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It is shown that in a system whose phenomenological description does not present any 
instability a transition can be induced by external noise. The class of systems in which 
such a phenomenon can occur is determined. 

1. Introduction 

The stability properties of non-equilibrium systems 
have become over the last decade a subject of wide- 
spread interest, primarily because of their implications 
for the understanding of cooperative phenomena in 
physics, chemistry, biology and even more remote 
fields [1-3]. Well-known examples of cooperative 
non-equilibrium systems are the laser [4,5], the 
Belousov-Zhabotinskii reaction [6], the B6nard in- 
stability [7], the glycolytic oscillations [8, 9] and the 
current instabilities of semi-conductors [10]. The va- 
riety of dynamic and steady state behaviors in such 
systems is very broad. It has been explored essentially 
by perturbative methods derived from bifurcation 
theory [11], singular perturbation theory [12], group 
theory [13] and also by more qualitative approaches 
based on catastrophe theory [14, 15]. 
The common property of non-equilibrium cooper- 
ative phenomena is that they require some energy 
dissipation and occur via points of branching where 
the stability properties of various regimes change 
abruptly. Hence, it is to be expected that fluctuations 
play an important role in their mechnism of onset. 
Usually, it is assumed that the environment, i.e. the 
ensemble of external constraints acting on the system, 
does not fluctuate. The only fluctuations which are 
allowed and are susceptible to trigger the transitions 
between different regimes, are internal fluctuations. 
The latter originate from the statistical nature of the 
processes taking place inside the system and which 

involve many degrees of freedom. For example, the 
evolution of a chemical system can be seen as a 
succession of discrete random jumps in the numbers 
of reacting particles. The effect of these internal fluc- 
tuations is usually taken into account by assuming 
that the evolution of the system can be described by a 
Markovian birth and death process in the space of 
the total number of reacting particles [2,3]. This 
leads to the so-called Master equation. Using this 
theory the influence of internal fluctuations has been 
extensively studied [16, 17] especially in the thermo- 
dynamic limit. It is found that in this limit, the 
stochastic description reduces to the deterministic 
one, except at first order transition points where 
macroscopic equations lose their validity [18-20]. 
In the phenomenological treatments as well as in the 
Master equation description, it is supposed that all 
appearing parameters are non-fluctuating quantities. 
However, a certain subset of them characterizes in 
general the influence of the environment which in 
many cases should be considered as randomly vary- 
ing. Thus, to take the effect of this environmental 
noise into account, the phenomenological equations 
should be regarded as differential equations with 
random parameters. This approach can in principle 
be extended to the Master equation. However as 
mentioned above, internal fluctuations can be ne- 
glected in the thermodynamic limit (except at a first 
order transition point). It is therefore quite appropri- 
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Fig. 1. Sketch of the probability density in the case of model (1.1). 
The continuous curve refers to small values of the variance. The 
mixte curve is obtained when the variance exceeds some critical 
value ~2 /2>2>0.  For ~.<0 the density is a 6-function at zero 
(dashed curve) 

ate in a first stage to analyze the influence of external 
noise at the level of phenomenological equations. A 
first example of non-linear macroscopic system cor- 
responding to the following kinetic equation 

k = ~ . x - x  2 (1.1) 

has been investigated from this point of view recently 
[21]. £ is supposed to be Gaussian white noise with a 
mean value 2 and a variance o -2.. The striking effect 
observed in this system and which is sketched in 
Figurel ,  is that external noise may induce a new 
transition point in addition to the deterministic one 
at 2 : 0 .  This qual i ta t ive  change in the macroscopic 
behaviour of the system was recently confirmed ex- 
perimentally by Kabashima et al. [22] with an 
equivalent electrical circuit system. The results dem- 
onstrate the soundness of the above approach and 
particularly of the way to take into account the 
external noise. Thus it seems extremely worthwhile to 
pursue the study of external noise effects, especially in 
view of the qualitative new phenomena which can be 
expected. 
An analysis of models exhibiting a first order tran- 
sition between two simultaneously stable steady 
states [23-25] has revealed the existence of noise- 
induced phase transitions. It has been found that 
even above the deterministic critical transition point, 
the stationary probability density admits two maxima 
and one minimum if the variance of the fluctuating 
parameter lies within a certain interval. Our objective 
is to study the mechanism of such transitions more 
deeply and to characterize mathematically the class 
of systems in which they occur. In Section 2, we 

* Contrary to the internal fluctuations case where the variance is 
inversely proportional to the system's size, ¢r is taken here to be 
size independent. For a particular realization see [22] 

consider a minimal representative model system. Af- 
ter a brief description of its deterministic features, we 
study the effect of Gaussian white noise for which a 
complete analyt{cal treatment is possible. In particu- 
lar, the results illustrate the fact that transitions un- 
der the influence of external noise may occur in 
systems whose phenomenological equation never pre- 
sents an instability point whatever the values of the 
parameters. In such cases, the breakdown of de- 
terministic predictions is complete. An analysis of the 
influence of coloured noise follows in Section 3. It is 
argued that qualitatively the same phenomenon is 
observed, proving that we are not dealing with ar- 
tefacts due to the idealisation of white noise. In Sec- 
tion 4, we discuss the general implications of noise in 
non-linear systems and establish a criterion to de- 
termine when transitions can be induced solely by 
external noise. 

2. Transitions Induced by External White Noise 

a) We consider the phenomenological equation: 

5c : c~ - x + f ix  (1 - x) = f ( x )  (2.1) 

where x can take values in the interval [0, 1]. One 
possible realisation of this kinetic equation is the 
reaction scheme: 

kl 
X~--  ' Y  

k2 

A + X + Y  ~1 , 2 Y + A  

B + X + Y  z~ ~ 2 X + B .  (2.2) 

Obviously, the reactions conserve the total number of 
X and Y particles: 

X + Y-- N = constant. (2.3) 

Using this relation, it can easily be seen that (2.1) 
gives the time evolution of the fraction x = X / N  with: 

k 2 (l 2 B - l t A ) / N  
~= and f i -  (2.4) 

kt  + k  2 k l + k 2  

Without restricting the generality of the following 
analysis the symmetrical case will be chosen: 

~ c : ½ -  x + f ix (1  - x ) =  f ( x ) .  (2.1a) 

For the stationary states of (2.1a) we have the 
relation: 

1 fi_= Xs --2- 
x,(1 - X s )  (2.5) 
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Fig. 2. Extrema of the probability density (2.12) as a function of fl 
and for three values of the variance 

which is depicted in Figure 2 (the curve labelled 0). 
The stability properties of G are determined from the 
relation' 

co(G) =f'(x)l~, (2.6) 

x, is stable, if co(G)<0. From (2.1a), using (2.5), we 
have: 

2 1 
X s - - X s q -  ~ 

c°(Xs) = G( 1 - G )  " (2.7) 

It is easily verified that co is negative definite for any 
G~[0, 1]. Thus the above model does not display any 
instability. 

b) We will now analyze the influence of fluctuations 
in the concentrations of the catalysts A and B. In this 
section we will assume that the changes occur on a 
much shorter time scale than the evolution of the 
macroscopic system. Therefore we can make the 
idealization of white noise and consider that the 
parameter fi in (2.1a), as a fluctuating quantity given 
by a Gaussian white noise with mean fi and variance 
a z. Thus we arrive at the following stochastic differ- 
ential equation: 

d x t = { ½ - x ~ + ~ x d l - x , ) } & + 0 - x , ( 1 - x ~ ) c l W ,  (2.8) 

W~ denotes the Wiener process (Brownian motion) the 
derivative of which, in the sense of generalized func- 
tions, is Gaussian white noise: Wt=~ t, Eel=0,  E~t¢ t, 
= 6(t-t'). We will interpret the stochastic differential 
equation (2.8) as an Ito-equation [26]. It is easily 
verified that the results of the following analysis do 
not change qualitatively if (2.8) would be interpreted 
in the sense of Stratonovic. 
To the Ito-equation (2.8) corresponds the Fokker- 
Planck equation: 

~,p(x) = - ~x { ½ -  x + px (1  - x)} p(x)  

+ ½a 2 cVxxx 2 (1 - x) 2 p(x). (2.9) 

The stationary solution of this Fokker-Planck equa- 
tion, which is further written in the general form: 

~t p = - ~xf(X) p + ½0-2 Gx  G2 (x) p (2.10) 

is given by: 

1 2 ~ f ( x )  , 
ps(X)=G~(~exp~j G ~ a x  (2.111 

I" 2 

provided ~ G(x) dx is finite and the boundaries r 1 and 
r l  

r z be natural boundaries. These conditions are ful- 
filled for (2.9) and we obtain (Jff: norm): 

Y 
P,(x)=x2(1 _x)2 

• e x p , (  1 
2X(1-X) fl In ( ~ ) ) .  (2.12) 

The extrema x,, of G(x) can be calculated from the 
relation: 

fix,,) - 0-2 G (x,,) G' (xm) = O. (2.13) 

We obtain: 

1--Xm + fiXm(1-- Xm)--ff2Xm(l--Xm)(1-- 2Xm)=O. (2.14) 

For simplicity let us discuss the case that fi=0, i.e. 
the stationary solution of the phenomenological 
equation (2.1a) is G = 1/2. Equation (2.14) yields: 

xml=l/2 and xm,={1+_]/i~-2/0-2}/2. (2.15) 

Thus for 0-2> 2 the stationary probability distribution 
possesses three extrema. Since G(x) tends to zero for 
x-+ 0 and x ~ 1 we have the following situation, see 
Figure 2: For 0-2<2, xml=l/2 is a maximum. For 
a 2 >2, x,~l = 1/2 becomes a minimum and two max- 
ima appear at x,,~ which tend to zero resp. to one as 
0-2 tends to infinity. The situation is qualitatively the 
same for the unsymmetric case of fi4=0. Even if the 
deterministic steady state solution lies close to either 
one of the boundaries, nevertheless the probability 
distribution will always become bimodal once 0 -2 
becomes larger than some critical value. The latter 
increases with [fll. This model thus always exhibits a 
transition solely triggered by external noise. For fi 
= 0, this transition is a soft one. At 0-c2 = 2, x~, = 1/2 is 
a triple root and the distance between x~+ and x,, 

2 For fi=#0 tends to zero like (0-2_0-2)1/2/0- for a2,~G. 
the transition is a hard one as can be seen from 
Figure 2. For fl > 0 (fl < 0) the peak corresponding to 
the steady state of the deterministic equation (2.1a) 
moves towards 1 (towards 0) with growing 0-2 and if 
0-2 depasses 0-~ ([rid > 2 = 0-~(0) a second peak appears 
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at a finite distance from the original one, near the 
other boundary of the state space. If we keep a 2 fixed 
and bigger than 2 and vary 3 along the real line, the 
situation ressembles a first order transition as is clear 
from the sigmoidal form of the curve for the extrema 
of p,(x), e.g. a 2 : 8 .  The above facts can be sum- 
marized in the statement that, as to the extrema of 
ps(X), in the (3, az) half plane we have a cusp catas- 
trophe with critical point at (0, 2). 

. . . . . . . . . . .  _ . . . . . . . . . . .  

Fig. 3. State space with switching curve for the process z, = (fit, xt) 
satisfying equations (3.5), (3.6) 

3. Transition Induced by External Coloured Noise 

To study the case of white noise is useful mainly 
because the solution of a differential equation: 

2 = f(x,  3t) (3.1) 

with fit being white noise, is a Markov process for 
which powerful analytical methods exist. However, in 
some cases this idealization might be inadequate and 
it might be necessary to take into account the effect 
of the finite correlation time of the fluctuations of the 
surrounding.* In such cases, the external noise can 
often be modelled as the output of a "filter" having 
white noise as input. Thus 33 can then be assumed to 
be coloured noise, i.e. a stationary ergodic Markov 
process described by the Ito-stochastic differential 
equation: 

d3t : a(3t) dt + a(fi,) dW t (3.2) 

or, more generally, real noise by which we mean any 
stationary, non-markovian process. 
In this section, we treat the coloured noise case. 
Although x, is not Markovian anymore, it turns out 
that the pair z t : (3,  xt) is a Markov diffusion process 
satisfying the system of Equations (3.1) and (3.2), In 
Section 2, we gave the necessary and sufficient con- 
dition under which (3.2) has a stationary and ergodic 
solution, as well as the explicit form of the stationary 
density /~s(3) (cf. Eq. (2.11)). We assume that this 
condition is satisfied. Since there is no diffusion term 
in (3.1), the 2-dimensional diffusion process z, is de- 
generate. Its state space Z is a part of the (3,x)-plane 
1R x lR. The curves f (x ,  f l ):O are called switching 
curves for the drift term in the x-direction. The drift 
indeed changes sign on these curves. The process z t 
can cross these curves only horizontally since there is 
no noise term in the x direction. This situation is 
illustrated in the Figure 3. 
We would like to study the long term behavior of the 
non-Markovian x t, but we are forced to do it via the 

* If f is nonlinear in fit the concept of white noise does not make 
sense.  

investigation of the long term behavior of the Mar- 
kovian pair z t =(fit, x,), since only the pair is amena- 
ble for analysis. The Fokker-Planck equation, in the 
stationary case, for the pair is: 

Ox { f (x ,  3)P(3, x)} + 0~ {~(3) P(3, x)} 

~__1 ~flfl {0.2 ( 3 ) P ( 3 ,  X)} .  ( 3 . 3 )  

It is in general extremely difficult to decide whether 
this equation has a unique 2-dimensional probability 
density G(3,x) as solution, i.e. whether the system 
(3.1), (3.2) has a unique stationary process z ° =(3t, x °) 
as solution. If so, then x ° is stationary with a density 
G(x), and: 

ps(3,x)dx=ps(3), ~ ps(3,x)d3=G(x). (3.4) 
xe~. 3dR  

Our task is complicated by the fact that z t is de- 
generate and thus the ergodic theory by Hasminski 
[27] for non-degenerate multidimensional diffusion is 
not directly applicable. However in some cases, this 
theory can be shown to hold even for systems with 
degenerate diffusion [28, 29]. 
To be more specific, let us assume that 3, is the 
Ornstein-Uhlenbeck process, i.e. a stationary ergodic 
Gaussian process with mean 0 and covariance E3fl?~ 
=(a2/2c%exp(-cqt-s]),  ~>0,  and f is the function 
(2.1), so that (3.1) and (3.2) become: 

d3,= -o~fitdt+adW~, cga>0  (3.5) 

dx t = {(½-x,) -3txt (1  - xt) } dt. (3.6) 

The process zt=(fit, xt) remains forever in the set 
Z = I R x  [0,1] once we start there because f (0 ,3 )=  
1 /2>0  and f ( 1 , 3 ) = - ½ < 0  so that the lines x = 0  
and x = l  can never be crossed. Thus, Z is an in- 
variant set of states and can be interpreted without 
any difficulty as the state space which for physical 
reason should be restricted to this set. 
We now sketch the proof that there is a unique 
stationary probability distribution 

bt(A, B) : J j Ps(3, x) dx dfi (3.7) 
A B  
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in Z, so that, if we start with initial distribution #, the 
process z ° and thus x ° become stationary. 
That there is at least one stationary distribution # in 
Z follows from the fact that any solution of (3.6) with 
Xoe[-0, 11 is bounded (Ref. 27, p. 74). It is the unique- 
ness of # which is non-trivial. 
The uniqueness of # follows from the fact that z ° runs 
from any neighborhood U o in Z to any other neigh- 
borhood U1 infinitely often with probability one, so 
that the mean waiting time is finite, i.e. z ° is positive 
recurrent. Then Z is a minimal invariant set of states, 
i.e. there is no smaller closed set inside Z such that # 
vanishes outside, and zt ° spends in each neighborhood 
in Z a positive portion of time. 
To see this, fix the following situation (without loss of 
generality): an ideal transition from the neigh- 
borhood of z 0 to the neighborhood of zl would be 
the curve going from Zo=(fio, Xo) straight to (flo, XO 
and from there straight to z~=(fl~,xl). This path 
would amount to a noise trajectory fit as shown in 
Figure 4. Here T o is finite, non-random and depends 
only on fio, Xo, and x 1. Such a fit is impossible. But 
we can find by a continuity argument in the vicinity 
of the idealized trajectory a whole tube B of fit's 
taking the 2-dimensional process from U o in time 
T > T o to U~. Consider this tube B as a subset of the 
space of continuous functions C[0, T] endowed with 
the probability measure #fl resulting from p~(fi). This 
set has positive probability, #6(B)>0, since #a is 
equivalent to Wiener measure (Ref. 30, p. 86) giving 
positive probability to every open set. Since #p is 
invariant with respect to time shifts in function space, 
it will happen infinitely often for almost every trajec- 
tory of fit that a piece of it fits into the tube B (cf. Fig. 
5) and that the mean waiting time between such 
events is finite since fit is positive recurrent. Thus zt ° 
will run infinitely often from U 0 to U 1 with finite 
mean waiting time. 
Knowing this, we can completely carry over 
Hasminski's construction (Ref. 27, p. 153-180) giving 
us in our case the following result: there is a unique 
stationary 2-dimensional probability measure # in Z 
having a density p~(fl, x). This density is the unique 
non-negative bounded solution of the Fokker-Planck 
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Fig. 6. Plot of q(x) demonstrating the appearance of a bimodal 
distribution as a result of the effect of increasing the variance of a 
source of coloured noise. The critical variance is equal to 2/3 

equation (3.3). We have for any solution z t of (3.5) 
and (3.6) and any integrable g the law of large num- 
bers (ergodic theorem) 

1 T 
lim ~ ~ g (zt) dt = ~ g(fi, x) Ps (fl, x) dfl dx (3.8) 
T~oo ~ 0 Z 

with probability one, and for the transition probabili- 
ty density of z t lira p(zl, t, z) =p,(fl, x), z =(fl, x). 

t~oo  

The ergodic theorem (3.8) enables us to determine all 
quantities related to the stationary density Ps, e.g. Ps 
itself, just by observing an arbitrary single trajectory of 
the 2-dimensional process long enough. 
Equation (3.6) thus has exactly one stationary so- 
lution x ° which is stationarily connected with the 
noise fit, and 

qs(x)= 7 ps(fi, x)dfi, 0 - < x < l .  
f l= - cx3 

The form of q~ can be found by the following argu- 
ments. The process (fit, x°) will stay a large amount of 
time around the switching curve f(x,  fl)= 0 or x = h(fl) 
with f i=h- l (x)  given by (2.5). Therefore, a first ap- 
proximation of q~(x) will be the density q(x) of the 
variable h(fl,): q(x)=p~(h-l(x))rh-l(x)'[. Since fit is 
9l(0, o-2), we obtain: 

_ { 1/2-x 2} (1/2"x)2+1/4 exp - ( x - ( l _ ~ ) ) / 2 a  ) 
q(x) ]/f~-aX2 (1 _ x)2 

with 0_<x<l .  This density satisfies q(0)=q(1)=0,  

q(1/2)=4/( l /~a)  and looks as represented in Figure 
6. 
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This behavior can be intuitively explained as follows: 
the Gaussian distribution 9l(0, 0 -2) of fit is being trans- 
formed by h into a distribution on [0, 11. For small 
a 2 the probability mass is concentrated around 1/2, 
while for large a 2 the curve h maps most of the mass 
into the neighborhood of 0 and 1. 
The q~ will essentially show the same behavior as the 
approximation q, with the difference that separation 
for large a 2 will be less extreme, since if the fluc- 
tuation of Bit is very strong, the x°-component will 
have less time to approach the switching curve 
x =h(#).  

4. Conclusions 

The system studied in Sections 2 and 3, belongs to a 
class of systems which can be characterized as fol- 
lows. The (x, fl) phase plane contains a switching 
curve f (x ,~)=O or equivalently x=h(~) which has 
finite asymptotic values: 

lira h(t~)=xl, lim h(fl)=x o. 

Supposing that x l>Xo with f(Xo,8)>O and 
f (x l ,8)<O, this situation may be represented as in 
Figure 7. If the switching curve h(fi) is monotone, it 
can be interpreted as a distribution function of some 
probability density/?(fl), i.e. 

# 

h(]?)= ~ }(#')d#'. (4.1) 
--oC) 

If Bit is chosen to be distributed according to this 
probability density, then the first approximation q(x) 
to the stationary density of x, is the uniform distribu- 
tion on [xo, xl].  Thus the onset of a double peaked 
distribution will occur for that a 2 for which the 
actually chosen distribution of Bit best resembles the 
distribution function related to h. 
These arguments can readily be applied to the class 
of systems whose switching curve presents only one 
asymptote, e.g. if: 

lim h(fi)diverges, lim h(fi)=0. 
#--*-co #4+oo 

The probability distribution always becomes single 
peaked on increasing a 2. Indeed some finite part o f  
the probability mass is mapped into a narrowing 
domain near zero, accounting for the growth of a 
peak in this neighborhood; the remaining part of the 
probability mass being spread over some x interval 
[a, o0], where a depends on the mean value /~. This 
spreading results in the disappearance of any peak 
which could exist in this interval [a, o01 for small 
values of a 2. Thus, these systems have the interesting 
property that on increasing a 2, the distribution may 

f(x,p)=o 

_ _ t  . . . . . . . . .  . . . .  

Fig. 7 

successively become single peaked around some 
x l e [a  ,oo], double peaked around x0e[0,a], 
xl ~ [ a , ° ]  and finally single peaked around 
Xoe[0,a]. Such systems as Schl/Sgl's chemical re- 
action scheme [311 or some recently investigated 
predator-prey systems [23, 24] belong to this class of 
systems. 
From a physical point of view, these results also 
permit to stress that the thermodynamic conditions 
compatible with the occurrence of dissipative struc- 
tures and non-equilibrium cooperative processes is 
remarkably wider than the conditions currently in- 
vestigated. We already mentioned in the introduction 
that these phenomena are critically dependent on a 
minimal level of energy dissipation: they occur via 
instabilities due to far from equilibrium environmen- 
tal constraints. This result underlies the whole of our 
understanding of the relation between order and en- 
ergy dissipation in macroscopic systems. It is howev- 
er important to realize that strictly speaking this 
thermodynamic requirement does not imply, as it is 
usually and conveniently done, that external con- 
straints must be constant in time and correspond at 
each instant to large deviations from equilibrium. Self- 
organization is possible under much weaker environ- 
mental constraints once the latter are fluctuating 
quantities. Remarkably, in such situations their mean 
value is less important than their variance. Con- 
sequently, non-equilibrium order-disorder transitions 
become possible even if on the average the environ- 
ment is at equilibrium (for a simple chemical example 
see Ref. 24). Furthermore our results also examplify 
that such transitions are not critically dependent on 
the choice of a particular kind of noise source. This 
suggests that these noise induced mechanisms of self- 
organization may have a wide range of applicability. 
Particularly they may provide a physical basis for the 
understanding of many ordering processes taking 
place in complex biological systems and in which it is 
well-known that fluctuating environmental factors 
play an important role. 
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