cdf) is denoted by F;(t), : =1,...,m.

The functions f; are called angular functions (because the distribution of each X,;; de-
pends only on the angle between it and the location 8; € S¥~1). Throughout the rest of this
paper, we denote by F" the collection of m-tuples of angular functions f := (f1, f2,..., fm)-
Although not necessary for the definition to make sense, monotonicity of f; ensures that
surface areas in the vicinity of the location parameter 8; are allocated a higher proba-
bility mass than more remote regions of the sphere. This property happens to be very
appealing from the modeling point of view. The assumption of rotational symmetry also
entails appealing stochastic properties. Indeed, as shown in Watson (1983), for a random
vector X distributed according to some Pg,.s, as in Assumption A, not only is the mul-
tivariate sign vector Sp,(X) = (X — (X'6,)8;)/||X — (X'0;)0;|| uniformly distributed on
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8% .= {v e R¥||v| = 1,v'8; = 0} but also the angular distance X'6; and the sign vector
Se, (X) are stochastically independent.

The class of rotationally symmetric distributions contains a wide variety of useful spher-
ical distributions including the FvML, the spherical linear, the spherical logarithmic, the
spherical logistic and the Purkayastha distributions (a definition of the latter four is provided
in Section 6 below). The most popular and most used rotationally symmetric distribution
is the aforementioned FvML distribution (named, according to Watson 1983, after von
Mises 1918, Fisher 1953, and Langevin 1905), whose density is of the form

JroML(e) (X;8) = cr (k) exp(kx'0), x € Sk

where £ > 0 is a concentration or dispersion parameter, § € S*~! a location parame-
ter and ¢k (k) is the corresponding normalizing constant. For ease of reference we shall,
in what follows, rather use the notation ¢, instead of frpymp(x)- This choice of nota-
tion is motivated both by the wish for notational simplicity but also serves to further
underline the analogy between the FvML distribution as a spherical and the Gaussian
distribution as a linear distribution. This analogy is mainly due to the fact that the
FvML distribution is the only spherical distribution for which the spherical empirical mean
Ontean := >y X5 /|| Yo, Xi|| (based on observations Xy, ..., X, € S¥71) is the Maximum
Likelihood Estimator (MLE) of its spherical location parameter, similarly as the Gaussian
distribution is the only (linear) distribution for which the empirical mean n=!'>"" X,
(based on observations Xi,..., X, € R¥) is the MLE of the (linear) location parameter.
We refer the interested reader to Breitenberger (1963), Bingham and Mardia (1975) or
Duerinckx and Ley (2013) for details and references on this topic; see also Schaeben (1992)
for a discussion on spherical analogues of the Gaussian distribution.

3. ULAN and optimal parametric tests

Throughout this paper a test ¢* is called optimal if it is most stringent for testing Hy
against H; within the class of tests C, of level «, that is if

sup rg-(P) < sup ry(P) Vo € Cq, (3.2)
PeH

PeH, 1

where 74, (P) stands for the regret of the test ¢o under P € H; defined as 74, (P) =
[sup¢eca Ep[gbﬂ — Ep[¢o], the deficiency in power of ¢y under P compared to the highest
possible (for tests belonging to C,) power under P.

As stated in the Introduction, the main ingredient for the construction of optimal (in
the sense of (3.2)) parametric tests for the null hypothesis Hy : 1 =03 = ... = 6,,, consists
in establishing the ULAN property of the parametric model

({Psy, 100 e st ) RS, 10m e S

for a fixed m-tuple of (possibly different) angular functions f = (f1,..., fm), where Pé:l?fi
stands for the joint distribution of X;1,...,X;n,, ¢ = 1,...,m, for a fixed m-tuple of angular
functions (fi,..., fim). Letting 9 := (8),...,0. ), we further denote by Pfﬁ} the joint law

v m
combining ng‘)ﬁ’ ceey ng.fm. In order to be able to state our results, we need to impose a

certain amount of control on the respective sample sizes n;, i = 1, ..., m. This we achieve
via the following
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ASSUMPTION B. Letting n = Y./, n;, for all i = 1,...,m the ratio TE") := n;/n converges
to a finite constant r; as n — oo.

In particular Assumption B entails that the specific sizes n; are, up to a point, irrelevant;
hence in what precedes and in what follows, we simply use the superscript (™ for the
different quantities at play and do not specify whether they are associated with a given
n;. In the sequel we let diag(A4,...,A,,) stand for the m x m block-diagonal matrix with

blocks A1, ..., A,,, and use the notation v := diag((r&"))_l/QIk, o (r,(,gl))_l/QIk).
Informally, a sequence of rotationally symmetric models {Pf,n} |9 e (Sk—l)m} is ULAN

if, uniformly in 9™ = (8", ... 60" € (§¥1)™ such that 9™ — 9 = O(n='/2), the log-
likelihood ratio

(n) (n)
log (Pﬂ(n)+n1/2u(n)t(n) ;i/P’l’(n) ;f)

allows a specific form of (probabilistic) Taylor expansion (see equation (3.4) below) as a
function of t(" := (tg")/, e ,tgf)/)' € R™*_ Of course the local perturbations t(™ must be
chosen so that 9™ + n=Y/2pMt™ remains on (Sk¥=1)™ and thus, in particular, the tgn)
need to satisfy

0= (6" +n; 2ty O + 0 ) — 1

3

=2n; ' 20) 6" 7 () 6 (3.3)

foralli=1,...,m. Consequently, tz(-") must be such that 2n;1/2(0§n))’t§n) +o(n;1/2) =0:
for 01(.") + ni_l/2tz(-") to remain in S¥~!, the perturbation tz(-") must belong, up to a o(ni_l/Q)
quantity, to the tangent space to S¥~1 at 01(-").

The domain of the parameter being the non-linear manifold (S k’l)m it is all but easy to
establish the ULAN property of a sequence of rotationally symmetric models. A natural way
to handle this difficulty consists, as in Ley et al. (2013), in resorting to a re-parameterization
of the problem in terms of spherical coordinates n, say, for which it is possible to prove
ULAN, subject to the following technical condition on the angular functions.

AssuMPTION C. The Fisher information associated with the spherical location parameter
is finite; this finiteness is ensured if, for ¢« = 1,...,m and letting ¢y, = f;/fi (fi is the

a.e.-derivative of f;), Ji(fi) := f_ll gofci (t)(1 — 2) fi(t)dt < 4oo0.

After obtaining the ULAN property for the n-parameterization, one can use a lemma from
Hallin et al. (2010) to transpose the ULAN property in the spherical n-coordinates back in
terms of the original §-coordinates. Finally the inner-sample independence and the mutual
independence between the m samples entail that we can deduce the required ULAN property
which is relevant for our purposes (this we state without proof because it follows directly
from Proposition 2.2 of Ley et al. 2013).

Proposition 3.1 Let Assumptions A, B and C hold. Then the model {Pf,n])c |9 e (Skfl)m}
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!/
is ULAN with central sequence Ag?])c = ((Agf?ﬁ)’, ce (Aé?n?;fm)’) , where

Ay =S o (X0 (1 — (X007 /28, (Xyy), i=1,...,m,
j=1

and Fisher information matriz Ty, := diag(Te,.7,,....Te,,.1,.) where

Tk (fi)
k—1

Lo,.7, == (I, —010;), t=1,...,m.

More precisely, for any 9™ € (SE=1™ such that 9 9 = O(n=Y?) and any bounded

sequences t™ = (& .. t5') as in (3.3), we have
0(”) () g(m) 1
9 4 =1/2p (M) ) A " .
log o = | = @YAG = S Tapt™ +op(1),  (34)
P L2 -
ﬂ(n)?i
where A.,(ﬂi);f £ mk(OaI"ﬂ;i); both under Pt(;:%, as n — oo.

Proposition 3.1 provides us with all the necessary tools for building optimal f-parametric
procedures (i.e. under any m-tuple of densities with respective specified angular functions
fi,..., fm) for testing Hy : 01 = ... = 0,, against H; : 31 <14 # j < m such that §; # 6;.
Intuitively, this follows from the fact that the second-order expansion of the log-likelihood
ratio for the model {Pgl} |9 e (S k_l)m} strongly resembles the log-likelihood ratio for the

classical Gaussian shift experiment, for which optimal procedures are well-known and are
based on the corresponding first-order term. Now clearly the null hypothesis Hg is the
intersection between (S¥~1)™ and the linear subspace (of R™*)

C={v=W....v.)|vi,....,vm €RFand v; = ... = v;,} == M(1,, ® I)

where we put 1,, := (1,...,1)" € R™, M(A) for the linear subspace spanned by the columns
of the matrix A and A ® B for the Kronecker product between A and B. Such a restriction,
namely an intersection between a linear subspace and a non-linear manifold, has already
been considered in Hallin et al. (2010) in the context of Principal Component Analysis (in
that paper, the authors obtained very general results related to hypothesis testing in ULAN
families with curved experiments). In particular from their results we can deduce that, in
order to obtain a locally and asymptotically most stringent test in the present context,
one has to consider the locally and asymptotically most stringent test for the (linear) null
hypothesis defined by the intersection between C and the tangent to (S¥~1)™. Let  denote
the common value of 04, ...,0,, under the null. In the vicinity of 1,, ® 8, the intersection
between C and the tangent to (S¥~1)™ is given by

{(0’ 2T 8 2 (e 2 (3.5)
O = =0t =0, ()2 == )

Solving the system (3.5) yields

/
y(mMgn) = ((r§">>*1/2t§">', o (r,(fj))’lptgfj)’) EM(1, @ (I, —00)).  (3.6)
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Loosely speaking we have “transcripted” the initial null hypothesis H into a linear restric-
tion of the form (3.6) in terms of local perturbations t(™, for which Le Cam’s asymptotic
theory then provides a locally and asymptotically optimal parametric test under fixed f.
Using Proposition 3.1 and letting Yy := 1,, ® (I —68") and Ti(,rz = () ~1Ty, an asymp-
totically most stringent test ¢y is then obtained by rejecting Ho as soon as (A~ stands for
the Moore-Penrose pseudo-inverse of A)

QY =y, (I‘o; ;= Ton (05 Tas X5 (Tfﬂ)’) Royy (3.7)

exceeds the a-upper quantile of a chi-square distribution with (m — 1)(k — 1) degrees of
freedom. Hence the optimal parametric tests are now known.

There nevertheless remains much work to do. Indeed not only does the optimality of our
test ¢; only hold under the m-tuple of angular densities f = (f1,..., fi), but also this para-
metric test suffers from the (severe) drawback of being only valid under that pre-specified
m-tuple. Since it is highly unrealistic in practice to assume that the underlying densities are
known, these tests are useless for practitioners. Moreover, we so far have assumed known
the common value of the spherical location under the null, which is unrealistic, too. The
next two sections contain two distinct solutions allowing to set these problems right.

4. Pseudo-FvML tests

For a given m-tuple of FvML densities (¢, , - . ., ¢x,, ) With respective concentration param-
eters Ki,...,km > 0 (where we do not assume K1 = ... = K,,), the score functions P,
reduce to the constants k;, i = 1,...,m, and hence the central sequences for each sample
take the simplified form

AY = mn Y (1 (XE80)%)28, (Xy)
j=1
= min;lp Z(Xij — (X;JGZ)OZ)

j=1

=  K; (Ik - 010;)71;1/2 Z Xij
j=1
= K; (Ik — 010;)7’%1/25(1
Optimal FvML-based procedures (in the sense of (3.2)) for Hy are then built upon Ag}; =

Byl A ) where ¢ = (G, G ).

Before proceeding we here again draw the reader’s attention to the fact that a parametric
test built upon Af;:; will only be valid under the m-tuple ¢ and becomes non-valid even
if only the concentration parameters change. In this section, this non-validity problem
will be overcome in the following way. We will first study the asymptotic behavior of

A,!(;_l; under any given m-tuple g = (g1,...,9m) € F™ and consider the newly obtained
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quadratic form in At(,"; Clearly, this quadratic form will now depend on the asymptotic

variance of Af;.l; under g, hence again, for each g, we are confronted to an only-for-g-

valid test statistic. The next step then consists in applying a studentization argument,
meaning that we replace the asymptotic variance quantity by an appropriate estimator.
We then study the asymptotic behavior of the new quadratic form under any m-tuple of
rotationally symmetric distributions. As we will show, the final outcome of this procedure
will be tests which happen to be optimal under any m-tuple of FvML distributions (that
is, for any values k1, ..., Ky, > 0) and valid under the entire class of rotationally symmetric
distributions; these tests are our so-called pseudo-FvML tests.

For the sake of readability, we adopt in the sequel the notations E[-] for expectation
under the angular function f and ¥ :=: 1,, ® @ (where we recall that @ represents the
common value of 04, ...,0,, under the null). The following result characterizes, for a given
m-tuple of angular functions g € ™, the asymptotic properties of the FvML-based central

sequence Agz)_(b, both under Pé"o)_g and P‘E;;)Jrnflﬂu(")t(")‘g with t(") as in (3.3) for each

sample.

Proposition 4.1 Let Assumptions A, B and C hold. Then, letting By 4, := 1—Eq, [(X;Jﬂ)Q]
fori=1,...,m, we have that A1(92)¢ 18

(i) asymptotically normal under sz)_g with mean zero and covariance matrix

I‘:;O;g := diag (Tg.,,,---Toy..)

where Ty, = i By (I, —06"), i=1

F—1 m;

goeeey 5

(i) asymptotically normal under Pt(9no)-|-n*1/2u<")t<n>;g ™ as in (3.8)) with mean Tyt

(t:=(th,...,t) ) with t; ;== lim, tz(-"), i=1,...,m) and covariance matriz I‘;O;g,
where, putting Ch. g, == BEg,[(1 — (X},0)?)gg, (X},0)] fori=1,...,m,

Fﬁo;g,g := diag (F9;d>n1791a e aI‘B;mmygm)

with To.4,. g, 1= Kffi“ (I, —00"), i=1,...,m.

See the Appendix for the proof. As the null hypothesis only specifies that the spherical
locations coincide, we need to estimate the unknown common value 6. Therefore, we assume
the existence of an estimator 6 of @ such that the following assumption holds.

AssUMPTION D. The estimator 9 = 1, ® 9, with 6 € Sk=1 s nt/? (u("))_l—consistent:
for all 99 = 1,, ® 0 € Ho, n'/? (V(”))fl({? —19y) = Op(1), as n — oo under Pé"o)_g for any
geFm. N

Typical examples of estimators satisfying Assumption D belong to the class of M-estimators
(see Chang 2004) or R-estimators (see Ley et al. 2013). Put simply, instead of A'(,Z)_(b we
have to work with Ag.l; for some estimator 9 satisfying Assumption D. The next crucial

result quantifies in how far this replacement affects the asymptotic properties established
in Proposition 4.1 (a proof is provided in the Appendix).
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Proposition 4.2 Let Assumptions A, B and C hold and let 9 = 1,,®0 be an estimator of
Jo such that Assumption D holds. Then

!/
(i) letting T = ( r§") | PRSP A ) Ik) , Af;;);g satisfies, under Pf,z);g and as n —

0,

Ag;‘; Ay, =TG5, T<">ﬁ(éfo)+0p(1),

where
¢

S diag (T4 D
r5,., = diag (Tgt ... T )
with Ty"t = ki By, [X],0] (1 —00'), i=1,...,m;
ii) for all9 € (S¥1)", Ty, =I5, =Tp.,.

Following the inspiration of Hallin and Paindaveine (2008) (where a very general theory
for pseudo-Gaussian procedures is described) we are in a position to use Proposition 4.2
to construct our pseudo-FvML tests. To this end define, for ¢ = 1,...,m, the quantities
Ey g4, = Eg, [X;jﬂ}, and set, for notational simplicity, Dy 4, = Ekg,/Bk,g and Hy g4 1=

S VD3 Big,. Then, letting

111

F’l907¢79 (I“ﬂoyg)

~(Thy10) T3, Lo (T3, ) T3, (Cog) T3, Tom, )™ (Tf,wyr%;g(rﬁmg)
and X; :=n; ! ZJ;l X;j foralli =1,...,m, the g-valid test statistic for Hy : 61 = ... = 0,,
we propose is the quadratic form
(n) ._ (n) T (n)
QUig = (Ay)Ts, A
ni Dy o, = ANl s nin; Di.g.Dg. g, - Anl
= (k-1 —RIL XN, — 600 )X, — (k—1 — L B9 09 XN, — 606 )X
( ); Ek,gi z( k ) ( )g n Hf,g z( k ) J

Note that Q™ (g) does not depend explicitly on the underlying concentrations k1, ..., fn,
but still depends on the quantities By.g, and Ej 4., @ = 1,...,m. This obviously hampers
the validity of the statistic outside of g. The last step thus consists in estimating these
quantities. Consistent (via the Law of Large Numbers) estimators for each of them are

provided by By, :=1—n; ! >, (X(;60)% and By i=n;" S (X A) i=1,...,m. For

the sake of readability, we naturally also use the notations Dy, g = B g /Bk,gl, t=1,...,m,
and H¢ g = Diny Z(")D2 Bk g:- Finally, the pseudo-FvML test statistic for the m- sample

spherical location problem is

Di o - . " nini Di g Digi - L
QW =(k — 1) Z %X;(Ik —00)X; — (k— 1) T TRe TG 3, - 69X

i=1 Ekygi i,j n H,g

(4.8)

which no more depends on g.

The following proposition, whose proof is given in the Appendix, yields the asymptotic
properties of this quadratic form under the entire class of rotationally symmetric distribu-
tions, showing that the test is well valid under that broad set of distributions.
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Proposition 4.3 Let Assumptions A, B and C hold and let 9 be an estimator of 99 such
that Assumption D holds. Then

(i) Q™ is asymptotically chi-square with (m — 1)(k — 1) degrees of freedom under
(n) .
UﬂoeHg Ugefm Pﬂo;g’

(i) Q"™ is asymptotically non-central chi-square with k — 1 degrees of freedom and non-
centrality parameter

i
b9 0,9 = tlrﬁo@ﬁgrﬂo:mri’o@gt

under P‘f?"o)_Ir where t™) is as in (3.3) and t == lim,, ., t);

n=1/2p(m () g7
(iii) the test &™) which rejects the null hypothesis as soon as Q) exceeds the a-upper

quantile of the chi-square distribution with (m — 1)(k — 1) degrees of freedom has
(n) };

asymptotic level o under UﬂoeHo Ugefm{Pﬂo;g

(iv) &™) is locally and asymptotically most stringent, at asymptotic level o,

for Us,en, Ugef’"{Pq(??;g} against alternatives of the form U19¢H0{P1(97;1%}'

It is easy to verify that Q(") is asymptotically equivalent (the difference is a op(1)
quantity) to the test statistic for the same problem proposed in Watson (1983) under the
null (and therefore also under contiguous alternatives). Thus, although the construction we
propose is different, our pseudo-FvML tests coincide with Watson’s proposal. In passing,
we have therefore also proved the asymptotic most stringency of the latter.

5. Rank-based tests

The pseudo-FvML test constructed in the previous section is valid under any m-tuple
of (non-necessarily equal) rotationally symmetric distributions and retains the optimality
properties of the FvML most stringent parametric test in the FvML case. Our aim in the
present section is to provide tests which are optimal under any fixed (possibly non-FvML)
m-~tuple of rotationally symmetric distributions.

We start from any given m-tuple f € F™ and our objective is to turn the f-parametric
tests into tests which are still valid under any m-tuple of (non-necessarily equal)_rotationally
symmetric distributions and which remain optimal under f. To obtain such a test, we
have recourse here to the second of the aforementioned tools to turn our parametric tests
into semi-parametric ones: the invariance principle. This principle advocates that, if the
sub-model identified by the null hypothesis is invariant under the action of a group of
transformations G, one should exclusively use procedures whose outcome does not change
along the orbits of that group Gr. This is the case if and only if these procedures are
measurable with respect to the maximal invariant associated with Gr. The invariance
principle is accompanied by an appealing corollary for our purposes here: provided that the
group Gr is a generating group for Hy, the invariant procedures are distribution-free under
the null.

Invariance with respect to “common rotations” is crucial in this context. More pre-
cisely, letting O € SO, = {A € R¥** A’A = I, det(A) = 1}, the null hypothesis is
unquestionably invariant with respect to a transformation of the form

go :Xlla---7X1n1;---7Xm1a---7anm I—>OXll,...,OXlnl,...,OXml,...,Oanm.
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However, this group is not a generating one for Hy as it does not take into account the
underlying angular functions f, which are an infinite-dimensional nuisance under Hy. This
group is actually rather generating for U%eH0 Pf;z); f with fixed f. Now, denote as in the
previous section the common value of 61, ... ,6,, under the null as §. Then X;; = (X};0)0 +
/1= (X},0)*Se(X;) for all j =1,...,n; and i = 1,...,m. Let Gy (h:= (h1,...,hm)) be

the group of transformations of the form
dh, - Xij = Gh; (X”) = hz(X;ﬂ)o + 1— (hZ(X;JO))QSO(X”), 1= 1, e,y

where the h; : [—1,1] — [—1,1] are monotone continuous nondecreasing functions such
that h;(1) = 1 and h;(—1) = —1. For any m-tuple of (possibly different) transformations
(Ghys- - Gnn) € Ga, it is easy to verify that ||gn, (X;;)|| = 1; thus, gp, is a monotone trans-
formation from S*~1 to S¥~1, i = 1,...,m. Note furthermore that g, does not modify the
signs Sg(X,;;). Hence the group of transformations G, is a generating group for reFm Pi(;;); f

and the null is invariant under the action of Gj,. Letting R;; denote the rank of X’ 9 among
X0,...,X,0,i=1,...,m, it is now easy to conclude that the maximal 1nvariant as-
sociated With Gy, is the Vector of signs Sg(X11), .-+, S0 (Xiny)y---sS0(Xim1), -+, Se(Ximn,,)
and ranks Rll; . 7R1n1) . ,le, . aRmnm-

As a consequence, we choose to base our tests in this section on a rank-based version of
the central sequence Aé ") 2 namely on

A = (A (AT )Y

—~ 7KWL
with
Ay = _1/QZK< >So(X ), i=1,...,m,
where K := (K1,...,K,,) is a m-tuple of score (generating) functions satisfying
AssuMPTION E. The score functions K;, i = 1,...,m, are continuous functions from [0, 1]
to R.

The following result, which is a direct corollary (using again the inner-sample indepen-
dence and the mutual independence between the m samples) of Proposition 3.1 in Ley et

al. (2013), characterizes the asymptotic behavior of A K under any m-tuple of densities
with respective angular functions g1, ..., gm-

Proposition 5.1 Let Assumptions A, B, C and E hold and consider g = (g1,...,9m) €
F. Then the rank-based central sequence éq(;;)l(

(i) is such that A(") —AE,T;)K g = op (1) under Pf??;g as n — oo, where (G standing for

the common cdf of the X,0’s under Pf, )g, =1,...,m)

Af,’;)K o ((Ag"Kl o) (A,(,’f}( )y

m;>9m
with
Ay = *”ZK( ))So( D, i=1,...,m
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In particular, for K = K; := (Kpy,.. Ky,) with Ky (u) = o5 (F (w)(1 —
(ﬁifl(u))2)1/2, éa(;;)K is asymptotically equivalent to the efficient central sequence

(n) (n)
A’%?i under P’%i'

(i) is asymptotically normal under Pq(;;)-g with mean zero and covariance matrix

K K,
I‘.,90.K = diag M(Ik - 00/), ceey M(Ik - 001) y
= kE—1 k—1
where Ji(K;) = fol K2 (u)du.
(iii) is asymptotically normal under Péz)-i-nfl/2u<")t<");g ™ as in (3.8)) with mean Lyoix gt
(t :=lim,, .o t™ ) and covariance matriz
. Tk (K1, Tk (Km; gm
Fﬂo?ﬁ@ = dlag (%(Ik — 00’), ey %(Ik _ 001)) ,

where Ji (K, g;) = fol Ki(u)Kg (uw)du fori=1,...,m.

(iv) satisfies, under PE,?g as n — 00, the asymptotic linearity property
é,(sﬂnfl/z,,mmm;g - éq(;z),g = *I‘ﬂo;ﬁ,gt(n) + OP(l)a
for t() = (tgn)l7 e ,tSJ)’)’ as in (3.3).

Similarly as for the pseudo-FvML test, our rank-based procedures are not complete
since we still need to estimate the common value 8 of 81, . ..,8,, under Ho. To this end we
will assume the existence of an estimator 9 satisfying the following strengthened version of
Assumption D :

AssuMmPTION D’. Besides n'/? (u("))fl—consistency under Pf;;)_g for any g € F™, the es-

timator 9 € (Sk=1ym is further locally and asymptotically discrete, meaning that it only
takes a bounded number of distinct values in ¥o-centered balls of the form {t € R™* .

12 (™) 7t~ Do) < ).

Estimators satisfying the above assumption are easy to construct. Indeed the consistency
is not a problem and the discretization condition is a purely technical requirement (needed
to deal with these rank-based test statistics, see pages 125 and 188 of Le Cam and Yang 2000
for a discussion) with little practical implications (in fixed-n practice, such discretizations
are irrelevant as the radius can be taken arbitrarily large). We will therefore tacitly assume
that @ € SF—1 (and therefore 9= 1,, ®é) is locally and asymptotically discrete throughout
this section. Following Lemma 4.4 in Kreiss (1987), the local discreteness allows to replace
in Part (iv) of Proposition 5.1 non-random perturbations of the form 9 +n~'/2v("t() with
t(™ such that ¥ +n =120t still belongs to Ho by a n'/?(¥(™)~-consistent estimator
9= 1, ® 6. Based on the asymptotic result of Proposition 5.1 and letting

1 T
Fﬂo;ﬁ,g T Fﬂo;K

- F;U;KI"'%;KQT‘;Z);V[(Tt(;;);u)/r’ﬁo;qur'l;g;ﬁr‘l’o;ﬁvgrgz);u]_ (T'n(;;);u)lr‘l’mﬁqgr‘l;o;ﬁ’
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the g-valid rank-based test statistic we propose for the present ANOVA problem corresponds
to the quadratic form
). (n) yipL (n)
Q@)™ = (850 Th By
This test statistic still depends on the cross-information quantities

jk(Kfugl)a?jk(Kfm)gm) (59)

and hence is only valid under fixed g. Therefore, exactly as for the pseudo-FvML tests of the
previous section, the final step in our construction consists in estimating these quantities
consistently. For this define, for any p > 0,

0:(p) =0 +n; p(k— 1)L —00)A™ | i=1,... m.

i ~6;K;’
Then, letting 8;(p) := 0:(p)/||0;(p)||, we consider the piecewise continuous quadratic form
k—1
W) e =L (A ya
p = 7 (p) j(KZ)(~9»K1) ~0i(P)§Ki
Consistent estimators of the quantities 7, ' (K1,91), ..., Jy ' (Km,gm) (and therefore read-
ily of (5.9)) can be obtained by taking

pii=1inf{p > 0: h{"(p) < 0}
for i = 1,...,m (see also Ley et al. 2013 for more details). Denoting by jk(Ki,gi), for
i = 1,...,m, the resulting estimators, setting flﬁ,g = > rgn)j,f(Ki,gi)/jk(Ki) and
letting U;; := K, (Rw/(nz + 1)) Sp(Xij),i=1,...,m, (R;; naturally stands for the rank
of ngé among X;lé, . ,Xgmé), the proposed rank test qj(ﬁn) rejects the null hypothesis of
homogeneity of the locations when

(n) . B . Uz YT, B r—1 G ;g jk(th’L) jk(Kjagj) AR

i,j=1
(5.10)

exceeds the a-upper quantile of the chi-square distribution with (m — 1)(k — 1) degrees
of freedom. This asymptotic behavior under the null as well as the asymptotic distribu-
tion of @ (1?) under a sequence of contiguous alternatives are summarized in the following
propositioE

Proposition 5.2 Let Assumptions A, B, C and E hold and let 9 be an estimator such that
Assumption D’ holds. Then

(i) Q(Kn) is asymptotically chi-square with (m — 1)(k — 1) degrees of freedom under
(n) .
UﬂoeHo Ugefm{Pt?o;g}’

(i1) Q(Kn) is asymptotically non-central chi-square, still with (m — 1)(k — 1) degrees of
freedom, but with non-centrality parameter

4! 1
lﬂoyt;ﬁyg =t Fﬁo;&grﬂo;ﬁ,grﬂo;ﬁygt

under Péno)-i-nfl/qu)t(ﬂ);g’ where t™ is as in (3.3) and t := lim,, o t(™);
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(n)
K

(iii) the test Q(I?) which rejects the null hypothesis as soon as Q exceeds the a-upper

quantile of the chi-square distribution with (m — 1)(k — 1) degrees of freedom has
asymptotic level a under Uy, ey, Ugefm{Péno).g};

(iv) in particular, for K = K; = (Kpyy.. Ky,) with Ky (u) = o5 (F7 ) (1 —

(ﬁifl(u))2)1/2, @(Kni 18 locally and asymptotically most stringent, at asymptotic level c,
for Usyem, Uge}-m{Pf;;).g} against alternatives of the form Uﬂngo{Pf,ﬁ}}.

Thanks to Proposition 5.1, the proof of this result follows along the same lines as that of
Proposition 4.3 and is therefore omitted.

6. Comparison of the proposed test procedures

In what follows, we will compare the optimal pseudo-FvML test (hence, the Watson test)
™ to optimal rank-based tests qj(ﬁ"; for several choices of f € F™, both at asymptotic

level via the calculation of Pitman’s asymptotic relative efficiencies (AREs, Section 6.1) and
at finite-sample level via a Monte Carlo simulation study (Section 6.2).

6.1. Asymptotic relative efficiencies

Let AREg, (6", ¢5") denote the ARE of a test ¢{") with respect to another test ¢{"
under P1(9n0)-|-n*1/2u(")t(");g' Thanks to Propositions 4.3 and 5.2, we find that

AREi’o;g(~ (Kn])c, ¢(n)) = lﬂo,t;ﬁi,g/lﬂo,t;g,g- (6.11)

In the homogeneous case g = (g1,...,91) (the angular density is the same for the m sam-
ples) and if the same score function—namely, Ky, —is used for the m rankings (the test is

therefore denoted by qj(lgf) ), the ratio in (6.11) simplifies into

n n ‘72 K 179 B ;g1
AREg, (¢ 5%), /6™) = ’f;k(}f(f )gz’” : (6.12)
1 g1

Numerical values of the AREs in (6.12) are reported in Table 1 for the three-dimensional
setup under various angular densities and various choices of the score function Ky . More
precisely, besides the FvML we consider the spherical linear, logarithmic, logistic and
squared distributions with respective angular functions

flin(a) (t) =t+a, flog(a) (t) = 1Og(t + a)

a exp(—b arccos(t))
1+ a exp(—b arccos(t)))?

flogis(a,b) (t) = ( and qu(a) (t) = Vt+a.

The constants a and b are chosen so that all the above functions are true angular functions
satisfying Assumption A. The score functions associated with all these angular functions
are denoted by Klin(a) for flin(a)7 Klog(a) for flog(a)7 Klogis(a,b) for flogis(a,b) and KSq(a) for
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Table 1. Asymptotic relative efficiencies of (homogeneous) rank-based tests ¢ f,?; with respect to the pseudo-
-~ 1
FvML test ¢(™ under various three-dimensional rotationally symmetric densities.

ARE(¢ i) /™)

Underlying density ? E?;Q ? E?;G ? ggl)m(g) ? g?1);“(4) ? g?1)0 (2.5) ? g?l)ogis(l,l) ? g?S)Q(?)
FvML(1) 0.9744 0.8787  0.9813 0.9979 0.9027 0.9321 0.9992
FvML(2) 1 0.9556  0.9978 0.9586 0.9749 0.9823 0.9919
FvML(6) 0.9555 1 0.9381 0.8517 0.9768 0.9911 0.9154

Lin(2) 1.0539  0.9909 1.0562 1.0215 1.0212 1.0247 1.0531
Lin(4) 0.9709 0.8627  0.9795 1.0128 0.8856 0.9231 0.9957
Log(2.5) 1.1610 1.1633 1.1514 1.0413 1.1908 1.1625 1.1252
Log(4) 1.0182  0.9216 1.0261 1.0347 0.9503 0.9741 1.0359
Logis(1,1) 1.0768  1.0865 1.0635 0.9991 1.0701 1.0962 1.0485
Logis(2,1) 1.3182  1.4426 1.2946 1.0893 1.4294 1.3865 1.2411
Sq(1.1) 1.2303  1.3460 1.1964 1.0264 1.3158 1.3004 1.1478
Sq(2) 1.0502  0.9692 1.0556 1.0408 1.0003 1.0127 1.0587

Jsq(a)- For the FYML distribution with concentration r, the score function will be denoted
by Kti’m'

Inspection of Table 6.1 confirms the theoretical results. As expected, the pseudo-FvML
test ¢(™) dominates the rank-based tests under FyML densities, whereas rank-based tests
mostly outperform the pseudo-FvML test under other densities, especially so when they
are based on the score function associated with the underlying density (in which case the
rank-based tests are optimal).

6.2. Monte Carlo simulation results
In order to study the finite-sample behavior of the pseudo-FvML test ¢(™ and various rank-
based tests Q(K";, we have conducted a Monte Carlo simulation study on R for moderate,

small and very small sample sizes for the two-sample spherical location problem, that is,
for an ANOVA with m = 2.

6.2.1. First setting: moderate sample sizes

We generated M = 1,500 replications of five pairs of mutually independent samples (with
respective sizes n; = 200 and ny = 250) of (k =)3-dimensional rotationally symmetric
random vectors

Etiijis €:1523354355 jizla"'ania i:1523

with FvML densities, linear densities and Purkayastha densities (the Purkayastha 1991
distribution is associated with angular functions of the form fp(q)(t) = e—aarccos(t) g > ():
the €1,15,’s have a FvML(5) distribution and the €1,25,’s have a FvML(2) distribution; the
€2:15,'s have a Lin(5) distribution and the €2,9;,’s have a Lin(2) distribution; the €31, ’s
have a FvML(5) distribution and the €3,25,’s have a Lin(2) distribution; the €4,1;, s have a
Pur(.2) distribution and the €4,2;,’s have a Pur(.4) distribution and finally the €5,1;,’s have
a FYML(5) distribution and the €5.95,’s have a Pur(.4) distribution.
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The rotationally symmetric vectors €45, ’s have all been generated with a common spher-
ical location 6y = (1,0,0)". Then, each replication of the €4.;;,’s was transformed into

{ X@;ljlzsl;ljp 611,2,3,4,5 j1:1,...,n1
Xg;gj%g:OEEg;gjw 611,2,3,4,5 jgil,...,ng, 510,1,2,3,
where
cos(mé/15) —sin(w&/15) 0
O¢ = | sin(m&/15)  cos(w&/15) O
0 0 1
Clearly, the spherical locations of the Xy,1;,’s and the Xy.25,.0’s coincide while the spher-
ical location of the Xy.2j,.¢’s, & = 1,2,3, is different from the spherical location of the
X1, s, characterizing alternatives to the null hypothesis of common spherical locations.
Rejection frequencies based on the asymptotic chi-square critical values at nominal level 5%
are reported in Table 2 below.

6.2.2. Second setting: small sample sizes

In this subsection, we generated M = 2,500 replications of four pairs of mutually inde-
pendent samples (with respective sizes ny = 100 and ny = 150) of (k =)3-dimensional
rotationally symmetric random vectors

€05ij: > 6213253745 jizla"'ania i=1,2,

with FvML densities and linear densities: the £1,15,’s have a FvML(15) distribution and the
€1,25,'s have a FvML(2) distribution; the €2,1;,’s have a Lin(2) distribution and the €2,2;,’s
have a Lin(1.1) distribution; the 3,1, ’s have a FvML(15) distribution and the €3,2;,’s have
a Lin(1.1) distribution and finally the €4,1;,’s have a Lin(2) distribution and the €4;25,’s
have a FvML(2) distribution.

The rotationally symmetric vectors €y,;5,’s have all been generated with a common spher-
ical location 8y = (v/3/2,1/2,0)’. Then, each replication of the &¢.;;,’s was transformed into

{ Xg;ljl =Er1j, 0=1,2,3,4, j1=1,....m
Xg;2j2;£:O§64;2j2, 611,2,3,4, j2:1,...,n2, 510,1,2,3,
where
cos(m€/16) —sin(w&/16) 0
O = | sin(w&/16) cos(w&/16) O
0 0 1
As previously, the spherical locations of the Xy.1;,’s and the Xy,25,.0’s coincide while the
spherical location of the Xy.2j,.¢’s, ¢ = 1,2, 3, is different from the spherical location of the
X1, s, characterizing alternatives to the null hypothesis of common spherical locations.
Rejection frequencies based on the asymptotic chi-square critical values at nominal level 5%
are reported in Table 3 below.

6.2.3. Third setting: really small sample sizes
In this subsection, we generated M = 1,500 replications of two pairs of mutually inde-
pendent samples (with sizes n; = ny = 30) of (k =)3-dimensional rotationally symmetric
random vectors

€rijy L=1,2, ji=1,...,m;, i=12,
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with FvML densities and linear densities: the €1,15,’s and the €1,2;,’s have a FvML(1) distri-
bution; the €2.1;,’s have a FvML(1) distribution and the €2,2;,’s have a Lin(5) distribution.

The rotationally symmetric vectors £4.;5,’s have all been generated with a common spher-
ical location 6y = (1,0,0)". Then, each replication of the €4.;;,’s was transformed into

XZQUI = E&4151> (= 172, jl = 1, o,
Xp2jsie = Oc¢eraj,, (=1,2, jo=1,...,ns, £=0,1,2,3,

where
cos(w&/10) —sin(w&/10) 0
O¢ = | sin(w§/10)  cos(w&/10) 0
0 0 1

Once again, the spherical locations of the Xy.;5,’s and the Xy;25,.0’s coincide while the
spherical location of the Xy.2j,.¢’s, £ = 1,2, 3, is different from the spherical location of the
X1, s, characterizing alternatives to the null hypothesis of common spherical locations.
Power curves based on the asymptotic chi-square critical values at nominal level 5% are
plotted in Figure 1 below.

6.2.4. Conclusions
The inspection of Tables 2 and 3 and of Figure 1 reveals nice results:

(i) The pseudo-FvML test and all the rank-based tests are valid under heterogeneous
densities. They reach the 5% nominal level constraint under any considered pair of
densities.

(ii) The comparison of the empirical powers reveals that when based on scores associated
with the underlying distributions, the rank-based tests are quite powerful.

(iii) The proposed procedures (even the rank-based tests) perform surprisingly well under
(very) small sample sizes.

7. Real-data example

In this section, we apply our new tests on a real-data example. The data consist of measure-
ments of remanent magnetization in red slits and claystones made at 2 different locations
in Eastern New South Wales, Australia, the first location yielding n; = 39, the second
ny = 36 observations; see Embleton and McDonnell (1980) for details. As can be seen from
Figure 2, the rotational symmetry assumption in the two samples seems to be appropriate
since data are clearly concentrated. However, the specification of the angular functions is
not reasonable, whence our semi-parametric procedures are quite useful in this setting.

As explained in the Introduction, the main task for the practitioner consists in solving
the fold problem, that is, to test whether the remanent magnetization obtained in those
samples comes from a single source of magnetism or not. Therefore, we test here the null
hypothesis Hy : 61 = 05 against H; : 01 # 05. For this purpose, we used the pseudo-FVML

test ¢(") and rank-based tests ¢ EZi)n(l.l),FvML(lo)) and ¢ EE?n(l.l),FvML(lOO)) based respectively
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Table 2. Rejection frequencies (out of M = 1,500 replications), under

the null and under increasingly distant alternatives, of the pseudo-FvML

test (™) and various rank-based tests ¢E',?¢ k) (based on FvML(2) and
~ 22 ¢5

FvML(5) scores), QEQLM)’KUH(S)) (based on Lin(2) and Lin(5) scores),

¢ »y.c,,) (based on Lin(2) and FvML(5) scores), ¢E?<)¢ Kianga)
~ in(2) o5 ~ 5> Lin

(based on FvML(5) and Lin(2) scores) and Q(S") (the sign test based on
constant scores) . Sample sizes are n; = 200 and ny = 250.

§
Test True densities 0 1 2 3
Pt 0447 1887 6207 9313
B (Ryy Kay) 0507 2393 .7260 .9673
()
D (Kpin(2)Krin(s)) (¢2, ¢5) 0480 .1860 .6193  .9287

.0440  .2253  .6967  .9580
.0567 .2007  .6427  .9407

(n
d~) (Kyin(2) Kes)

n
d~) (K¢g  KLin(2))

o 0460 1733 5787 .9100
™ 0527 0927 1713 3213

(n)
?)U% Kyy) 0553 .0940 .1807 .3560

(Lin(2), Lin(5)) | .0500 .0887 .1800 .3393
0500 0867 .1620 .3320
0553 0967 .1987 .3613

(n
Q (KvLin(2) KLin(5))
n
? (KLin(2) K¢s)

(n
¢ (K¢, KLin(s))

¢ 0520 .0793 .1507 .2913

Q) 0467 1007 2867  .5667

S, sy 0553 1120 3053 5793
(n) .

D (Foninis Krin(a)) (¢5, Lin(2)) 0480 1040 2980 5793

.0527  .1100  .2933  .5693
.0513  .1087  .3093  .5907

n
d~) (KLin(s) Key)

n
d~) (K¢g  Krin(2))

o 0427 1040 2687  .5380

o™ 0480 .0587 .0773 .1573

¢ E’;Q% Kay) 0547 0640 .0907 .1553
o (Pur(.2),Pur(.4)) | .0493 .0620 .0833 .1600

(KL;n(S)ﬁKLin(Q))

0473 .0553 .0773  .1407
.0607 .0753  .0927 1773

n
Q (KLin(s5) K ey)

(n
Q (K¢, KLin(2))

o 0480 .0600 .0787 .1547
Q) 0427 0913 2673 .5300
(n)
(ib) (Ko Kosy) 0487 1000 2593 5088
n
B (Resnsy Krincz)) (¢35, Pur(.4)) 0453 .0973 2727 5420

0453 .0987 2487  .4993
 (Kyy Kpingay) 0493 1033 2780 .5533
~ 5 in

28 0393 .0947 2687 5313

n
d~) (KLin(5) Key)

19
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Table 3. Rejection frequencies (out of M = 2,500 replications), under

the null and under increasingly distant alternatives, of the pseudo-FvML test

#™ and various rank-based tests ¢ (") x,,) (based on FyML(15) and
-~ ’ 2

(Kg15
FvML(2) scores), ¢ E;L()Lin(Q)’KLin(l.l)) (based on Lin(2) and Lin(1.1) scores),

(n) : (n)
@ (Kpin(2) Kiy) (based on Lin(2) and FvML(2) scores) and ¢ (Koo Kingi.1))

(based on FvML(15) and Lin(1.1) scores). Sample sizes are n; = 100 and

nog — 150.

Test True densities 0 1 2 3
o™ 0592 2684 .8052 .9888
(n)
(gg) Ry Koy) 0696 2952 .8276 9900
n
¢ (Ktin(o i) (¢15, ¢2) 0536 2316 .7660 .9756
n
S (Rernny Kooy 0656 2952 8160 9894
X 0544 2308 7716 9772
~ 15° in(1.
ot 0480 0596 0792 .1312
(n)
(gg) Ry Koy) 04720568 0948 1340
n . .
¢ L (Lin(2), Lin(1.1)) | .0464 .0604 .0892 .1424
n
B oy o) 0520 0588 0920 .1440
S (. Koy 0480 0580 0856 1340
~ 152 in(1.
ot 0508 0684 1044 1512
(n)
qg) (e Koy) 0540 0648 1012 1532
n .
000 iy | (Lin(2),62) | 0512 0664 1084 1608
n
B oy o) 0508 0656 .1072 .1620
S (e Kamians) 0496 0628 1004 1516
~ 15° in(1.
o™ 0468 1008 2908  .5760
IR 0628 1288 3612 6788
~ 157 2
0 Ky | (@13, Lin(L1) | 0512 1156 3636 6892
B (s oy o) 0616 1220 3620 6768
S (s Kamians) 0504 1180 3660 6916
~ 15 in(1.
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Power curve (FvML/FvML) Power curve (FvML/lin)

0.4 + 04 +

0.2

Power
Power

onns

0.0 ~ 0.0 ~

Fig. 1. Power curves of the pseudo-FvML test (solid line) and the rank-based tests based (i) on
FvML(2) and FvML(5) scores (dotted line) and (ii) on Lin(2) and Lin(5) scores (dashed line). The
sample sizes are n; = ng = 30.

on the couples of linear and FyML scores (Lin(1.1), FvML(10)) and (Lin(1.1), FvML(100)).
The corresponding test statistics are given by

n) __ (n) _ (n) —
Q™ = 5.96652, Q (Lin(1.1),FvML(10)) = 9-477525 and Q (Lin(1.1),FvML(100)) = 2925854

At the asymptotic nominal level 5%, the tests ¢(™), ¢ EZi)n(l.l) FeML(10)) 20d @ EZi)n(l.l) FYML(100)

do not reject the null hypothesis of equality of the modal directions since the 5%-upper
quantile of the chi-square distribution with 2 degrees of freedom is equal to 5.991465.

Appendix

Proof of Proposition 4.1. From Watson (1983) (and the beginning of Section 2) we know

that, under Pf;;);g, the sign vectors Sp(X;;) are independent of the scalar products Xj.0,

E,, [Se(Xi;)] = 0 and that
1
By, [89(Xi;)S5(Xij)] = 7— (Ix — 66)

for i = 1,...,m and for all j = 1,...,n;. These results readily allow to obtain Part (i)
by applying the multivariate central limit theorem, while Part (ii) follows from the ULAN
structure of the model in Proposition 3.1 and Le Cam’s third Lemma. ]
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Magnetic remanence (data 1) Magnetic remanence (data 2)

1.0
1.0

o
0.0

z
0.0

z

05

05

-1.0

Fig. 2. Measurements of remanent magnetization in red slits and claystones made at 2 different
locations in Australia

Proof of Proposition 4.2. We start by proving Part (i). First note that easy computations
yield (for i =1,...,m)

Uz

Aén@l — mn;l/z Z {XU - (ngé)é}
j=1
— A, Y [0 - (X 0)

J=1
= Al v _wi,

1&1

where Vg") = kyn; ! Pyl | [X;6] 1/2(0 0) and W(" = 0rin _1(2 Xi;) 1/2(9 —0).
Now, combining the delta method (recall that I, —68'" is the Jacobian matrlx of the mapping
h:RF - SF1.x ”Tx” evaluated at ), the Law of Large Numbers and Slutsky’s Lemma,
we obtain that

K2

v = *1Zx nl’?(6 - 6)

= B, [XL0] (I, —660")n)* (8 — 8) + op(1)
= de >0 —0) +op(1)

under Pg{?g as n — oo. Thus, the announced result follows as soon as we have shown that

W is 0p (1) under Pé"o)_g asn — oo. Using the same arguments as for V™| we have under
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Pé") and for n — oo that
039

w = g *1Zx ni’*(6 - 6)
= 0 [riny "D (X)) (1 —06') | ;%6 —0) +op(1)

= OBy, [\/1- (X,0)2(Se(Xi,))' | n}/*(0 —0) + or (1),

which is op(1) from the boundedness of 8 and since from Watson (1983) (see the proof of
Proposition 4.1 for more details) we know that

By, [/1— (X,0)2(S0(Xig))'| =y [{/1 = (X(,0)2] By, [(S0(Xi))] =0

This concludes Part (i) of the proposition. Regarding Part (ii), let X be a random vector
distributed according to an FvML distribution with concentration x. Then, writing ¢ for
the normalization constant, a simple integration by parts yields

1
Cror = kEg.[1— (X'0)?] = HC/ (1 — u?) exp(ku)(1 — u?)*=3/2 gy

—1

1
= HC/ exp(ru)(1 — u?)F=D/2 dy

—1

ek —1) /_11 wexp(ru)(1 —u?)*=3)/2 gy

(k — 1) B, [X8].

The claim thus holds. (]
Proof of Proposition 4.3. We start the proof by showing that the replacement of 8 with
0 as well as the distinct estimators have no asymptotic cost on Q(”) The consistency of

D;w“ E;w“ t=1,...,m, and H¢, g together with the n'/2(p(")~1_consistency of ¥ entail
that, using Part (i) of Proposition 4.2,

Q" = (Aa(;;);g - r%o;gﬂ")\/ﬁ (é a 0))/F‘$o%fa2 (Afa?@ - F%o;gr(n)\/ﬁ (é a 0)) +or()

under Pf;;)_g as n — 0o. Now, standard algebra yields that

* 4 n) _ [ n 1 .
Fa;?’gr’%?&’r( )= (Fﬂo;gr( ))Tﬂo;évg =0,
so that
n) — ) \ L (n)
Q" = (Aﬂo;g) I‘ﬂo;f,gA-ﬂO;? +op(1)

= Q(”)('ﬁo) +Op(1)
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Both results from Proposition 4.1 entail that since Ty . gI‘f,‘o; ,g 18 idempotent with trace
(m—1)(k—1), Q™) (#) (and therefore Q™)) is asymptotically chi-square with (m —1)(k—1)
degrees of freedom under Pé"o)_g, and asymptotically non-central chi-square, still with (m —
1)(k—1) degrees of freedom, and with non-centrality parameter tlrﬂo;d),gré;d),gr‘l’o;dhgt under
Péno)-mfl/zuwt(n);g‘ Parts (i) and (ii) follow. Now, Part (iii) is a direct consequence of Part
(i). Part (ii) of Proposition 4.2 and simple computations yield that Q" is asymptotically
equivalent to the most stringent FvML test Qf;) in (3.7). Part (iv) thus follows. O
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