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Formulation and linear instability
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We are generally interested in viscously driven instabilities in heterogeneous porous media for a
variety of applications, including chromatographic separations and the passage of chemical fronts
through porous materials. Heterogeneity produces new physical phenomena associated with the
interaction of the flow with the heterogeneity on the one hand, and the coupling between the flow,
the concentration of a passive scalar, and the physical propéries the viscosityon the other.

We pose and solve a model in which the permeability heterogeneity is taken to be periodic in space,
thus allowing the interactions of the different physical mechanisms to be carefully studied as
functions of the relevant length and time scales of the physical phenomena involved. In this paper,
Paper | of a two-part study, we develop the basic equations and the parameters governing the
solutions. We then focus on identifying resonant interactions between the heterogeneity and the
intrinsic viscous fingering instability. We make analytical progress by limiting our attention to the
case of small heterogeneity, in which case the base state flow is only slightly disturbed from a
uniform flow, and to linear instability theory, in which the departures from the base state flow are
taken to be small. It is found that a variety of resonances are possible. Analytic solutions are
developed for short times and for the case of subharmonic resonance between the heterogeneities
and the intrinsic instability modes. A parametric study shows this resonance to increase
monotonically with the viscosity ratio i.e., with the strength of the intrinsic instability, and to be
most pronounced for the case of one-dimensional heterogeneities layered horizontally in the flow
direction, as expected on simple physical grounds. When axial variation of the permeability field is
also considered, a damping of the magnitude of the response generally occurs, although we find
some evidence of local resonances in the case when the axial forcing is commensurate with a
characteristic dispersive time. The response exhibits a high frequency roll-off as expected. These
concepts of resonant interaction are found to be useful and to carry over to the strongly nonlinear
cases treated by numerical methods in PapgdliIChem Phys107, 9619 (1997]. © 1997
American Institute of Physic§S0021-9607)50946-9

I. INTRODUCTION a separation of scales in which the spatial variability is neg-
ligible over many pore scales—leading to a Darcy level con-
The problem of viscous instabilities in porous media istinuum description of the flow—»but in which the spatial vari-
one that continues to receive attention in a wide variety ofability over scales that are large compared to the pore scale
fields due to the ubiquity of applications of flow in porous cannot be neglected.
media. Of particular interest is the occurrence of such insta- There have been significant advances in the understand-
bilities in analytical chemistry applications, notably in both ing of unstable viscous fingering in spatially homogeneous
laboratory scale and large scale chromatographic separationsedia on the one hand and in the understanding of macro-
in which the property variations of chemical mixtures, in dispersion in heterogeneous media on the other.
particular, the variation of viscosity with concentration, can  In the former case of fingering in homogeneous media,
drive instabilities and lead to long tails in dispersion and inthere is an intrinsic scale of fingering set by the speed of the
breakthrough curves. For examples of both experimental andisplacement, the viscosity ratio, and the level of disper&ion.
numerical studies of fingering in chromatographic applica-Direct numerical simulations of nonlinear finger propagation
tions, see Refs. 1-5. In addition, there are applications inhave led to a high level of understanding of the finger inter-
volving the propagation of chemically reacting fronts action mechanisms in both two and three dimensiors.
through porous meditas well as in petroleum recovery and Dynamical processes such as tip splitting and shielding and
other chemical fixed bed processihg. their underlying physical mechanisms are now well under-
Our interest and focus in this paper is in viscously drivenstood from a conceptual and quantitative perspective.
instabilities in heterogeneous media. By heterogeneous, we In the latter case of heterogeneous media, it is necessary
mean situations in which variations in the microstructure ofto adopt a description of the spatial variability of the perme-
the porous media lead to corresponding variations in the flovability field in order to make progress. As will be seen be-
resistance, as expressed in the permeability. We thus assurosv, the natural quantity arising in the flow equations is the
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log of the permeability: taking the permeability to be a ran-
dom stationary function of space with a given variance and

correlation statistics has proven a popular model on which to .
make analytical progress-2°1t is now well known that the velocity U concentration c=0
effect of the heterogeneity over long times and distances can viscosity My > 1

be described in terms of a renormalized permeability, depen-

dent on both the variance and the functional form of the concentration ¢c=1

correlations, and an axial dispersion coefficient, which is viscosity I y b
generally larger than that for homogeneous métfia’
There is ample evidence that permeability heterogene- N

ities interact with viscously driven instabilities in a signifi-
cant way>!8=2% |n spite of its importance, relatively little
theoretical work has been done on the problem of fingering
in the presence of heterogeneities, referred to in the remain-
ing text as “heterogeneous fingering” for simplicity. Most if

not all of the current understanding of heterogeneous fingekhat are not distinctly different than those for disordered me-
ing is derived from direct numerical simulations. Tan anddia: see, e.g., Ref. 22 for a discussion of the permeabi”ty
Homsy*® reported a short study of fingering in two- problem.
dimensional heterogeneous media which strongly suggested e present our work in two parts. In this pagBaper )
a resonant interaction between the intrinsic scales of fingerge basic equations are established, together with the scaling
and the correlation scale of the permeability field. Tchelepand description of the spatial variation of permeability. This
et al'® have reported simulations and experiments on stablgeads to the identification of the basic dimensionless param-
and unstable displacements which establish the region of paters describing the problem, which are five in number: the
rameter space in which heterogeneity will dominate fingeramplitude and the two spatial correlation scales of the het-
ing, and vice versa. Similar simulations in other geometriesrogeneity, the viscosity ratio, and in any bounded geometry,
have recently been reported by Sorbteal”° It is generally  the Peclet number. The paper then focuses on the connection
recognized that the nature of heterogeneous fingering deyetween the “cellular flow” that is driven by the permeabil-
pends on the relative importance of the two physical mechaity variation and the viscous instability that is intrinsic to an
nisms leading to flow nonuniformities: instabilities due to anynfavorable viscosity ratio. This problem is attacked and
unstable viscosity ratio and preferential flow paths due to thgolved by a double perturbation expansion in the amplitude
variance of the log permeability. The limiting cases are easyf the heterogeneity and the amplitude of the departure from
to identify. When the viscosity ratio is large and the variancethe cellular state. This naturally leads to a discussion of reso-
small, one recovers the limit of finger-dominated dynamicsnances between scales. While the expansion in the amplitude
a well-studied situation. The case of unit viscosity ratio het-of the heterogeneity is uniform in time, that in the amplitude
erogeneous media is also well-studied. A further limitingof disturbances is not. Accordingly, Papefiltakes up the
case is when the permeability contrast overwhelms any effegsue of direct numerical solutions of the problem, and the
of viscosity stratification, in which case the flow paths areinterpretation of the results for strongly nonlinear heteroge-
dictated by the permeability field, and stream tube modelseous fingering in terms of the analytical understanding
may be developed: see, e.g., Ref. 21. gained in part I.

All of these studies help our general understanding of
the flow processes in heterogeneous fingering, but have the gasic EQUATIONS
disadvantage of being difficult to interpret in terms of funda- ) ) ) ]
mental mechanisms of interactions between viscous finger- W€ consider a two-dimensional porous medium as de-
ing and the underlying nonhomogeneous flow resulting fronicted in Fig. 1 An_m_cc_)mpressmle solute with concen'gratlon
the permeability variations. This paper and the following one1 @nd Vviscosityu, is injected from the left boundary with a
are devoted to developing this understanding through a conf®an velocitylU in the x direction. The porous medium is
bination of analytical theory and direct numerical simulationn€térogeneous, i.e., the permeabilitfr) is a function of
for a particularly simple model of the heterogeneity. TheSPace, and the viscosity is taken to be a given function of the
understanding that results sets the stage for further treatmef@ncentratiorc. The concentration far to the right is taken
of more complex situations. ywthout Ioss'of generallty to be'zgro, and the VI'SCOSIty there

Specifically then, we treat viscous fingering in spatially 'S 42 The dls_per3|on charac_terlstlcs of _the medium are_taken
periodic heterogeneous media. As we will see, this allowd0 P€ isotropic, although this assumption can be easily re-

insight and understanding into the interactions of phenomentgxed, and density effects are neglected. The equations of the
on different length scales and a very specific calculation ofyStem are:

FIG. 1. Sketch of the system.

resonant interactions. Although they have the property of y.y=0, )
perfect spatial correlation, spatially periodic models of both
microstructure and mesoscale variation have been used in the _ m(c)

i ; ; Vp=— u, 2
past to similar advantage, and in many cases yield results K(r)
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ac+u-Vc=DVZc, ®) Here g and a are the dimensionless wave numbers of the
. . heterogeneity, and can be thought of as inverse Peclet num-
where Eqgs(1) and(2) are the continuity equation and Dar- pers e express these equations in terms of the stream func-
cy’s law while Eq.(3) is the convective-dispersion equation iy, #(x,y) such thatu=dy/dy, v=—adyldx, whereu,v
for the concentratioe. The viscosityu of the fluid depends ¢ the |ongitudinal and transverse velocity components, re-

on the concentration through a relatigr= w(c) supposed to spectively. We finally have our starting equations:
be known.

The essential feature of our model is to consider a per-  V2#=R(CuthytCythy+Cy) + Fyih + Fygy +Fy, (14
meability field varying periodically in both directions of ct+cxz,/xy—cyz,//X=V2c (15)

space, i.e., we take
with R=—d(In w)/dc=In(M), whereM is the viscosity ra-

) tio, andF is given by Eq(13). As discussed by Meiburg and
Homsy?* Eq. (14) shows that the vorticityv(x,y)= — V2

is generated by mobilityconcentratiohgradients or perme-
ability gradients which are inclined to the local velocity vec-
tor. With this interpretation, it becomes obvious that even in
dhe absence of any viscosity stratification, there will be a
vortical flow, dependent on the magnitude @fthat repre-
sents a departure from uniform displacement. We will refer
Q this flow as the “cellular flow,” since for our model, it
as a period structure that mimics that of the permeability

Ko

=0 COS(y COS ax,

wherexg is the mean permeability angis analogous to the

square root of the variance in models which takéo be a

stationary random function of space. The parametisrthus

a measure of the amplitude of the heterogeneities of the p

rous medium whilea and q relate to their correlations

lengths alongk andy, respectively. We will later take to

be a small parameter and develop a perturbation scheme f

small o. .
The boundary conditions appropriate to spatially infinitef'eld'

systems are a specification of the average pressure gradient Our purpose is now to f|rst.constrL.1(_:t a SOIUUO.” for this
(equivalently, a specified, average velogitperiodicity in cellular flow, and then to study its stability. Accordingly, we

the direction transverse to the flow, and decay of the concer{-e]cer to this flow as the "stationary state,” analogous to a

tration toc, and zero, respectively, at large distances from steady state’ in more conventional stability analyses, and

the front. Since the fluid is moving with an average meardenOte the solutions by the subscriptThe cellular flow is a

velocity U, we switch into a moving reference frame taking so_luﬂon of Eqs(1_4) and(1_5), .Wh'Ch n th_e moving frame is
x'=x—Ut and u’=u—Ue,. The evolution equations be- driven by a forcing that is time periodic with a frequency
related to the transverse wave number. Thus the cellular flow

come: . ) . . :
is both time and spatially dependent, and, as we will see, its
V.u'=0, (5) description is nontrivial. While, in general, it is necessary to
solve the coupled set of nonlinear equatighg) and (15),
p=— ©(c) (U'+Ue) (6) Wwe adopt an approach that is common in the theory of mac-
! U t) ’ . . . . .
k(r'+Ue rodispersion, i.e., we develop the solution as a perturbation
. . . ,16,17
cHu-Ve=DV2c @ expansion in the magnitude of the heterogentity:

While the range of validity of the expansion is, of course,
and hence unknown, higher order perturbation theory for the unit mo-
, bility ratio case suggests that it is reasonably ldfyét is
K(r+—Uext) = cosqy codax’+aUt). (8)  useful to recall that the expansion is in terms of the natural

Ko logarithm of the permeability heterogeneity rather than the

Using diffusive scales, we introduce the_nondimensionapermeabi”ty itself)
variablesT=r'U/D, U=u'/U, t=tU?%D, u=plu,, P

F'=In

=pko/uiD, R=«lrg, T=clc,, and §=qD/U, & !ll. PERIODIC STATIONARY STATE
=aD/U. After dropping the tildes, we arrive at the follow- e |ook for a periodic stationary solution to the system
ing nondimensional equations in the moving frame: of Egs. (14) and (15) of the form:
V-u=0, ©) Ys= oot T hon, (16)
w(c) Cs=Coo+ 0Coy, (17)
Vp:_m(u+ex)v (10) S 00 01 - -
k(I + 6 where, of course, the leading order terms are just the solu-
Jc+u-Ve=V2, (12) tions for a homoggeneous .permeability. field, anq are well-
known. At orderg™, the stationary state in the moving frame
m=pu(c) (12 is
with oo=0, (18

F=In[x(r+et)]
Coo=5

1- erf( L) l . (19
2\t
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The stationary state is just the one-dimensional solution fofV. LINEAR STABILITY ANALYSIS

which the velocity is constant and the concentration near the , i .

front exhibits dispersive spreading in the axial direction. We wish to consider the Stab'_“ty of the cellular flow
At order o, o, and o, are solutions of a partial dif- descrlbgd aboye and we W!|| exploit 'the use of perturbation

ferential equations system with a forcing term due to thd"€0rY ino, which as we will see, will lead to a perturbed

spatial dependence of the permeability field which, in thefigénvalue problem. In the usual way, we perturb the base

moving frame, gets expressed as both temporal and spatiSiate @s.Cs) by fluctuations of ordere and solve for the

dependence as follows: dynamics of thes_e fluctuations. Consistent with the represen-
) tation of the stationary state, we assume a perturbation ex-
(V+RGy) o1~ R\ Co1 pansion ino for both the stationary state and the eigenfunc-
=F,=—q sinqy[cos ax cosat—sin ax sin at], tions of the stability problem as follows:
(20) U=st €= oo+ et €oifyy, (30)
Gay¢01+(V2—at)c01= 0, (21 C=Cst €C13=CpotT 0Coy T €C1pt €0Cy;. (31)

where G=G(x) = — dcqo/9x is the gradient of the concen- We comment here that the entire approach may be compactly
tration. In operator notation, we must solve the system  developed as a double expansion in the two small parameters
o ande. At order €', we recover the problem of viscous
L( ‘/’01) - Fy (22)  fingering in homogeneous media. Of particular interest here
Co1 0 are the dynamics at order*c!, which gives the coupling
with between the viscous fingering instability and the flow driven
by permeability heterogeneity. The details are as follows.

) (23)  A. Order €'o?®

V2+RGd, —Rd,
Gady VZ-4,

. . . . . At this order, the perturbation equations for the fluctua-
We identify this system as a nonhomogeneous, linear, vari-
. , tions reduce to
able coefficient system, and first focus on the forced solu-

tions. (The eigenfunctions of the operatar will become L("blo)—o

L:

relevant for the stability problem treated belpWhis system (32

admits a solution of the form:

C1o
which are identical to those analyzed in some detail by Tan

- tﬁm) B ( &Ol(x,t)sin qy) (24) and Homsy? Normal mode solutions are of the form
017\ co1/ ~ | Coy(x,t)cosqy/ N ,
01 oa(X,t)cosqy (o) [ dg0sinky| .. s
Since the only time dependence comes from the forcing 1071 ¢10) | &4¢(x)cOSKY e (33)
term, we can separate tkeandt dependence iy, (x,t) and i - R i
Soi(X,t) by writing At this order, ¢,¢(X) andcqo(x) are thus found as eigenso-
. ¢ ) s s lutions of
Por(x,t)| [ Yoa(X)cos at— i (X)sin at s o R R
( Cor(X,t) | | cg(x)cosat—cyy(x)sin at | (25 (di—k*+RGd) ¢10t RKCo=0, (34)
The functionsyg,(X), #3(X), c§i(X), andcy,(x) are then thAﬁloJr(d)z(—kz—w)&lO:O. (35
found as solutions of the following system of equations: Combining these two equations by taking
(d2—g?+RGd) 45, +qRE,= —q cosax, (26) 1 i
(P~ g2+ RGAy g5~ qRE,— q sin ax 27 C1o(X) = — g [di— K2+ RG(X)dy] sl x) (36)
X ]
qu81+(d§—q2)081+ acs,=0, (28) we may express this as a fourth-order differential equation
) for ¢no:
— Gy~ (de—g?)cgy+ ac;=0. (29

2_ 2 2_ 2 iy -
In general, it is necessary to employ numerical techniques to (=K~ ) (A~ k*+ RG) g0~ RGKY30=0. (37
solve for the Fourier coefficientsg, , 3, andcg,,c3,, since  This equation is an eigenvalue problem with boundary con-
the coefficients of these equations ardependent as a result ditions specifying that disturbances decay to zero at
of the front having a structure, expressed thro@(x). But ~ X— *. For general5(x), this equation can be solved nu-
as will be seen in later sections, it is possible to make anamerically to find the eigenvaluew and the dispersion
lytical progress at short times, for whigB(x) may be ap- relation® The corresponding eigenfunctiongo(x) and
proximated as a delta function. C19(X) can also be computed.

This completes the representation of the stationary state The general properties of the dispersion relation will be
through first order ins. In principle, the perturbation scheme of importance in the next section. It is generally found that
can be continued, but the technical details and complexitghe growth rate is zero for long wavdss=0, becomes posi-
quickly become overwhelming. tive for unstable viscosity ratios ds increases, and then
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k

m

FIG. 2. Sketch of the typical dispersion relation of the viscous fingering
instability in a homogeneous porous medium. The growth tatef the
instability is positive for a band of wave numbérbetween 0 and the cutoff
wave numbek,. The maximum growth rate occurs for wave numkgr.

9613

(a) (b)

kekm  G=2kpm

FIG. 3. Sketch of the possible resonances between one unstable wave num-
berk of the viscous instability and the wave numlzeof the permeability
heterogeneitiesia) Subharmonic resonance wheges 2k,,, andk=k,, such

that (q—k)=k,. (b) Sideband resonance between arbitdargnd g such

that (Q—Kk) =Kk, .

flow, characterized by wave numbegy to give a forcing for
the evolution of fluctuations of wave numbkr-g=k,, at
orderela?. Solutions of this equation will involve the eigen-

exhibits a cutoff wave number above which all fluctuationsmodes of the homogeneous problem, i.e., the eigenmodes of
are damped. These properties may be established analyticaffye operatot., but they add little to the dynamics and can be
for short times, and are robust features of the dispersion reeasily absorbed into the solutionsetr®. The case of inter-

lation at later times. A detailed discussion is given in Ref. 8.

A typical dispersion relation is given in Fig. 2. We denote

est is when the nonhomogeneous terms on the right-hand
side of Eq.(40) force the growth of the mode of maximum

the wave number corresponding to the maximum growth rat@rowth rate through resonant interactions. Forcings of modes

at any time ax,,.

B. Order €'o?

We now consider the dynamics of fluctuations induced

of wave numbers different thdg,, are not expected to com-
pete in any significant fashion with the intrinsic growth of
the most unstable wave, since this forced growth will be
slower than the most unstable wave. Thus, as is well-known,
and is evident from Eq€41) to (42), the important resonant

by the unstable viscosity ratio and potentially influenced byinteraction occurs wherk=q=k,,. We distinguish two
+ m-

coupling with the cellular component of the stationary state
The evolution equations at ordeto! are:

(V2+RGd,) 11— RIyCyy

=R[Contl10«+ Cory¥10y T CroxPorx T Caroy Pory ]

+FX¢10X+ Fylllloyzll, (38)
Gdyih11+ (V2= ;) C11= C1oethory + Com oy — CroyYoix
—Coy¥1ox= 12, (39
which can be written in short as
|
L( l/’ll) _ 1) (40
Ci1 I

or alsoL¥,=1. Let us obtain an explicit form fofr, and
I,. Replacingyg,C10 by Eq. (33) and takingyy, andcy, as
Eq. (24) we get after collecting terms:

I,=[A(x)cos at+B(x)sin at]sin(q—k)ye*

+[C(x)cos at+D(x)sin at]sin(q+k)ye®t, (41)
I,=[E(x)cos at+H(x)sin at]cog q—k)ye*!
+[J(x)cos at+K(x)sin at]cogq+k)ye®, (42

whereA,B,C,D,E,H,J,K are given in Appendix A.
Equation(40) is at the heart of our analysis, as it shows

tases, that of subharmonic resonance and that of a sideband
resonance.

Case A. Subharmonic resonante this case, the choice
g= 2k, leads to forcing of the fastest growing mode with
g—k=(2kn,—km) =kn,, as well asiunimportant forcing of
a strongly damped third harmonic. Figur@gillustrates the
situation in a schematic fashion.

Case B. Sideband resonancEhis case recognizes the
fact that we expect both andk to have a finite bandwidth
and will not, in general, by characterized by pure modes. The
instability wave numbek has a spectrum because we expect
fluctuations of all scales to be present in any physical experi-
ment. The parametay also has a spectrum in the case of
disordered media, and is a free parameter in our spatially
periodic model. Thus we have the possibility of resonances
between the sidebands- k=k,, for a range ofj andk. The
caseq—k=k,, is shown schematically in Fig.(B) the case
gq+k=k., is directly analogous.

V. SOLUTION STRUCTURE OF THE O(eo)
EQUATIONS

We now discuss the solution technique used to solve the
partial differential equation$38) and (39). We do this by
reducing them to ordinary differential equations by project-
ing them onto the eigenmodes of the operatarsing Galer-

how the eigenmodes of the instability, characterized by wavéin methods. Under the conditions of resonance, we seek a

numberk, interact with the spatial variation of the cellular

solution of the form

J. Chem. Phys., Vol. 107, No. 22, 8 December 1997
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N :(¢11):<,%-(t)i}10(x)sin Ky 43 where
1l ey Y(t)Cy(x)coskny /)’ wlzm 57

wherekp, is an unstable wave number of the linear stabilityis the root mean square amplitude of 1©¢o) oscillatory
analysis, #s1o(x),C1o(X) are the eigenmodes, and’,7 are  terms in Eq.(55). The magnitude ofw; shows then how
amplitude functions to be determined. Inserting E®) into  much the heterogeneities of the porous medium enhance the
Eq. (40) and projecting the first and second of these equagrowth rate of the viscous fingers.

tions, respectively, omr;o(x) andc,o(x), we get the follow-

ing system of ordinary differential equations

a1 2 (t) +a2/(t)=e“[by; cosat+by, sin at], (44) V1. CALCULATIONS FOR G=4(x)
A, 2 (1) + an /(1) — nj/)/(t) We have developed the approach and the equations nec-
ot . essary to compute the correction to the growth rate of a vis-
=e“[by; cosat+by, sin at], (49 cous fingering instability due to permeability heterogeneities.

dix B and the dot stands for a time derivative. Since @4)  €igensolutions¥y; and the cellular flow¥;, must be com-

is algebraic,#" can be eliminated from these equations byPuted numerically, which, in principle, can be done. How-
taking ever, in order to gain insight into the results of the theory, it

is advantageous to obtain analytical results. We do so in this

wt

o A : section, in which we solve the problem for short times, for
Z(t)y=-— 7))+ — b t+b t], . ! : !
(t) a; ) all[ 11 C0Sat+ by, Sin at] which the gradienG= 5(x).
46
7 (46) A. Stationary state
to arrive at the following amplitude equation fgr: 0.1 ) .
_ At ordere”o~, we are looking for a solution of the form:
//J — :?/ — ot ?// +Q(',x‘ H ) .
TRtz cosatr st @0 [t [5,(¥)cos at - yi,(x)sin at]sin ay
with 017 | coy) | [€Sy(X)COS at—cSy(X)sin at]cosqy |’
\ = 1 axdp (48) (58
|32 ay |’ whereyg,(X), ¥5,(X), cgy(X), andcg,(x) obey the following
system of equations:
o 1|buaxn 2_ 2 c
“nlag P2 (49) (02— g2+ RGd,) 5, + RS, = —q cos ax, (59
__1laybyp b — 50 —(df—g*+RGd) g~ AR =1 sin ax, (60
n| a;,; & ( Gqy§,+ (d2—g?)c§+ acs,=0, (62)
The solution of Eq(47) is Gy, (d2—g?)cs,+ ac,=0, (62)
7(t)=e"[y cosat+¢ sin at] (51 with G=8(x). Let us first consider Eq¢61) and (62). The
with solutions to the right of the front{*S(x>0) and to the left
3 , c;’°(x<0) where G(x)=0 obey the homogeneous equa-
(w—\N)— T« tions:
Y= o2 h (52)
(d2—g?)cf | + ac? | =0, (63
Awo—N+Za
"o NZH e (53 —(d—0a%)c?, +acf, =0, (64)

. . . L Applying decay conditions at infinity, the solutions are
The interpretation of the resulting solution is suggested by PPYINg y y

the analysis of simple model equations, from which it is ci=[A} cog Bx)+Bf sin(Bx)]exp —px), x>0,
possible to establish E451) as the first term of the expan- (65)

sion of an exponential. Accordingly, combining expressions C_pAC C
(33), (43), and(51), we have at ordee: cr=[A7 cog Bx)+ By sin(px)Jexp(px),  x<0,  (66)

C1ot 0C11=Cyo(X)cog Kyny) e [1+ o(y cosat+ & sin at)] cr=[A; cos Bx)+ By sin(Bx)Jexp(—px), x>0, 67
(54
— elo(x)coq kmy)ewt+ o(y cosat+ £ sin at). (55) C|S= [A|S COQIBX) + B|s Sir(BX)]eXF(pX), x<0, (68)
Since the temporal phase of the permeability field is ar¥Vhere
bitrary, Eq.(55) is equivalent to - 9P+ ’—q4+ P .
Cl~e(“’+ o’wl)t' (56) pP= f' ( )

J. Chem. Phys., Vol. 107, No. 22, 8 December 1997



A. De Wit and G. M. Homsy: Viscous fingering in porous media. | 9615

@ q¥7(0) +d,c7(0) —d,ci(0) =0. (86)
B= (70 _ _ .
\/Z(q +Vg*+a?) Inserting solutiong73)—(76) and(79)—(82) inside these con-
The continuity ofcS, andcS, at x=0 imposesAt=A°¢, A® ((jzltlogidaclioyvs the determination of the constafits, C,,
=A}. Moreover, inserting solutionés5)—(68) into (63) or 8 4
(64) we have gRa
Ci=—5— (—qRaB+40°—4pq*+4a’p), (87
r1=Br,=Cu, (77) D
2
C _psS _
~AN=BL=Co (72 Co=— 5~ [2R%pa—qa— Bu) +8pal, (89
This leads to expressions fof, ¢, ¢, andc; that depend
only on two remaining unknown§, andC,: R%q
. : Cs=—p [—a°R*B(a+p)
¢/ =[—C; cogBx) +C; sin(Bx)Jexp(— pX), (73
3 2 2
cf=[—C, cog Bx)+C; Sin(Bx)]exp(px), (74 Tap(aTmpqTt atpt Baq)], 89
_ ; R
c;=[C, coq Bx)+C, sin(Bx)]exp — pX), (75 Cu=— = [2R%q(pag?+ Bpa’—q°B—qPa)
c;=[C; cog Bx)+C, sin( Bx)]exp pX). 76
P=[C, cog Bx)+C, sin(Ax)]exp( px) (76) r 8l a?)] 00

We now consider Eq$59) and(60), focusing on the domain

(x#0) where the solutions ang®® on the right ¢>0) and ~ With

¥1° on the left k<0). These equations are simplified if D =(q%+ a?)[qR3(qB2R2+ 4¢3 — 8pq+ 4qp?
combined with Eqs(63) and (64):

R —8Bpa)+16p2a?]. (91)
q
(d—a?) ¥t o Cf,|) =—( CoS aX, (77)  As a conclusion, the presence of the permeability field intro-
duceso-order corrections to the concentration and the stream
R function that are given by Eq$73)—(76) and (79)—(82).
<d§—q2>(¢f,.—q7cf,.)=—qsinax. 79 given by Eq€79~(76) and (7962

Again applying decay conditions at infinity and continuity at
x=0, the solutions of these equations read: B. Growth rate in homogeneous systems
qR q The growth rate of the viscous fingering instability in a
Ye=Cy exp—qx)— - ci+ P cofax), (79  homogeneous system is computed analytically at oedef
by doing a linear stability analysis along the one performed
. ar | q by Tan and Homsywhen G= §(x). Here, we summarize
i =Cs explqx)— —-ci+ P cog ax), (80)  their findings. IfG=&(x) and assuming decaying conditions
atx— *oo, the fourth-order differential equatidB7) for ¢4

R - : -
2=Ca exp(—qx)+% oot q sin(ax), 81) admits the following solution:

7,2 -
e Jio(X) =Are+ B, x<0, (92)

qR q . -
7 =C,4 exp(gx) + - cr+ P sin( ax). (82 Y1 X)=Ae *+Be ¥ x>0, (93

We comment in passing that the terms proportional towher_eI2:k2+w. Imposing continuity of the v_elocity, of the
a/(g%+ a?) represent the persistent cellular flow driven in gtr)ad_len:] ofd_pressgre, aTd_of.the concentrationxa®, we
the bulk of the fluid by the interaction of the base flow with Ptain the dispersion relation:

the permeability field flow alone, while the other terms rep- = [Rk—k?— k\k?+ 2RK]/2. (94)
resent homogeneous solutions that decay away from the

front, and which are required to fully satisfy the homoge-The most da2r19erous mode correspond&ge-0.11&R and
neous coupled equations. Furthermore, integrating Eqg?m=0.0228R°. We can compute the constanfs,=A,

(59)—(62) from 0~ to 0* imposes the following constraints: = — KA/l andB;=B,=A. Since these are eigenfunctios,
is arbitrary, so we conveniently put it equal to 1 and have

croy c R c c _ thus
Aty (0) = At (0) + 5 [dyf(0) + i (0)]=0, (83

R Pro(X) = _l—k eX+ex  x<o,
dy7(0) — dyy(0) + > [dx7(0)+d,57(0)]=0, (84) (95)

~ —k
QUE(0) + d,cS(0) — dycF(0) =0, (85) YrolX)= - e e x<0.
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It is straightforward to see that the derivativezblfo is equal
to zero atx=0. Hence the ternRG(x)do/dx in Eqg. (36)
vanishes for any value of if G(x)=§(x) and we have

A 1 o2 L2
Clo(X):R|(| —k9)e*, x<0,
(96)

“ 1 2 2\ Ix
ClO(X)=ﬁ(| —k9)e ™, x>0.

C. Correction to the growth rate due to the
heterogeneities

We have shown previously that the correctiopn to the
growth ratew in heterogeneous systems takes the form

w1=\y+&, 97)

wherey and{ are functions of the integrakg; andb;; given
in Appendix B through the relation8)—(50) and (52)—
(53). Using () given by Eq.(95) and C;¢(x) given by
Eq. (96), we have

k(k+20)(1—k)?

a; = — 3 =—ayy, (99)
k(12— k2)(1 — K)
an=—RjpE (99
(1= k)3(k+1)3
A (100
(IZ_ k2)2

It is straightforward to evaluate these formulas for specifi

k=kp,=0.11R, w=w0,=0.022R2, we have for R=3,
a;,= —0.135 05= —a,,, a,=0.015 93,a,,—0.004 92, and
n=0.024 28.

Among the possible resonances discussed above, we f

cus here on the subharmonic resonances that come into pl
when q=2k,,, k=k, such that §—k)=k,,. Using the
MAPLE symbolic calculator program, we compute the inte-
grals

bay= f _tl}m(x)A(x)dx, (102
b= | 0B (103
b= | EdmEGOAX (104
by= J’j:élo(x)H(x)dx, (105)

whereA, B, E, andH are given in Appendix A. The cor-
rection to the growth rate, is then straightforwardly com-
puted using expressiaib7).

c
values of the parameters. For example, using the results th
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0.5

FIG. 4. w, vs «a for different values ofR. For each value oR, w, is
maximum for a close to zero corresponding to layered systems. At low
values of R, w; decreases then increases again up to a local maximum
characteristic of a resonance with diffusive scales. At higher valuBs of,
decays monotically over the range @fstudied.

We have carried out a full parametric study of the de-
pendence ofv, on the paramete® and«. These results are
shown in Fig. 4 over a range & and . Our interpretation
of the results is as follows. The general trend of the results is
that the correction to the growth rate is the largest for small
a, which corresponds to slow periodic variation in the flow
direction. Of course, the limike=0 is that of a layered sys-
tem, in which case the growth of the instability will be sig-
nificantly enhanced by the ability of the fluid to channel into
fle more permeable layers. Similar considerations are likely
to apply to the case of sideband resonance, but we do not
pursue the numerical calculations here. The decay of the re-
sponse for largex can be explained by recalling that this

uantity can be interpreted as either the dimensionless tem-

ral frequency(in the moving framg at which the front
encounters the permeability field, or as a suitably defined
inverse Peclet number in which the axial wave number of the
permeability field is used to define the characteristic length.
In the first interpretation, the high frequency roll-off exhib-
ited for largea is due to the inability of the instability to
respond to frequencies much larger than the characteristic
diffusion time. In the second interpretation, largecorre-
sponds to a very low Peclet number, indicating the domi-
nance of diffusion in damping any response driven by the
periodic forcing.

Figure 4 also indicates that over a limited rangeRof
between 2.0 and 4.0, there is a local maximum in the re-
sponse at finitew, while the response appears to be mono-
tonic for R>4. Figure 5 shows this effect in more detail by
focusing on the range<2R<<4 on an expanded scale foy .

Our interpretation of this local maximum is analogous to
oscillatory forcing of an unstable system with damping in
which the cellular flow provides the periodic forcing. We
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FIG. 5. w, vs « for intermediate values d®. The local maximum is shifted
to highera whenR is increasing. This local resonance reaches its maximum
for R=2.5, a=0.3.

FIG. 6. The scaled growth raie, /R? vs « for different values oR.

of the mobility ratio and the axial wave number of the per-
find that the position of the local maximum, when it occurs, Meability. This correction is maximum in the case of layered
bears an approximate relationship to the wave number otystems and is an increasing function of the mobility ratio. It
maximum growth ratek , as@=3.3%,,. From this approxi- features also a local maximum when the frequency of en-
mate formula, it is clear that the local maximum occurs wherfountering the axial variations of the permeability is com-
the time scale of the periodic forcing is commensurate withmnensurate with a characteristic dispersive time. Despite its
the characteristic diffusive timp/U2. simplicity the case of periodic porous medium has thus al-

We next turn to a discussion of the dependence pbn lowed one of the first analytical desqriptions of the'influenc'e
R. As noted above, the intrinsic growth rate in homogeneou®f heterogeneities on the characteristics of the viscous fin-
systems is given byw=w,=0.022%?, indicating, as is 9€ring |_nstab|I|ty. Interesting physical insights into the
well-known, that the instability becomes stronger as the moMechanisms of resonances between the length scales of the
bility ratio increases. It is therefore appropriate, in compar-
ing theO( o) correction tow to scalew; by R?. This is done
in Fig. 6, in which the results of Fig. 4 are replotted as
w1/R? vs a. As can be seen, aside from the structure asso-
ciated with the local resonances, scales aR? in a fashion
similar to that for the homogeneous case. This is particularly
true for R>2, for which there is a strong suggestion of uni-
versality in the normalized results.

Figure 7 summarizes all our results in a contour plot of
the normalized response; /R? vs R and a. All the features,
including the maximum response for smallthe local reso-
nant response for intermedia® the very flat plateau near
R=3, and the high frequency roll-off, are made evident by
the contour plot.

VIl. CONCLUSIONS

Using a model system of heterogeneous porous medium . , . , .
for which the permeability is a periodic function of space we 1.0 2.0 3.0 4.0 5.0
have obtained analytically the correctian to the homoge- R
neous growth rate of viscous fingers due to the heterogene-
ities of the medium. This correction occurs because of &IG. 7. Contour plot of the normalized correction to the growth raféR?
subharmonic or a sideband resonance between the wa\f)%; dh:gfgrg gsgugri ;‘;sarl\]li Z.r;hez corr;a;gici)sn (;ZCTS:Si?:]urB cjﬁl ??Zfﬁ;

. . . . . = w

number of the VISCC?l:IS fl.ngers and the transverse wave nu. _iniE:num fora=0.5. WhenR=3, a I:argle plateau exists fgr higher values ‘cJ)f
ber of the permeability field. In the case of the subharmonic, sych that fora=1.5 for instance, the correction will be maximum far
resonance we have obtained the correctignas a function =3.

J. Chem. Phys., Vol. 107, No. 22, 8 December 1997



9618 A. De Wit and G. M. Homsy: Viscous fingering in porous media. |

viscous fingers and those of the heterogeneities are hentewe are considering the casg<{ k) =k,,, then
obtained. These results provide a guideline for the under-

standing of more realistic but also more complicated perme- b, = f*"“ A(x)d 56
ability fields. u=| 1o X)A(X)dX, (B6)
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