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We discuss the thermodynamic and kinetic conditions under which chemical reactions may prevent
the coarsening terminating spinodal decomposition and freeze the unmixing of binary mixtures
at some early, pattern forming, stage of evolution. Under very general conditions, we establish
that: (i) this pattern freezing phenomenon can only occur in nonequilibrium systems the level of
dissipation of which exceeds a finite, non zero threshold value; (ii) at least two independent chemical
processes must take place; (iii) chemistry must be destabilizing, which requires that at least one
of these processes must be autocatalytic; (iv) pattern formation is possible even outside of the
spinodal region, i. e., without involving a phase separation phenomenon, in unsymmetrical mixtures
where the potential energies between pairs of identical particles are sufficiently different. This latter
condition replaces for non-ideal chemically reacting binary mixtures the unequal diffusion coefficients
condition which governs the appearance of Turing patterns in the classical reaction-diffusion theory.

I. INTRODUCTION

The phase ordering dynamics of a binary mixture, such
as a binary alloy, quenched from a high-temperature, ho-
mogeneous state to a point below the spinodal line is well-
known [1]. In this domain, the mixture is unstable with
respect to long wave-length, small amplitude concentra-
tion fluctuations and, at first, decomposes into two coex-
isting phases exhibiting an interconnected, labyrinthine
morphology. Subsequently, on a long time scale, this pat-
tern slowly coarsens and finally transforms into two ho-
mogeneous macroscopic phases separated by a minimal
interfacial boundary region. This coarsening, also called
Ostwald ripening, is due to the fact that in the spinodal
domain, all nonzero Fourier modes with a wave number
k smaller than some upper cutoff value ku are unstable
while the zero-mode, k = 0, is only marginally stable.
Under those conditions, the dynamics selects a spatial
organization which originates from the amplification of
large wavelength modes, i. e., corresponds to vanishingly
small wave numbers (k → 0). Indeed, though the growth
of these large scale modes is extremely slow because it
requires the diffusion of matter over large distances, in
the end, it governs the spatial organization because it
minimizes free energy.

Over the last twenty years, several theoretical studies
have investigated the idea that coupling spinodal decom-
position with chemical reactions may, in the absence of
hydrodynamic effects, freeze this coarsening process and
stabilize a stationary inhomogeneous state characterized
by an intrinsic wavelength, i. e., a wavelength determined
by molecular and kinetic parameters rather than by ex-
ternally imposed boundary conditions and/or geometri-
cal constraints [2–6, 8].

In general, the starting point of these theoretical stud-
ies is a nonlinear diffusion equation, deriving from a
square-gradient free energy functional [9], in which source
terms are added to model the chemical reactions occur-
ring in the mixture. So far, the choice of these chemical

terms has relied either on intuitive considerations [2, 4–
6, 8], or on a master equation derivation which exploits
the kinetic similarities of some chemical reactions with
spin-exchange processes [3]. This basically mean field
type of approach was pioneered by Huberman [2], who
predicted that the influence of chemistry on spinodal de-
composition may, not only narrow the band of unstable
modes, but more importantly, introduce a lower cutoff,
k`, below which all modes, and in particular the mode
k = 0, are stable. Considering a two step autocatalytic
reaction, this author further showed, within the frame-
work of this autocatalytic model, that chemistry restricts
the size of inhomogeneities which arise during spinodal
decomposition under conditions where the system is out
of equilibrium with respect to both chemical equilibrium
and phase composition.

The theoretical results reported in more recent works
support this prediction that chemistry may suppress
the coarsening which normally terminates the isother-
mal phase separation of immiscible, incompressible flu-
ids. More than that even: in these studies, this suppres-
sion is obtained thanks to chemical processes which are
considerably simpler than the one considered by Huber-
man, suggesting hence, that the phenomenon in question
is ubiquitous in nature [5] and that the class of chemical
reactions which qualify as candidates for a possible ex-
perimental demonstration, is extremely broad. A major
simplification in this respect, is the fact that in none of
the models studied recently, is the chemistry involved au-
tocatalytic: typically, the reactions considered are simple
isomerisation processes like A ⇀↽ B, [3, 4, 8], association-
dissociations reactions like A + B ⇀↽ C [5], or standard
adsorption-desorption surface reactions [6].

This apparently extremely general effect of chemistry
on spinodal decomposition is however obtained through
a procedure which we find thermodynamically unsatis-
factory [10] because it consists in adopting chemical rate
laws which, contrary to those adopted for diffusion, do
not take into account the non-ideality of the systems con-
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sidered. More precisely, it amounts to assuming that,
somehow, far from thermodynamic equilibrium, the re-
lationship binding chemical affinities to activity coeffi-
cients [11, 12] may be neglected and that, as a result, it
then becomes possible to model chemical and diffusional
processes as being independent from each other [13].

The conditions for which this far from equilibrium
independency assumption (FFEIA) applies are unclear.
Our objective here is therefore to investigate the behavior
of mixtures undergoing phase separation in the presence
of chemical reactions along a different line of approach
which (i) does not rely on the FFEIA, (ii) allows us to
encompass equilibrium as well as far from equilibrium
situations and (iii) is based on thermodynamic consider-
ations which are model independent.

We shall study the case of chemically reactive binary
mixtures which is also the case investigated in previous
works. We shall limit ourselves to situations which in-
volve no hydrodynamic effects. From a chemical point
of view, this means that we restrict ourselves to reaction
schemes which a priori rule out the occurrence of pres-
sure or density variations of chemical origin. No other
assumption will be made concerning the kinetics of the
chemical processes considered.

It is characteristic of chemical reactions and diffusion
that the thermodynamic forces governing these processes
are related, being function, in the first case, of the chem-
ical potentials and, in the second case, of the chemical
potentials spatial derivatives. The thermodynamic fluxes
conjugate to these forces, i. e., the chemical reaction rates
and diffusion rates, are thus also function of the chemical
potentials; this relationship is furthermore well-known if
one admits the validity of the usual phenomenological
laws relating thermodynamic forces and fluxes. Under
those conditions, choosing the chemical potentials de-
termines the coupling between diffusional and chemical
processes. In particular, it determines the equilibrium
state towards which reaction-diffusion systems evolve in
the absence of external constraints. As embodied in the
classical Duhem-Jouget theorem [11], it results therefrom
that in equilibrium systems, diffusional stability auto-
matically insures the stability of chemical equilibrium. In
order to determine what happens to this classical stabil-
ity relationship under nonequilibrium conditions, ques-
tion which underlies the present study, it is essential in
modeling chemical and diffusional fluxes to respect this
property that both kinds of fluxes are given functions of
the same chemical potentials, which themselves are ther-
modynamic quantities subjected to well-defined, general
requirements.

We undertake the investigation of the behavior of bi-
nary mixtures undergoing simultaneously spinodal de-
composition and chemical reactions by addressing this
problem in detail in section II. Taking as usual in mean
field approaches, the square-gradient free energy as start-
ing point, we discuss the form that chemical potentials
must have within this framework to be thermodynam-
ically consistent. Subsequently, we express in terms

of these chemical potentials the generalized reaction-
diffusion equation governing the spatio-temporal behav-
ior of the system. We analyze the linear stability prop-
erties of the uniform steady state solutions of this equa-
tion in section III. We derive from this analysis in sec-
tion IV A and IV B, the thermodynamic and kinetic con-
ditions under which chemical reactions may introduce a
lower cutoff kl which (i) excludes the zeroth mode from
the band of unstable modes, (ii) permits to avoid the
phenomenon of coarse graining and (iii) allows instead
for the freezing of spinodal decomposition at an inter-
mediary stage. This analysis allows us to predict also
that the difference in potential energies between pairs of
identical particles plays an essential role in the stability
properties of the systems considered here. Notably, the
value of this parameter determines whether or not there
can already exist a finite band of unstable modes outside
of the spinodal domain; in other words, whether or not
a symmetry breaking instability may be observed which
leads to pattern formation without involving the unmix-
ing phase transition. The results are illustrated on an
example in section IV C.

II. MODELING OF CHEMICALLY REACTIVE
BINARY MIXTURES

A. Free Energy and chemical potentials

We consider a binary mixture subjected to isother-
mal, isobaric conditions which below (above) some criti-
cal temperature Tc, exhibits a miscibility gap. As usual,
we suppose that the coarse grained concentrations of the
components 1 and 2 forming this mixture, respectively
c1(r) and c2(r) (expressed in mass per unit volume), can
be defined at each space point r. In functional form, the
Gibbs free energy of this system can be written as:

G =
∫

dr g(r), (1)

where g(r) is a free energy density, dr denotes a volume
element and integration extends over the entire system.
Working in the spirit of the treatments currently adopted
to study the problem at hand, we assume that compo-
sition gradients are small compared to the reciprocal of
intermolecular distances and we expand g(r) about its
value gb for a bulk phase of uniform composition. As-
suming further that no external field or other source of
spatial anisotropy is present, we only retain in this expan-
sion the terms compatible with the tensoral invariance of
g(r) with respect to symmetry operations of rotation [9].
To the leading order, this yields:

g(r) = gb(c1, c2) +
1
2

2∑
i,j=1

κij(c1, c2)∇ci · ∇cj . (2)
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The scalar term gb takes into account the non-ideal, ener-
getic and/or entropic destabilizing effects responsible for
the spinodal decomposition of uniform bulk phases. The
κij
′s describe the interactions between ij-pairs of parti-

cles and are the elements of a symmetric matrix when
the medium is isotropic. Contrary to gb, these gradi-
ent terms should always be stabilizing: in the spinodal
domain, their effect should insure the minimization of in-
terfacial boundary regions and the existence of an upper
cut-off, ku, on the band of unstable Fourier modes.

As explained in the introduction, it is important in or-
der to study the coupling of chemical reactions and spin-
odal decomposition, to take into account that these two
processes are controlled by thermodynamic forces which
are linked to the components chemical potentials µ1 and
µ2. The remaining part of this section serves the pur-
pose of setting up the reaction-diffusion equation obeyed
by the system dynamics in agreement with this require-
ment and in as general form form as possible,.

Let us first explicitate that in (2), g(r) is a first order
homogeneous function of the concentrations ci. For any
number α, one has:

gb(αc1, αc2) = α gb(c1, c2) (3)
κij(αc1, αc2) = α−1 κij(c1, c2). (4)

Choosing α to be equal to the density ρ = c1 + c2, we
reexpress the functional dependence of gb and of the κij

in terms only of the coarse grained massic fraction x ≡
x1(r) = c1/ρ so that the free energy density (2) thus
rewrites as (x2(r) = 1− x):

g(r) = ρ gb(x) +
1
2

2∑
i,j=1

κij(x)
ρ

∇ci · ∇cj . (5)

Assuming that the density ρ = c1 + c2 is constant
throughout the system, immediately transforms this ex-
pression into the familiar Cahn-Hilliard form

g(r) = ρ

[
gb(x) +

κ(x)
2

(∇x)2
]
, (6)

where κ(x) = κ11(x) + κ22(x) − 2 κ12(x) measures that
contribution to non-ideality which arises from the exis-
tence of an unbalance between the mean attractive forces
between like molecules and the attractive force between
unlike molecules. This parameter must be positive so
that per se the occurrence of inhomogeneities results in
an increased free energy. Surface tension effects then
insure that concentration gradients cannot grow ad in-
finitum and that the spinodal instability is bounded by
an upper cutoff; as a consequence, inhomogeneities corre-
sponding to large wave numbers (small wavelengths) are
always damped.

Given that ρ = c1 + c2 is constant, it could seem, at
first sight, that introducing this factor in (5) complicates

notations unnecessarily. This is the case when spinodal
decomposition takes place in the absence of chemical re-
actions: to write down the diffusion equation describing
the system evolution, it is then sufficient to know the
chemical potential difference

∆µ ≡ µ1 − µ2 =
δG(x, 1− x)

δx
,

so that the factor ρ = c1+c2 may be forgotten. Here how-
ever, we need to keep track of the complete dependence
of G with respect to c1 and c2. Indeed, later on, to incor-
porate chemical reactions and write down the reaction-
diffusion equation giving the system evolution, we shall
need to know the chemical potentials of each component
separately. In deriving the latter from the classical defin-
ing relations

µ1 =
δG(c1, c2)

δc1
, (7)

µ2 =
δG(c1, c2)

δc2
, (8)

it is essential to remember that c1 and c2 must be treated
as independent quantities. Replacing expression (5) for
g in (1) and using (7,8), we obtain that

µ1 = µb
1(x)− 1

2
[
κ(x) + ∆(x)

]
∇2x

−1
2
∂x

[
x κ(x) + ∆(x)

]
(∇x)2, (9)

µ2 = µb
2(x) +

1
2
[
κ(x)−∆(x)

]
∇2x

+
1
2
∂x

[
(1− x) κ(x)−∆(x)

]
(∇x)2, (10)

where µb
1 and µb

2 are the bulk chemical potentials of the
components, and ∆(x) ≡ κ11(x) − κ22(x) measures de-
viations from ideality which arise when the attractive
forces pulling together identical molecules are different;
clearly, this contribution to non-ideality is distinct from
the one described by κ(x). Depending upon whether
∆(x) is equal to zero or not, we shall call the mixture
symmetrical or unsymmetrical[19]. In deriving (9,10) we
have used the classical relation

x
∂µb

1(x)
∂x

+ (1− x)
∂µb

2(x)
∂x

= 0, (11)

which the bulk chemical potentials µb
1(x), and µb

2(x) must
satisfy in view of the extensivity properties of G. Eq.
(11) is of particular interest for the following because it
allows us to specify the bulk chemical potentials µb

1 and
µb

2 in terms of a single unknown function Z(x). One has:

µb
1(x) = µ0

1 +
∫ x

1

dx′ (1− x′) Z(x′), (12)

µb
2(x) = µ0

2 −
∫ x

0

dx′ x′ Z(x′), (13)
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where the chemical potentials µ0
1 and µ0

2 of components
1 and 2 in pure form are functions of temperature and
pressure only. The integrations extend from the situation
in which the components are pure to the one in which
they form a uniform mixture the composition of which
is given by c1 = ρ x, c2 = ρ (1 − x). In terms of the
chemical potentials (9,10), the free energy density writes
as g(r) = c1 µ1 + c2 µ2. Integrating the Laplacian terms
of this expression over a volume of mixture, enclosed by
a surface on which boundary terms vanish [9], we recover
the Cahn-Hilliard form (6) where gb is given by

gb(x) = ρ
[
x µb

1(x) + (1− x) µb
2(x)

]
. (14)

Noteworthy, while the chemical potentials (9,10) depend
on the self-interactions difference ∆(x), the usual Cahn-
Hilliard free energy (6) does not. As a result, classically
∆(x) plays no role in the spinodal decomposition problem
of purely diffusive binary mixtures. We shall see below
that this situation changes in the presence of chemistry.
Chemical rates, are in general more complicated func-
tions of chemical potentials than diffusion and as a rule
they depend upon ∆(x) explicitly. The latter quantity
becomes then a essential parameter for the stability prop-
erties of the mixture.

B. Examples: perfect and regular solutions

With the derivation of expressions (6) and (9,10) the
relations existing between the square-gradient free energy
density of a binary mixture and the chemical potentials
of its components have been stated in general form. This
formalism involves essentially three unknown functions,
Z(x), κ(x) and ∆(x), which have to be determined on
the basis of the properties particular to the system con-
sidered.

The first two functions govern the behavior of purely
diffusive systems. For the sake of concreteness, before we
pursue our general treatment, let us specify these func-
tions for two classical types of mixtures: perfect and reg-
ular solutions. Our purpose here is purely illustrative.
The results established in the next sections will not be
restricted to the choice of a particular mathematical form
for Z(x) and κ(x).

For simplicity and without loss of generality, we set
ρ = 1 in the following. We first consider the case of two
components forming a perfect solutions in a uniform bulk
phase. This corresponds to the choice:

κ(x) = 0

Z(x) =
RT

x (1− x)

Replacing these expressions and (12-14) in (6), it imme-
diately follows that g ≡ g(r) is constant in space and
represents the free energy density of a perfect solution,

g = g0 + RT
[
x ln(x) + (1− x) ln(1− x)

]
. (15)

g0 = µ0
1x + µ0

2(1 − x), is the free energy density before
mixing; the second term is the entropy of mixing which
is of ideal form.

As a second example, we consider a symmetrical non-
uniform regular solution with a constant, stabilizing sur-
face tension term. This amounts to putting:

κ(x) = κ > 0 (κ=const.)

Z(x) =
RT

x (1− x)
− 2Ω

and yields:

g(r) = g0 + RT
[
x ln(x) + (1− x) ln(1− x)

]
+ Ωx(1− x) +

κ

2
(∇x)2, (16)

where Ω measures the bulk non-ideality; when Ω > 0,
this system exhibits a critical point for x = xc = 1/2 and
T = Tc = Ω/2R [11, 14].

C. Diffusive flux and spinodal instability

The rate of diffusion is proportional to the divergence
of the flux Jx of particles 1 with respect to particles 2.
The thermodynamic force, F, driving this process is
the gradient of the chemical potential difference between
molecules 1 and 2 (F = −∇[µ1 − µ2]). To relate Jx and
F, we adopt the usual phenomenological law:

Jx = −L(x)∇(µ1 − µ2) (17)

where L(x) is a function of composition (Onsager’s coef-
ficient), the positivity of which is required in order that
entropy production be positive. In the absence of chem-
istry, the diffusion equation for x thus reads:

∂tx = ∇ [L(x)∇(µ1 − µ2)] . (18)

The stability of a homogeneous states x = x0 is easily
determined by considering the evolution of a small per-
turbation, δx(r, t) = x(r, t)− x0, that moves the system
away from this state:

∂tδx(r, t) = L0∇2
[
δµ1(r, t)− δµ2(r, t)

]
. (19)

Here, L0 stands for L(x0). We also introduce the simpli-
fied notations κ0 = κ(x0), Z0 = Z(x0) and ∆0 = ∆(x0).
The expressions for δµ1 and δµ2 are calculated from rela-
tions (9-10) after substituting in them expressions (12-13)
for the bulk chemical potentials. This yields:



5

δµ1(r, t) =
[
(1− x0)Z0 −

κ0 + ∆0

2
∇2

]
δx(r, t), (20)

δµ2(r, t) =
[
−x0Z0 +

κ0 −∆0

2
∇2

]
δx(r, t). (21)

Eq. (19) may now be written in Fourier space as

∂tδx(k, t) = L0k
2
[
µ′1(x0, k)− µ′2(x0, k)

]
δx(k, t), (22)

where, µ′1 and µ′2 are obtained from (20-21):

µ′1(x0, k) = (1− x0)Z0 +
1
2
[
κ0 + ∆0

]
k2 (23)

µ′2(x0, k) = −x0Z0 −
1
2
[
κ0 −∆0

]
k2. (24)

Replacing (23,24) in (22), yields that the linear growth
coefficient of mode k is given by:

Γ(k) = −L0k
2

[
Z0 + κ0k

2
]
. (25)

Since κ0 must be positive, the sign of Z0 = ∂2g(x)/∂x2

at x = x0 determines the nature of the free energy ex-
tremum; the homogeneous states is stable for positive
Z0. If Z0 is negative, the homogeneous state x0 is unsta-
ble with respect to perturbations the wave numbers k of
which lie in the range:

0 < k <

√
−Z0

κ0
≡ ku. (26)

In that case, the system leaves the homogeneous state
and tends to develop two domains of different concentra-
tion separated by an interface. The condition Z0 = 0
thus defines the so-called spinodal domain. The growth
factor of the fastest growing mode during the early evo-
lution of spinodal decomposition, i. e.,

kf =
√
− Z0

2κ0
, (27)

is then given simply by:

Γ(kf ) = L0
Z2

0

4κ0
. (28)

D. Coupling of diffusion and chemical reactions

Suppose now that in addition to diffusion, the composi-
tion of the binary mixture may also vary due to chemical
reactions and/or relaxation phenomena (excitation pro-
cesses, conformational changes, photochemical processes,

etc.). Suppose further that there are R linearly indepen-
dent processes of this sort, and that the mixture is an
open system in contact with external reservoirs of con-
stant composition which may maintain it out of thermo-
dynamic equilibrium.

The molecular mechanisms underlying these processes
need not be detailed. It suffices for our general purpose to
know that they amount to transformations which inter-
convert the mixture components into each other. Phe-
nomenologically, these processes can be represented in
chemical reaction form as:

a1rX1 + a2rX2 +
∑

i

airBi ⇀↽

b1rX1 + b2rX2 +
∑

i

birBi (29)

where the index r = 1, . . . , R labels the chemical trans-
formations, the Bi’s represent the composition variables
describing the state of the external reservoirs and the co-
efficients ajr, bjr, (j = 1, 2, i) represent the molecularities
of components 1, 2 and Bi, respectively in the forward
and backward direction of chemical reaction r.

As the external reservoirs composition and the mix-
ture density are constant[20], the mass balance equation
giving the spatio-temporal evolution of the system reads:

ρ ∂tx =
R∑

r=1

ν1rM1wr +∇
[
L(x)∇(µ1 − µ2)

]
, (30)

where wr is the rate of reaction r. Since mass is con-
served in chemical reactions, the stoichiometric coeffi-
cients, νkr = bkr − akr, and molecular masses, Mk of
components 1 and 2 (k = 1, 2) are linked by the relation

2∑
k=1

νkrMk = 0 (∀r). (31)

It is therefore convenient for the following to define νr ≡
ν1rM1 = −ν2rM2, and putting ρ = 1, to rewrite (30)
more simply as:

∂tx =
R∑

r=1

νr wr +∇
[
L(x)∇(µ1 − µ2)

]
. (32)

Two qualitatively different kinds of transformations are
encompassed by (29) according to whether or not the
reservoirs in contact with the mixture are involved. In
the latter case, one has air = bir = 0 (∀i) so that only
the components 1 and 2 of the mixture participate in the
reaction. In the former case, at least some of the air and
bir coefficients are different from zero and the reaction
is a reservoir “driven” reaction or exchange process. In
driven reactions some of the Bi’s may act as catalysts,
e. g., when air = bir.
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To each reaction rate wr is associated a thermody-
namic force, or chemical affinity Ar. With the notations

µ→r = a1rM1µ1 + a2rM2µ2 + µ→Br (33)
µ←r = b1rM1µ1 + b2rM2µ2 + µ←Br, (34)

where µ→rB =
∑

airMBi
µBi

and µ←rB =
∑

briMBi
µBi

,
the affinity Ar can be expressed in terms of chemical
potentials as

Ar = µ→r − µ←r, (35)

while the reaction rates wr = v→r(µ
→

r) − v←r(µ
←

r) are the
difference of two terms corresponding respectively to the
direct rate of reaction v→r, which depends upon µ→r, and
to the reverse rate of reaction v←r which depends upon µ←r.

By definition, thermodynamic equilibrium is the state
for which the affinity and rate of each chemical reaction
simultaneously vanish:

Ar = 0, wr = 0. (36)

We conclude therefrom that, when µ←r = µ→r ≡ µ̃r, the
equality v→r(µ̃r) = v←r(µ̃r) must hold. Since, this equality
has to be obeyed independently from the value of µ̃r,
the functions v→r(·) and v←r(·) must be identical so that
we may set v→r(·) = v←r(·) = vr(·). The most general
expression for the rate of a chemical reaction is thus[21]:

wr = vr(µ
→

r)− vr(µ
←

r). (37)

In addition, by the thermodynamic postulate that the
entropy production of linearly independent chemical pro-
cesses must be positive, wr and Ar must always have the
same sign. This implies that vr must be a monotonically
increasing (nonlinear) function.

When the affinity is small, Eq.(37) reduces to the lin-
ear relation wr = γ Ar, where γ is a positive constant.
For the general nonlinear regime, it is usual to write the
reaction rate as

wr = vr(µ
→

r)
(
1− exp[−Ar/RT ]

)
, (38)

which is compatible with (37) if vr(µ) ∝ exp(µ/RT ).
At this stage, it is important to stress that a wide va-

riety of reaction-diffusion systems can be described by
Eq. (32). Nevertheless, in the next section, we shall see
that the stability properties of their uniform stationary
states can be classified quite simply into four general cat-
egories once the chemical potentials are known and the
thermodynamic requirements mentioned above concern-
ing the rates wr are taken into account.

III. LINEAR STABILITY OF HOMOGENEOUS
STATIONARY STATES

A. Linear growth coefficients Γ̃(k)

Contrary to what happens with purely diffusive sys-
tems (cf. section II C), in the case of chemically reacting
mixtures, the homogeneous stationary state concentra-
tions x0 can no longer be chosen at will. For a given tem-
perature and pressure, their value is fixed by the chemi-
cal reactions and the state of the external reservoirs with
which the system exchanges matter and energy, i. e., by
the solutions x0 of the conservation relation:

R∑
r=1

νr

[
vr(µ
→

r(x0))− vr(µ
←

r(x0))
]

= 0. (39)

Using the same notations as in section II C, the linear
stability of these states w. r. t. to a small perturbation
δx(r, t) is given by

∂tδx(r, t) =
[ R∑

r=1

νr

(
δvr(

→µr)− δvr(
←µr)

)
+L0∇2(δµ1 − δµ2)

]
. (40)

The quantities δvr(
→µr) and δvr(

←µr) given by

δvr(µ
→

r) =
dvr

dµ→r

∣∣∣∣
µ→r(x)=µ→r(x0)

δµ→r(r, t) = v→′rδµ→r(r, t)(41)

δvr(µ
←

r) =
dvr

dµ←r

∣∣∣∣
µ←r(x)=µ←r(x0)

δµ←r(r, t) = v←′rδµ←r(r, t)(42)

define v→′r and v←′r. Introducing the dimensionless param-
eters

z0 =
(

L0

κ0 v→′1

) 1
2

Z0, ρr =
v←′r
v→′r

,

τr =
(

κ0

L0 v→′1

) 1
2

v→′r, δ =
∆0

κ0
, (43)

and proceeding as in section II C, the linear growth coef-
ficient Γ̃(k) corresponding to the rescaled time and space
variables

t̃ = v→′1 t, r̃ =
[
L0κ0

v→′1

]− 1
4

r, (44)

can be written in compact form as

Γ̃(k) = −k4 + [M0(δ)− z0] k2 + N0z0. (45)
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The explicit expressions for M0(δ) and N0 are:

M0(δ) = C1(x0)δ + C2(x0), (46)
N0 = C1(x0) (1− 2x0) + C2(x0) (47)

with

C1(x0) =
R∑

r=1

νrτr

2
[
a1rM1 + a2rM2

+(b1rM1 + b2rM2)ρr

]
, (48)

C2(x0) =
R∑

r=1

νrτr

2
[
a1rM1 − a2rM2

−(b1rM1 − b2rM2)ρr

]
. (49)

The ρ′rs and τ ′rs are positive functions whatever the value
of x0 ∈ [0, 1]. Furthermore, it should be kept in mind that
the value of x0, as given by Eq. (39), does not depend
on the coefficients κij multiplying the gradient terms of
g, and thus does not depend on δ. This is noteworthy
because δ largely controls the system stability. Indeed,
one may already observe that in the expression for Γ̃(k)
(cf. Eq. (45)), δ only appears in the term of order k2;
by varying δ, the sign and magnitude of this term, and
hence the stability of x0, can be modified at will.

B. Classification of instabilities

For non-reactive systems, it has been shown in sec-
tion II C that the change of sign of Z0, or equivalently
here of z0, defines the boundary of the spinodal domain:
Z0 < 0 is the condition under which (25) admits a finite
band of unstable modes which includes the mode k = 0.
Here, in order to classify the wider class of behaviors
which become possible in the presence of chemistry, we
remark the following:
(i) Since the linear stability of the homogeneous station-
ary state solutions of (39) with respect to the mode k = 0
is given by

Γ̃(0) = N0 z0, (50)

and hence, only depends on the sign of the functions N0

and z0, the stability diagrams reporting the behavior of
Γ̃(k) can be divided into the four basic cases described
in III B 1-4.
(ii) In the large wavenumbers domain (k → ∞), the
eigenvalues Γ̃(k) are always negative: surface tension,
which prevents too sharp interfaces to develop, and dif-
fusion, which is all the more important that the wave-
length of spatial heterogeneities is small, cooperate to

damp short wavelength fluctuations efficiently. As a con-
sequence, if at k = 0, dΓ̃(0)/dk2 = M0(δ)−z0 is positive,
Γ̃(k) must pass through a maximum for

k = k̃f =

√
M0(δ)− z0

2
. (51)

(iii) Replacing this expression of k̃f in (45), one finds that
there exists a finite band of unstable modes, from which
the mode k = 0 is excluded, if the inequalities

Γ̃(0) = N0 z0 < 0, (52)

and

Γ̃(k̃f ) =
[
M0(δ)− z0

2

]2

+ N0z0 > 0

=
1
4
C1(x0)2δ2

0 +
C1(x0)

2
[
C2(x0)− z0

]
δ0

+
1
4
[
C2(x0)− z0

]2 + N0 z0 > 0 (53)

are fulfilled.
(iv) In strongly unsymmetrical mixtures, i. e., in the limit
|δ| → ∞, inequality (53) is always satisfied. Looking for
the transition point where Γ̃(k̃f ) passes from the negative
to the positive values, so that the finite band of unstable
modes appears, we consider (53) as an equation in δ and
solve for its roots. This yields the values

δ± =
1

C1(x0)

[
− C2(x0) + z0 ± 2

√
−N0z0

]
, (54)

which replaced in (51) permit to calculate the wavenum-
ber kc corresponding to this point of marginal stability.
One has:

kc = (−z0N0)
1
4 . (55)

In brief, the main outcome of the above analysis, is that
if the mode k = 0 is stable (cf. inequality (52)), and if the
self-interaction difference parameter δ does not belong to
the interval (δ−, δ+),

δ 3 (δ−, δ+), (56)

then the uniform stationary state x0 is unstable with
respect to a finite band of wavenumbers,

0 < k− ≤ k ≤ k+, (57)

the boundaries of which can be written in terms of the
values of k̃f and kc, given by (51,55), as [22]:

k± = k̃f

√√√√1±

√
1−

(
kc

k̃f

)4

. (58)

Let us now analyze more in detail the four cases which
may be encountered depending on the sign of z0 and N0.
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1. Turing kind of instability

If z0 > 0 and N0 < 0, the uniform stationary state
x0 lies above the spinodal line and Γ(0) < 0. The com-
ponents of the mixture are thus miscible. Nevertheless,
pattern formation could take place if the value of δ fulfills
condition (56). No phase separation being involved, the
symmetry breaking instability appearing in that case is
reminiscent of the Turing instability well-known in clas-
sical reaction-diffusion theory. The originality of the in-
stability mechanism found here however is that it does
not require the diffusion coefficients of two reactants, the
so called ”activator” and ”inhibitor”, to be unequal. In-
stead, it is the difference of self-interactions between iden-
tical particles which controls the formation of patterns
with an intrinsic wavelength. If condition (56) is not sat-
isfied, i. e., if δ(x0) ∈ (δ−, δ+), Γ̃(k) < 0 for all values of
k and the stationary state x0 is stable.

2. Spinodal instability

If z0 < 0 and N0 < 0, the stationary state x0 lies
below the spinodal line. There exists a band of unsta-
ble modes which includes the uniform perturbation mode
k = 0. We conclude that spinodal decomposition should
proceed in this case essentially as in the absence of chem-
istry. The fastest growing mode is either (51) or the mode
k = 0, depending upon whether M0(δ) − z0 > 0 or not.
When the system is strongly unsymmetrical, the early
growth of k̃f is faster than that of the fastest mode of the
purely diffusive case. Indeed, under the transformation
(43,44) expressions (27,28) become in dimensionless form
kf =

√
−z(x0)/2 and Γ(kf ) = z(x0)2/4. By comparing

with (51) and (53), it is clear that for |δ(x0)| → ∞, the
inequality Γ̃(k̃f )− Γ(kf ) > 0 holds.

3. Chemical instability

If z0 > 0 and N0 > 0, the stationary state x0 lies above
the spinodal line. Nevertheless, there exists a band of
unstable modes which includes the uniform perturbation
mode k = 0. This instability originates from nonlin-
earities associated with the reaction scheme considered
rather than from the non-ideality of molecular interac-
tions in the mixture. It should in general involve a mul-
tistationary state phenomenon and is in this respect dis-
tinct from spinodal decomposition or from the Turing
kind of instability described in case 1. As in the pre-
ceding case, depending upon whether M0(δ)− z0 > 0 or
not, the fastest growing mode is either (51) or the mode
k = 0; again also in strongly asymmetric mixtures, k̃f

grows more rapidly than the fastest mode of the purely
diffusive system.

4. Ostwald ripening freezing instability

If z0 < 0 and N0 > 0, the stationary state x0 lies below
the spinodal line, but if δ(x0) ∈ (δ−, δ+), one has Γ̃(k) <
0 for all values of k: the chemical reactions completely
inhibit the phase separation. If on the contrary, δ(x0) 3
(δ−, δ+), there exists a finite band of unstable modes,

0 < k` ≡ k− < k < k+ ≡ k̃u, (59)

which excludes the mode k = 0. This is the interesting
case where patterns with an intrinsic wave length may
appear while at the same time the mixture is immisci-
ble. As explained in the introduction, such a behavior
amounts in the terminology introduced by [6, 7] to a
freezing of the Ostwald ripening stage of phase separa-
tion. We shall therefore refer to it as the Ostwald ripening
freezing instability (ORFI). The following properties are
noteworthy:
(i) It is clear from their definitions that the purely dif-
fusive upper cut-off, ku =

√
z0 (cf.(26) rewritten using

(44)), and the lower and upper boundaries of the unsta-
ble modes band, respectively k− and k+ (cf. (51,55,58)),
depend on different parameters and hence, can be varied
independently from each other. For example, only k± de-
pends on δ and on the concentrations Bi maintained con-
stant in the external reservoirs. It is thus to be expected
that by changing these concentrations, one may vary the
position of the unstable band (k`, k̃u) with respect to that
of the purely diffusive system. In fact, these two bands
could even become disconnected, so that ku < k` < k̃u,
if the inequality

−C1(x0)
[
δ + x0

]
z0 > 0 (60)

holds, in which case, chemistry hampers the damping by
diffusion of large k modes.

We shall not, in the present work, attempt to deter-
mine and to classify the great variety of patterns which
appears once the homogeneous stationary state x0 be-
comes unstable. This requires a nonlinear analysis which
we plan to report elsewhere [16]. The objective of our dis-
cussion in the next section is to precise more explicitly
the thermodynamic and kinetic properties which condi-
tion the appearance of patterns and of the ORFI just
defined. The results of this discussion are illustrated by
simulating numerically the behavior of an example in sec-
tion IVC

IV. THERMODYNAMIC AND KINETIC
CONDITIONS ON THE CHEMICAL FREEZING

OF PHASE SEPARATION

A. Dissipation threshold

Let us first consider what kind of instability may occur
if the homogeneous state is an equilibrium state (x0 =
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xe). At equilibrium, all the affinities vanish (µ→(xe) =
µ←(xe)) and consequently v→′r = v←′r ≡ v′r, or equivalently,
ρr(xe) = 1. In that case, the parameters M0, N0 reduce
to:

Me = Ne = −
R∑

r=1

ν2
r τr, (61)

so that the eigenvalue equation simply reads:

Γ̃e(k) = −
[
k2 −Ne

][
k2 + ze

]
. (62)

We have mentioned in section II D that the vr are mono-
tonically growing functions; their derivatives are thus al-
ways positive and so are the τr. Eq. (61) shows that the
parameters Me and Ne are always negative at equilibrium
independently of the functions τr in the reaction rates
and independently of the functions κe and ze appearing
in the free energy. As (62) shows and in agreement with
Duhem-Jouget theorem, the stability properties of homo-
geneous equilibrium state are thus entirely determined by
the sign of ze which controls diffusional stability.

The spinodal instability can then be observed at equi-
librium in the domain corresponding to the spinodal re-
gion of non-reactive systems (z(xe) < 0). On the con-
trary, the ORFI can never be observed under equilibrium
conditions since Ne is always negative in that case.

Furthermore, since N(xe) is strictly negative at equi-
librium, the ORFI can only appear if the external baths
drive and maintain the system at a finite distance from
its chemical equilibrium state. To see this, let us sup-
pose that x0 belongs to the thermodynamic branch of
steady states[15] and lies close to the equilibrium state:
x0 = xe + δx0 with |δx0|/xe << 1. The first terms in the
expansion of N0 are

N0 = Ne +
dN

dx0
δx0 + . . . , (63)

and the minimal distance from equilibrium at which the
condition N0 > 0 may be realized, is:

δx0 > | Ne

dN
dx0

|. (64)

The amplitude of the distance from equilibrium δx0 has
thus a lower bound below which the ORFI cannot be
observed. It is equivalent to conclude that the ORFI is a
dissipative instability, or that the patterns are dissipative
structures [15].

B. Properties of reaction schemes

In order that the ORFI be possible, the chemical
scheme must include at least two reactions (R ≥ 2). In-
deed, if R = 1, the stationary condition for homogeneous

states is equivalent to the equilibrium condition and we
have shown in the previous section that the ORFI can-
not be observed at equilibrium. Furthermore, the scheme
must include at least one autocatalytic reaction, i. e.,
a reaction in which the stoichiometric coefficients of at
least one component of the mixture (X1 or X2) are non
zero for both the direct and the reverse transformations
(ar1 6= 0, br1 6= 0 or ar2 6= 0, br2 6= 0). Indeed, if all the
reactions in the scheme are non autocatalytic, they can
be rewritten as:

νrX +
∑

i

ariBi ⇀↽ νrY +
∑

i

briBi, (65)

where νr stands now for ar1 and br2. In that case, the
parameter N(x0) reduces to:

N(x0) = −1
2

R∑
r=1

ν2
r τr(x0)

[
1− x0 + ρ(x0)(1 + x0)

]
(66)

which is negative and the ORFI is impossible. Hence, it
is interesting to note that simple reaction schemes can-
not give rise to the ORFI. In particular, binary systems
undergoing simple reactions like B1 + X ⇀↽ Y + B2 will
not induce pattern formation, even under far from ther-
modynamic equilibrium conditions.

C. Example

To illustrate by an example the ORFI described in sec-
tion III, we consider the following two step autocatalytic
reaction scheme:

B1 + 2X1 + X2 ⇀↽ 3X1 + B2 (67)
B1 + X1 + X2 ⇀↽ 2X2 + B2. (68)

B1 and B2 are initial and final products the concentra-
tions of which are kept constant by external reservoirs.
The mixture free energy is defined by choosing for z(x)
the regular solution form:

z(x) =
RT

x(1− x)
− 2Ω (69)

In the reservoir, for simplicity, we suppose that the mix-
ture of B1, B2 is ideal and define accordingly their chem-
ical potentials as

µB1 = Ψ + RT ln(xB1) (70)
µB2 = Ψ + RT ln(1− xB1). (71)

Adopting for the reaction rates the exponential form (38),
the kinetic equation for x reads:
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∂tx = τ1

[
exp(

µB1 + 2µ1 + µ2

RT
) exp(

3µ1 + µB2

RT
)
]
−

−τ2

[
exp(

µB1 + µ1 + µ2

RT
) + exp(

2µ2 + µB2

RT
)
]

+L∇2(µ1 − µ2), (72)

where

µ1 = µ0
1 + RT ln(x) + Ω (1− x)2

−κ + ∆
2

∇2x− κ

2
(∇x)2, (73)

µ2 = µ0
2 + RT ln(1− x) + Ω x2

+
κ−∆

2
∇2x− κ

2
(∇x)2. (74)

We have seen that the affinity AT /RT = 2 ln(xB1/xB2)
of the overall reaction

2 B1 ⇀↽ 2 B2 (75)

cannot be taken equal to zero, which implies that xB1

cannot be equal to 1/2. Here, we set xB1 = 0.87
and, for simplicity, we take the parameters depending
on the intermolecular interactions as being constant:
κ(x) ≡ κ = 1.0, ∆(x) ≡ ∆ = −0.3, Ω = 2.2. Let-
ting further the chemical relaxation times τ1, τ2 as well
as the Onsager coefficient L and RT be equal to one,
and choosing for to the reference chemical potentials the
values µ0

1 = 0.122, µ0
2 = 0.183,Ψ = −0.288 one finds

that (72) admits three homogeneous stationary solutions
x0, namely: xa

0 = 1/2, xb
0 = 0.024279 and x0 = xc

0 =
0.26959. The stationary state x = xb

0 is stable for all
k’s, while x = xc

0 is unstable for a range of k values
which includes the mode k = 0. The stationary state
x = xa

0 , which lies in the spinodal region, is on the con-
trary, is unstable w. r. t. the finite band of wavenumber
k− ≈ 0.3453 < k < k+ ≈ 0.5295 from which the mode
k = 0 is excluded. Taking this state as average initial
condition and integrating (72) numerically, one finds (see
Fig. 1) that instead the Ostwald ripening process which
would be observed in the absence of chemistry, a sta-
ble pattern with hexagonal symmetry finally establishes
itself in the course of time.

A complete discussion of the various nonlinear behav-
iors which may arise in models such as (67,68) will be
presented elsewhere.

V. CONCLUSION

To investigate the idea that chemical reactions may
freeze the unmixing of immiscible mixtures at an early
stage of spinodal decomposition, we have developed an
approach which is based on general thermodynamic ar-
guments, encompasses equilibrium as well as nonequilib-
rium situations and does not rely on the FFEIA.

Within the framework of this approach, we have estab-
lished that the linear stability properties of chemically
reacting binary mixtures can be classified into four cat-
egories, one of which (case 4, section III) corresponds to
the soft mode stabilization effect leading to phase separa-
tion freezing. To encounter this case, it is indispensable
that the system considered be dissipative, that it under-
goes a chemical process comprising at least two indepen-
dent reaction steps and that at least one of these steps be
autocatalytic. It is a remarkable fact that those proper-
ties are exactly those of the model studied by Huberman
in his twenty years old pioneering paper[2].

¿From a kinetic point of view, our results do not sup-
port the recent claims that the chemical freezing of phase
separation is an ubiquitous phenomenon[5] susceptible to
be observed with very simple chemistry and hence, with a
broad class of chemical processes. In this respect, it may
also be pointed out that the recent molecular dynamic
studies which have been devoted to the ORFI [17], and
which constitute a way of investigating this problem com-
pletely independent from our thermodynamic approach,
do not confirm the predictions based on the FFEIA.

Finally, our results draw attention to the enlarged va-
riety of symmetry breaking instabilities which may be
encountered in non-ideal systems, even in domains of pa-
rameter space where the occurrence of phase transitions
can be excluded. This feature which we have reported
earlier in the case of anisotropic ternary mixtures [18]
is further illustrated by the chemically reacting binary
systems considered here, notably by their behavior in re-
sponse to variations of the self-interaction parameter δ.
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FIG. 1: Snapshots of the density profile for example (70) for
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size is 90 × 90 and the simulation is made with 128 × 128
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