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We are generally interested in viscously driven instabilities in heterogeneous porous media for a
variety of applications, including chromatographic separations and the passage of chemical fronts
through porous materials. Heterogeneity produces new physical phenomena associated with the
interaction of the flow with the heterogeneity on the one hand, and the coupling between the flow,
the concentration of a passive scalar, and the physical properties~here the viscosity! on the other.
We pose and solve a model in which the permeability heterogeneity is taken to be periodic in space,
thus allowing the interactions of the different physical mechanisms to be carefully studied as
functions of the relevant length and time scales of the physical phenomena involved. In this paper,
Paper I of a two-part study, we develop the basic equations and the parameters governing the
solutions. We then focus on identifying resonant interactions between the heterogeneity and the
intrinsic viscous fingering instability. We make analytical progress by limiting our attention to the
case of small heterogeneity, in which case the base state flow is only slightly disturbed from a
uniform flow, and to linear instability theory, in which the departures from the base state flow are
taken to be small. It is found that a variety of resonances are possible. Analytic solutions are
developed for short times and for the case of subharmonic resonance between the heterogeneities
and the intrinsic instability modes. A parametric study shows this resonance to increase
monotonically with the viscosity ratio i.e., with the strength of the intrinsic instability, and to be
most pronounced for the case of one-dimensional heterogeneities layered horizontally in the flow
direction, as expected on simple physical grounds. When axial variation of the permeability field is
also considered, a damping of the magnitude of the response generally occurs, although we find
some evidence of local resonances in the case when the axial forcing is commensurate with a
characteristic dispersive time. The response exhibits a high frequency roll-off as expected. These
concepts of resonant interaction are found to be useful and to carry over to the strongly nonlinear
cases treated by numerical methods in Paper II@J. Chem Phys.107, 9619 ~1997!#. © 1997
American Institute of Physics.@S0021-9606~97!50946-9#
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I. INTRODUCTION

The problem of viscous instabilities in porous media
one that continues to receive attention in a wide variety
fields due to the ubiquity of applications of flow in porou
media. Of particular interest is the occurrence of such in
bilities in analytical chemistry applications, notably in bo
laboratory scale and large scale chromatographic separa
in which the property variations of chemical mixtures,
particular, the variation of viscosity with concentration, c
drive instabilities and lead to long tails in dispersion and
breakthrough curves. For examples of both experimental
numerical studies of fingering in chromatographic appli
tions, see Refs. 1–5. In addition, there are applications
volving the propagation of chemically reacting fron
through porous media,6 as well as in petroleum recovery an
other chemical fixed bed processing.7

Our interest and focus in this paper is in viscously driv
instabilities in heterogeneous media. By heterogeneous
mean situations in which variations in the microstructure
the porous media lead to corresponding variations in the fl
resistance, as expressed in the permeability. We thus as
J. Chem. Phys. 107 (22), 8 December 1997 0021-9606/97/107(22)
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a separation of scales in which the spatial variability is n
ligible over many pore scales—leading to a Darcy level co
tinuum description of the flow—but in which the spatial va
ability over scales that are large compared to the pore s
cannot be neglected.

There have been significant advances in the underst
ing of unstable viscous fingering in spatially homogeneo
media on the one hand and in the understanding of ma
dispersion in heterogeneous media on the other.

In the former case of fingering in homogeneous med
there is an intrinsic scale of fingering set by the speed of
displacement, the viscosity ratio, and the level of dispersio8

Direct numerical simulations of nonlinear finger propagati
have led to a high level of understanding of the finger int
action mechanisms in both two and three dimensions.9–12

Dynamical processes such as tip splitting and shielding
their underlying physical mechanisms are now well und
stood from a conceptual and quantitative perspective.

In the latter case of heterogeneous media, it is neces
to adopt a description of the spatial variability of the perm
ability field in order to make progress. As will be seen b
low, the natural quantity arising in the flow equations is t
9609/9609/10/$10.00 © 1997 American Institute of Physics
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9610 A. De Wit and G. M. Homsy: Viscous fingering in porous media. I
log of the permeability: taking the permeability to be a ra
dom stationary function of space with a given variance a
correlation statistics has proven a popular model on whic
make analytical progress.13–15 It is now well known that the
effect of the heterogeneity over long times and distances
be described in terms of a renormalized permeability, dep
dent on both the variance and the functional form of
correlations, and an axial dispersion coefficient, which
generally larger than that for homogeneous media.13–17

There is ample evidence that permeability heteroge
ities interact with viscously driven instabilities in a signifi
cant way.2,18–20 In spite of its importance, relatively little
theoretical work has been done on the problem of finger
in the presence of heterogeneities, referred to in the rem
ing text as ‘‘heterogeneous fingering’’ for simplicity. Most
not all of the current understanding of heterogeneous fin
ing is derived from direct numerical simulations. Tan a
Homsy18 reported a short study of fingering in two
dimensional heterogeneous media which strongly sugge
a resonant interaction between the intrinsic scales of fing
and the correlation scale of the permeability field. Tchel
et al.19 have reported simulations and experiments on sta
and unstable displacements which establish the region o
rameter space in which heterogeneity will dominate fing
ing, and vice versa. Similar simulations in other geometr
have recently been reported by Sorbieet al.20 It is generally
recognized that the nature of heterogeneous fingering
pends on the relative importance of the two physical mec
nisms leading to flow nonuniformities: instabilities due to
unstable viscosity ratio and preferential flow paths due to
variance of the log permeability. The limiting cases are e
to identify. When the viscosity ratio is large and the varian
small, one recovers the limit of finger-dominated dynami
a well-studied situation. The case of unit viscosity ratio h
erogeneous media is also well-studied. A further limiti
case is when the permeability contrast overwhelms any ef
of viscosity stratification, in which case the flow paths a
dictated by the permeability field, and stream tube mod
may be developed: see, e.g., Ref. 21.

All of these studies help our general understanding
the flow processes in heterogeneous fingering, but have
disadvantage of being difficult to interpret in terms of fund
mental mechanisms of interactions between viscous fin
ing and the underlying nonhomogeneous flow resulting fr
the permeability variations. This paper and the following o
are devoted to developing this understanding through a c
bination of analytical theory and direct numerical simulati
for a particularly simple model of the heterogeneity. T
understanding that results sets the stage for further treatm
of more complex situations.

Specifically then, we treat viscous fingering in spatia
periodic heterogeneous media. As we will see, this allo
insight and understanding into the interactions of phenom
on different length scales and a very specific calculation
resonant interactions. Although they have the property
perfect spatial correlation, spatially periodic models of bo
microstructure and mesoscale variation have been used i
past to similar advantage, and in many cases yield res
J. Chem. Phys., Vol. 107, N
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that are not distinctly different than those for disordered m
dia: see, e.g., Ref. 22 for a discussion of the permeab
problem.

We present our work in two parts. In this paper~Paper I!
the basic equations are established, together with the sca
and description of the spatial variation of permeability. Th
leads to the identification of the basic dimensionless par
eters describing the problem, which are five in number:
amplitude and the two spatial correlation scales of the h
erogeneity, the viscosity ratio, and in any bounded geome
the Peclet number. The paper then focuses on the conne
between the ‘‘cellular flow’’ that is driven by the permeab
ity variation and the viscous instability that is intrinsic to a
unfavorable viscosity ratio. This problem is attacked a
solved by a double perturbation expansion in the amplitu
of the heterogeneity and the amplitude of the departure fr
the cellular state. This naturally leads to a discussion of re
nances between scales. While the expansion in the ampli
of the heterogeneity is uniform in time, that in the amplitu
of disturbances is not. Accordingly, Paper II23 takes up the
issue of direct numerical solutions of the problem, and
interpretation of the results for strongly nonlinear hetero
neous fingering in terms of the analytical understand
gained in part I.

II. BASIC EQUATIONS

We consider a two-dimensional porous medium as
picted in Fig. 1. An incompressible solute with concentrati
c1 and viscositym1 is injected from the left boundary with a
mean velocityU in the x direction. The porous medium i
heterogeneous, i.e., the permeabilityk~r ! is a function of
space, and the viscosity is taken to be a given function of
concentrationc. The concentration far to the right is take
without loss of generality to be zero, and the viscosity th
is m2 . The dispersion characteristics of the medium are ta
to be isotropic, although this assumption can be easily
laxed, and density effects are neglected. The equations o
system are:

“–u50, ~1!

“p52
m~c!

k~r !
u, ~2!

FIG. 1. Sketch of the system.
o. 22, 8 December 1997
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9611A. De Wit and G. M. Homsy: Viscous fingering in porous media. I
] tc1u–“c5D“

2c, ~3!

where Eqs.~1! and ~2! are the continuity equation and Da
cy’s law while Eq.~3! is the convective-dispersion equatio
for the concentrationc. The viscositym of the fluid depends
on the concentration through a relationm5m(c) supposed to
be known.

The essential feature of our model is to consider a p
meability field varying periodically in both directions o
space, i.e., we take

F5 lnFk~r !

k0
G5s cosqy cosax, ~4!

wherek0 is the mean permeability ands is analogous to the
square root of the variance in models which takek to be a
stationary random function of space. The parameters is thus
a measure of the amplitude of the heterogeneities of the
rous medium whilea and q relate to their correlations
lengths alongx andy, respectively. We will later takes to
be a small parameter and develop a perturbation schem
small s.

The boundary conditions appropriate to spatially infin
systems are a specification of the average pressure gra
~equivalently, a specified, average velocity!, periodicity in
the direction transverse to the flow, and decay of the conc
tration to c1 and zero, respectively, at large distances fr
the front. Since the fluid is moving with an average me
velocity U, we switch into a moving reference frame takin
x85x2Ut and u85u2Uex . The evolution equations be
come:

“–u850, ~5!

“p52
m~c!

k~r 81Uext !
~u81Uex!, ~6!

] tc1u8–“c5D“

2c ~7!

and hence

F85 lnFk~r 81Uext !

k0
G5s cosqy cos~ax81aUt !. ~8!

Using diffusive scales, we introduce the nondimensio
variables r̃5r 8U/D, ũ5u8/U, t̃5tU2/D, m̄5m/m1 , p̃
5pk0 /m1D, k̃5k/k0 , c̃5c/c1 , and q̃5qD/U, ã
5aD/U. After dropping the tildes, we arrive at the follow
ing nondimensional equations in the moving frame:

“–u50, ~9!

“p52
m~c!

k~r1ext !
~u1ex!, ~10!

] tc1u–“c5“

2c, ~11!

m5m~c! ~12!

with

F5 ln@k~r1ext !#

5s cosqy@cosax cosat2sin ax sin at !]. ~13!
J. Chem. Phys., Vol. 107, N
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Here q and a are the dimensionless wave numbers of t
heterogeneity, and can be thought of as inverse Peclet n
bers. We express these equations in terms of the stream f
tion c(x,y) such thatu5]c/]y, v52]c/]x, whereu,v
are the longitudinal and transverse velocity components,
spectively. We finally have our starting equations:

“

2c5R~cxcx1cycy1cy!1Fxcx1Fycy1Fy , ~14!

ct1cxcy2cycx5“

2c ~15!

with R52d(ln m)/dc5ln(M), whereM is the viscosity ra-
tio, andF is given by Eq.~13!. As discussed by Meiburg an
Homsy,24 Eq. ~14! shows that the vorticityw(x,y)52“

2c
is generated by mobility~concentration! gradients or perme-
ability gradients which are inclined to the local velocity ve
tor. With this interpretation, it becomes obvious that even
the absence of any viscosity stratification, there will be
vortical flow, dependent on the magnitude ofs, that repre-
sents a departure from uniform displacement. We will re
to this flow as the ‘‘cellular flow,’’ since for our model, i
has a period structure that mimics that of the permeab
field.

Our purpose is now to first construct a solution for th
cellular flow, and then to study its stability. Accordingly, w
refer to this flow as the ‘‘stationary state,’’ analogous to
‘‘steady state’’ in more conventional stability analyses, a
denote the solutions by the subscripts. The cellular flow is a
solution of Eqs.~14! and~15!, which in the moving frame is
driven by a forcing that is time periodic with a frequenc
related to the transverse wave number. Thus the cellular fl
is both time and spatially dependent, and, as we will see
description is nontrivial. While, in general, it is necessary
solve the coupled set of nonlinear equations~14! and ~15!,
we adopt an approach that is common in the theory of m
rodispersion, i.e., we develop the solution as a perturba
expansion in the magnitude of the heterogeneity.13,14,16,17

While the range of validity of the expansion is, of cours
unknown, higher order perturbation theory for the unit m
bility ratio case suggests that it is reasonably large.16 ~It is
useful to recall that the expansion is in terms of the natu
logarithm of the permeability heterogeneity rather than
permeability itself.!

III. PERIODIC STATIONARY STATE

We look for a periodic stationary solution to the syste
of Eqs.~14! and ~15! of the form:

cs5c001sc01, ~16!

cs5c001sc01, ~17!

where, of course, the leading order terms are just the s
tions for a homogeneous permeability field, and are w
known. At orders0, the stationary state in the moving fram
is

c0050, ~18!

c005
1

2 F12erfS x

2At
D G . ~19!
o. 22, 8 December 1997
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9612 A. De Wit and G. M. Homsy: Viscous fingering in porous media. I
The stationary state is just the one-dimensional solution
which the velocity is constant and the concentration near
front exhibits dispersive spreading in the axial direction.

At order s1, c01 and c01 are solutions of a partial dif-
ferential equations system with a forcing term due to
spatial dependence of the permeability field which, in
moving frame, gets expressed as both temporal and sp
dependence as follows:

~“

21RG]x!c012R]yc01

5Fy52q sin qy@cosax cosat2sin ax sin at#,

~20!

G]yc011~“

22] t!c0150, ~21!

whereG5G(x)52]c00/]x is the gradient of the concen
tration. In operator notation, we must solve the system

LS c01

c01
D5S Fy

0 D ~22!

with

L5S “

21RG]x 2R]y

G]y “

22] t
D . ~23!

We identify this system as a nonhomogeneous, linear, v
able coefficient system, and first focus on the forced so
tions. ~The eigenfunctions of the operatorL will become
relevant for the stability problem treated below.! This system
admits a solution of the form:

C015S c01

c01
D5S ĉ01~x,t !sin qy

ĉ01~x,t !cosqyD . ~24!

Since the only time dependence comes from the forc
term, we can separate thex andt dependence inĉ01(x,t) and
ĉ01(x,t) by writing

S ĉ01~x,t !
ĉ01~x,t ! D5S c01

c ~x!cosat2c01
s ~x!sin at

c01
c ~x!cosat2c01

s ~x!sin at D . ~25!

The functionsc01
c (x), c01

s (x), c01
c (x), and c01

s (x) are then
found as solutions of the following system of equations:

~dx
22q21RGdx!c01

c 1qRc01
c 52q cosax, ~26!

2~dx
22q21RGdx!c01

s 2qRc01
s 5q sin ax, ~27!

Gqc01
c 1~dx

22q2!c01
c 1ac01

s 50, ~28!

2Gqc01
s 2~dx

22q2!c01
s 1ac01

c 50. ~29!

In general, it is necessary to employ numerical technique
solve for the Fourier coefficientsc01

c ,c01
s andc01

c ,c01
s , since

the coefficients of these equations arex dependent as a resu
of the front having a structure, expressed throughG(x). But
as will be seen in later sections, it is possible to make a
lytical progress at short times, for whichG(x) may be ap-
proximated as a delta function.

This completes the representation of the stationary s
through first order ins. In principle, the perturbation schem
can be continued, but the technical details and comple
quickly become overwhelming.
J. Chem. Phys., Vol. 107, N
r
e

e
e
tial

ri-
-

g

to

a-

te

ty

IV. LINEAR STABILITY ANALYSIS

We wish to consider the stability of the cellular flo
described above and we will exploit the use of perturbat
theory in s, which as we will see, will lead to a perturbe
eigenvalue problem. In the usual way, we perturb the b
state (cs ,cs) by fluctuations of ordere and solve for the
dynamics of these fluctuations. Consistent with the repres
tation of the stationary state, we assume a perturbation
pansion ins for both the stationary state and the eigenfun
tions of the stability problem as follows:

c5cs1ec15sc011ec101esc11, ~30!

c5cs1ec15c001sc011ec101esc11. ~31!

We comment here that the entire approach may be compa
developed as a double expansion in the two small parame
s ande. At order e1s0, we recover the problem of viscou
fingering in homogeneous media. Of particular interest h
are the dynamics at ordere1s1, which gives the coupling
between the viscous fingering instability and the flow driv
by permeability heterogeneity. The details are as follows

A. Order e1s0

At this order, the perturbation equations for the fluctu
tions reduce to

LS c10

c10
D50, ~32!

which are identical to those analyzed in some detail by T
and Homsy.8 Normal mode solutions are of the form

C105S c10

c10
D5S ĉ10~x!sin ky

ĉ10~x!coskyDevt. ~33!

At this order,ĉ10(x) and ĉ10(x) are thus found as eigenso
lutions of

~dx
22k21RGdx!ĉ101Rkĉ1050, ~34!

Gkĉ101~dx
22k22v!ĉ1050. ~35!

Combining these two equations by taking

ĉ10~x!52
1

Rk
@dx

22k21RG~x!dx#ĉ10~x! ~36!

we may express this as a fourth-order differential equat
for ĉ10:

~dx
22k22v!~dx

22k21RGdx!ĉ102RGk2ĉ1050. ~37!

This equation is an eigenvalue problem with boundary c
ditions specifying that disturbances decay to zero
x→6`. For generalG(x), this equation can be solved nu
merically to find the eigenvaluev and the dispersion
relation.8 The corresponding eigenfunctionsĉ10(x) and
ĉ10(x) can also be computed.

The general properties of the dispersion relation will
of importance in the next section. It is generally found th
the growth rate is zero for long waves,k50, becomes posi-
tive for unstable viscosity ratios ask increases, and then
o. 22, 8 December 1997
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9613A. De Wit and G. M. Homsy: Viscous fingering in porous media. I
exhibits a cutoff wave number above which all fluctuatio
are damped. These properties may be established analyti
for short times, and are robust features of the dispersion
lation at later times. A detailed discussion is given in Ref.
A typical dispersion relation is given in Fig. 2. We deno
the wave number corresponding to the maximum growth
at any time askm .

B. Order e1s1

We now consider the dynamics of fluctuations induc
by the unstable viscosity ratio and potentially influenced
coupling with the cellular component of the stationary sta
The evolution equations at ordere1s1 are:

~“

21RG]x!c112R]yc11

5R@c01xc10x1c01yc10y1c10xc01x1c10yc01y#

1Fxc10x1Fyc10y5I 1 , ~38!

G]yc111~“

22] t!c115c10xc01y1c01xc10y2c10yc01x

2c01yc10x5I 2 , ~39!

which can be written in short as

LS c11

c11
D5S I 1

I 2
D ~40!

or alsoLC115I . Let us obtain an explicit form forI 1 and
I 2 . Replacingc10,c10 by Eq. ~33! and takingc01 andc01 as
Eq. ~24! we get after collecting terms:

I 15@A~x!cosat1B~x!sin at#sin~q2k!yevt

1@C~x!cosat1D~x!sin at#sin~q1k!yevt, ~41!

I 25@E~x!cosat1H~x!sin at#cos~q2k!yevt

1@J~x!cosat1K~x!sin at#cos~q1k!yevt, ~42!

whereA,B,C,D,E,H,J,K are given in Appendix A.
Equation~40! is at the heart of our analysis, as it show

how the eigenmodes of the instability, characterized by w
numberk, interact with the spatial variation of the cellula

FIG. 2. Sketch of the typical dispersion relation of the viscous finger
instability in a homogeneous porous medium. The growth ratev of the
instability is positive for a band of wave numbersk between 0 and the cutof
wave numberkc . The maximum growth rate occurs for wave numberkm .
J. Chem. Phys., Vol. 107, N
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flow, characterized by wave numberq, to give a forcing for
the evolution of fluctuations of wave numberk6q5km at
ordere1s1. Solutions of this equation will involve the eigen
modes of the homogeneous problem, i.e., the eigenmode
the operatorL, but they add little to the dynamics and can
easily absorbed into the solutions ate1s0. The case of inter-
est is when the nonhomogeneous terms on the right-h
side of Eq.~40! force the growth of the mode of maximum
growth rate through resonant interactions. Forcings of mo
of wave numbers different thankm are not expected to com
pete in any significant fashion with the intrinsic growth
the most unstable wave, since this forced growth will
slower than the most unstable wave. Thus, as is well-kno
and is evident from Eqs.~41! to ~42!, the important resonan
interaction occurs whenk6q5km . We distinguish two
cases, that of subharmonic resonance and that of a side
resonance.

Case A. Subharmonic resonance. In this case, the choice
q52km leads to forcing of the fastest growing mode wi
q2k5(2km2km)5km , as well as~unimportant! forcing of
a strongly damped third harmonic. Figure 3~a! illustrates the
situation in a schematic fashion.

Case B. Sideband resonance. This case recognizes th
fact that we expect bothq andk to have a finite bandwidth
and will not, in general, by characterized by pure modes. T
instability wave numberk has a spectrum because we exp
fluctuations of all scales to be present in any physical exp
ment. The parameterq also has a spectrum in the case
disordered media, and is a free parameter in our spati
periodic model. Thus we have the possibility of resonan
between the sidebandsq6k5km for a range ofq andk. The
caseq2k5km is shown schematically in Fig. 3~b! the case
q1k5km is directly analogous.

V. SOLUTION STRUCTURE OF THE O„es…

EQUATIONS

We now discuss the solution technique used to solve
partial differential equations~38! and ~39!. We do this by
reducing them to ordinary differential equations by proje
ing them onto the eigenmodes of the operatorL using Galer-
kin methods. Under the conditions of resonance, we see
solution of the form

g

FIG. 3. Sketch of the possible resonances between one unstable wave
ber k of the viscous instability and the wave numberq of the permeability
heterogeneities.~a! Subharmonic resonance whenq52km andk5km such
that (q2k)5km . ~b! Sideband resonance between arbitraryk and q such
that (q2k)5km .
o. 22, 8 December 1997
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C115S c11

c11
D5S X ~ t !ĉ10~x!sin kmy

Y ~ t !ĉ10~x!coskmy D , ~43!

wherekm is an unstable wave number of the linear stabil
analysis,ĉ10(x),ĉ10(x) are the eigenmodes, andX ,Y are
amplitude functions to be determined. Inserting Eq.~43! into
Eq. ~40! and projecting the first and second of these eq
tions, respectively, onĉ10(x) andĉ10(x), we get the follow-
ing system of ordinary differential equations

a11X ~ t !1a12Y ~ t !5evt@b11 cosat1b12 sin at#, ~44!

a21X ~ t !1a22Y ~ t !2nẎ ~ t !

5evt@b21 cosat1b22 sin at#, ~45!

where the coefficientsn, ai j , andbi j are detailed in Appen-
dix B and the dot stands for a time derivative. Since Eq.~44!
is algebraic,X can be eliminated from these equations
taking

X ~ t !52
a12

a11
Y ~ t !1

evt

a11
@b11 cosat1b12 sin at#,

~46!

to arrive at the following amplitude equation forY :

Ẏ ~ t !2lY ~ t !5evt@C cosat1S sin at#, ~47!

with

l5
1

n Fa222
a21a12

a11
G , ~48!

C 5
1

n Fb11a21

a11
2b21G , ~49!

S 5
1

n Fa21b12

a11
2b22G . ~50!

The solution of Eq.~47! is

Y ~ t !5evt@g cosat1j sin at# ~51!

with

g5
C ~v2l!2S a

~v2l!21a2 , ~52!

j5
S ~v2l!1C a

~v2l!21a2 . ~53!

The interpretation of the resulting solution is suggested
the analysis of simple model equations, from which it
possible to establish Eq.~51! as the first term of the expan
sion of an exponential. Accordingly, combining expressio
~33!, ~43!, and~51!, we have at ordere:

c101sc115 ĉ10~x!cos~kmy!evt@11s~g cosat1j sin at !#
~54!

5 ĉ10~x!cos~kmy!evt1s~g cosat1j sin at !. ~55!

Since the temporal phase of the permeability field is
bitrary, Eq.~55! is equivalent to

c1;e~v1sv1!t, ~56!
J. Chem. Phys., Vol. 107, N
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where

v15Ag21j2 ~57!

is the root mean square amplitude of theO(s) oscillatory
terms in Eq.~55!. The magnitude ofv1 shows then how
much the heterogeneities of the porous medium enhance
growth rate of the viscous fingers.

VI. CALCULATIONS FOR G5d„x …

We have developed the approach and the equations
essary to compute the correction to the growth rate of a
cous fingering instability due to permeability heterogeneiti
At times t.0, the base state is spatially dependent and
eigensolutionsC01 and the cellular flowC10 must be com-
puted numerically, which, in principle, can be done. Ho
ever, in order to gain insight into the results of the theory
is advantageous to obtain analytical results. We do so in
section, in which we solve the problem for short times,
which the gradientG5d(x).

A. Stationary state

At ordere0s1, we are looking for a solution of the form

C015S c01

c01
D5S @c01

c ~x!cosat2c01
s ~x!sin at#sin qy

@c01
c ~x!cosat2c01

s ~x!sin at#cosqy D ,

~58!
wherec01

c (x), c01
s (x), c01

c (x), andc01
s (x) obey the following

system of equations:

~dx
22q21RGdx!c01

c 1qRc01
c 52q cosax, ~59!

2~dx
22q21RGdx!c01

s 2qRc01
s 5q sin ax, ~60!

Gqc01
c 1~dx

22q2!c01
c 1ac01

s 50, ~61!

2Gqc01
s 2~dx

22q2!c01
c 1ac01

c 50, ~62!

with G5d(x). Let us first consider Eqs.~61! and ~62!. The
solutions to the right of the frontcr

c,s(x.0) and to the left
cl

c,s(x,0) where G(x)50 obey the homogeneous equ
tions:

~dx
22q2!cr ,l

c 1acr ,l
s 50, ~63!

2~dx
22q2!cr ,l

s 1acr ,l
c 50. ~64!

Applying decay conditions at infinity, the solutions are

cr
c5@Ar

c cos~bx!1Br
c sin~bx!#exp~2rx!, x.0,

~65!

cl
c5@Al

c cos~bx!1Bl
c sin~bx!#exp~rx!, x,0, ~66!

cr
s5@Ar

s cos~bx!1Br
s sin~bx!#exp~2rx!, x.0,

~67!

cl
s5@Al

s cos~bx!1Bl
s sin~bx!#exp~rx!, x,0, ~68!

where

r5Aq21Aq41a2

2
, ~69!
o. 22, 8 December 1997
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b5
a

A2~q21Aq41a2!
. ~70!

The continuity ofc01
s and c01

c at x50 imposesAr
c5Al

c , Ar
s

5Al
s . Moreover, inserting solutions~65!–~68! into ~63! or

~64! we have

Ar ,l
s 5Br ,l

c 5C1 , ~71!

2Ar ,l
c 5Br ,l

s 5C2 . ~72!

This leads to expressions forcl
c , cl

s , cr
c , andcr

s that depend
only on two remaining unknownsC1 andC2 :

cr
c5@2C2 cos~bx!1C1 sin~bx!#exp~2rx!, ~73!

cl
c5@2C2 cos~bx!1C1 sin~bx!#exp~rx!, ~74!

cr
s5@C1 cos~bx!1C2 sin~bx!#exp~2rx!, ~75!

cl
s5@C1 cos~bx!1C2 sin~bx!#exp~rx!. ~76!

We now consider Eqs.~59! and~60!, focusing on the domain
(xÞ0) where the solutions arec r

c,s on the right (x.0) and
c l

c,s on the left (x,0). These equations are simplified
combined with Eqs.~63! and ~64!:

~dx
22q2!S c r ,l

c 1
qR

a
cr ,l

s D52q cosax, ~77!

~dx
22q2!S c r ,l

s 2
qR

a
cr ,l

c D52q sin ax. ~78!

Again applying decay conditions at infinity and continuity
x50, the solutions of these equations read:

c r
c5C3 exp~2qx!2

qR

a
cr

s1
q

q21a2 cos~ax!, ~79!

c l
c5C3 exp~qx!2

qR

a
cl

s1
q

q21a2 cos~ax!, ~80!

c r
s5C4 exp~2qx!1

qR

a
cr

c1
q

q21a2 sin~ax!, ~81!

c l
s5C4 exp~qx!1

qR

a
cl

c1
q

q21a2 sin~ax!. ~82!

We comment in passing that the terms proportional
q/(q21a2) represent the persistent cellular flow driven
the bulk of the fluid by the interaction of the base flow wi
the permeability field flow alone, while the other terms re
resent homogeneous solutions that decay away from
front, and which are required to fully satisfy the homog
neous coupled equations. Furthermore, integrating E
~59!–~62! from 02 to 01 imposes the following constraints

dxc r
c~0!2dxc l

c~0!1
R

2
@dxc r

c~0!1dxc l
c~0!#50, ~83!

dxc r
s~0!2dxc l

s~0!1
R

2
@dxc r

s~0!1dxc l
s~0!#50, ~84!

qc r
c~0!1dxcr

c~0!2dxcl
c~0!50, ~85!
J. Chem. Phys., Vol. 107, N
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qc r
s~0!1dxcr

s~0!2dxcl
s~0!50. ~86!

Inserting solutions~73!–~76! and~79!–~82! inside these con-
ditions allows the determination of the constantsC1 , C2 ,
C3 , andC4 :

C15
qRa

D
~2qR2ab14q324rq214a2r!, ~87!

C252
aq2

D
@2R2~ra2qa2bq!18ra#, ~88!

C35
R2q

D
@2q2R2b~a1b!

14r~q32rq21a2r1baq!#, ~89!

C452
R

D
@2R2q~raq21bra22q3b2q3a!

18r2a~q22a2!#, ~90!

with

D5~q21a2!@qR2~qb2R214q328rq214qr2

28bra!116r2a2#. ~91!

As a conclusion, the presence of the permeability field int
ducess-order corrections to the concentration and the stre
function that are given by Eqs.~73!–~76! and ~79!–~82!.

B. Growth rate in homogeneous systems

The growth rate of the viscous fingering instability in
homogeneous system is computed analytically at ordere1s0

by doing a linear stability analysis along the one perform
by Tan and Homsy8 when G5d(x). Here, we summarize
their findings. IfG5d(x) and assuming decaying condition
at x→6`, the fourth-order differential equation~37! for ĉ10

admits the following solution:

ĉ10~x!5A1elx1B1ekx, x,0, ~92!

ĉ10~x!5A2e2 lx1B2e2kx, x.0, ~93!

wherel 25k21v. Imposing continuity of the velocity, of the
gradient of pressure, and of the concentration atx50, we
obtain the dispersion relation:

v5@Rk2k22kAk212Rk#/2. ~94!

The most dangerous mode corresponds tokm50.118R and
vm50.0225R2. We can compute the constantsA15A2

52kA/ l andB15B25A. Since these are eigenfunctions,A
is arbitrary, so we conveniently put it equal to 1 and ha
thus

ĉ10~x!5
2k

l
elx1ekx, x,0,

~95!

ĉ10~x!5
2k

l
e2 lx1e2kx, x,0.
o. 22, 8 December 1997
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It is straightforward to see that the derivative ofĉ10 is equal
to zero atx50. Hence the termRG(x)dĉ10/dx in Eq. ~36!
vanishes for any value ofx if G(x)5d(x) and we have

ĉ10~x!5
1

Rl
~ l 22k2!elx, x,0,

~96!

ĉ10~x!5
1

Rl
~ l 22k2!e2 lx, x.0.

C. Correction to the growth rate due to the
heterogeneities

We have shown previously that the correctionv1 to the
growth ratev in heterogeneous systems takes the form

v15Ag21j2, ~97!

whereg andz are functions of the integralsai j andbi j given
in Appendix B through the relations~48!–~50! and ~52!–
~53!. Using ĉ10(x) given by Eq.~95! and ĉ10(x) given by
Eq. ~96!, we have

a1152
k~k12l !~ l 2k!2

l 3 52a12, ~98!

a215
k~ l 22k2!~ l 2k!

Rl2
, ~99!

a225
~ l 2k!3~k1 l !3

R2l 3 , ~100!

n5
~ l 22k2!2

R2l 3 . ~101!

It is straightforward to evaluate these formulas for spec
values of the parameters. For example, using the results
k5km50.118R, v5vm50.0225R2, we have for R53,
a11520.135 0552a12, a2150.015 93,a2250.004 92, and
n50.024 28.

Among the possible resonances discussed above, w
cus here on the subharmonic resonances that come into
when q52km , k5km such that (q2k)5km . Using the
MAPLE symbolic calculator program, we compute the in
grals

b115E
2`

1`

ĉ10~x!A~x!dx, ~102!

b125E
2`

1`

ĉ10~x!B~x!dx, ~103!

b215E
2`

1`

ĉ10~x!E~x!dx, ~104!

b225E
2`

1`

ĉ10~x!H~x!dx, ~105!

whereA, B, E, andH are given in Appendix A. The cor
rection to the growth ratev1 is then straightforwardly com
puted using expression~57!.
J. Chem. Phys., Vol. 107, N
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We have carried out a full parametric study of the d
pendence ofv1 on the parametersR anda. These results are
shown in Fig. 4 over a range ofR anda. Our interpretation
of the results is as follows. The general trend of the result
that the correction to the growth rate is the largest for sm
a, which corresponds to slow periodic variation in the flo
direction. Of course, the limita50 is that of a layered sys
tem, in which case the growth of the instability will be sig
nificantly enhanced by the ability of the fluid to channel in
the more permeable layers. Similar considerations are lik
to apply to the case of sideband resonance, but we do
pursue the numerical calculations here. The decay of the
sponse for largea can be explained by recalling that th
quantity can be interpreted as either the dimensionless t
poral frequency~in the moving frame! at which the front
encounters the permeability field, or as a suitably defin
inverse Peclet number in which the axial wave number of
permeability field is used to define the characteristic leng
In the first interpretation, the high frequency roll-off exhib
ited for largea is due to the inability of the instability to
respond to frequencies much larger than the character
diffusion time. In the second interpretation, largea corre-
sponds to a very low Peclet number, indicating the dom
nance of diffusion in damping any response driven by
periodic forcing.

Figure 4 also indicates that over a limited range ofR
between 2.0 and 4.0, there is a local maximum in the
sponse at finitea, while the response appears to be mon
tonic for R.4. Figure 5 shows this effect in more detail b
focusing on the range 2,R,4 on an expanded scale forv1 .
Our interpretation of this local maximum is analogous
oscillatory forcing of an unstable system with damping
which the cellular flow provides the periodic forcing. W

FIG. 4. v1 vs a for different values ofR. For each value ofR, v1 is
maximum for a close to zero corresponding to layered systems. At l
values ofR, v1 decreases then increases again up to a local maxim
characteristic of a resonance with diffusive scales. At higher values ofR, v1

decays monotically over the range ofa studied.
o. 22, 8 December 1997
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find that the position of the local maximum, when it occu
bears an approximate relationship to the wave numbe
maximum growth rate,km asa53.3km . From this approxi-
mate formula, it is clear that the local maximum occurs wh
the time scale of the periodic forcing is commensurate w
the characteristic diffusive timeD/U2.

We next turn to a discussion of the dependence ofv1 on
R. As noted above, the intrinsic growth rate in homogene
systems is given byv5vm50.0225R2, indicating, as is
well-known, that the instability becomes stronger as the m
bility ratio increases. It is therefore appropriate, in comp
ing theO(s) correction tov to scalev1 by R2. This is done
in Fig. 6, in which the results of Fig. 4 are replotted
v1 /R2 vs a. As can be seen, aside from the structure as
ciated with the local resonances,v1 scales asR2 in a fashion
similar to that for the homogeneous case. This is particula
true for R.2, for which there is a strong suggestion of un
versality in the normalized results.

Figure 7 summarizes all our results in a contour plot
the normalized responsev1 /R2 vs R anda. All the features,
including the maximum response for smalla, the local reso-
nant response for intermediateR, the very flat plateau nea
R53, and the high frequency roll-off, are made evident
the contour plot.

VII. CONCLUSIONS

Using a model system of heterogeneous porous med
for which the permeability is a periodic function of space w
have obtained analytically the correctionv1 to the homoge-
neous growth rate of viscous fingers due to the heterog
ities of the medium. This correction occurs because o
subharmonic or a sideband resonance between the w
number of the viscous fingers and the transverse wave n
ber of the permeability field. In the case of the subharmo
resonance we have obtained the correctionv1 as a function

FIG. 5. v1 vs a for intermediate values ofR. The local maximum is shifted
to highera whenR is increasing. This local resonance reaches its maxim
for R52.5, a50.3.
J. Chem. Phys., Vol. 107, N
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of the mobility ratio and the axial wave number of the pe
meability. This correction is maximum in the case of layer
systems and is an increasing function of the mobility ratio
features also a local maximum when the frequency of
countering the axial variations of the permeability is co
mensurate with a characteristic dispersive time. Despite
simplicity the case of periodic porous medium has thus
lowed one of the first analytical descriptions of the influen
of heterogeneities on the characteristics of the viscous
gering instability. Interesting physical insights into th
mechanisms of resonances between the length scales o

FIG. 6. The scaled growth ratev1 /R2 vs a for different values ofR.

FIG. 7. Contour plot of the normalized correction to the growth ratev1 /R2

for different values ofR anda. The correction is maximum forR between
0.5 and 2.5 and smalla’s. NearR52, v1 /R2 is decreasing down to a shar
minimum fora50.5. WhenR53, a large plateau exists for higher values
a such that fora51.5 for instance, the correction will be maximum forR
53.
o. 22, 8 December 1997
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viscous fingers and those of the heterogeneities are h
obtained. These results provide a guideline for the und
standing of more realistic but also more complicated perm
ability fields.
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APPENDIX A

2A~x!52R~ ĉ10xc01x
c 2 ĉ10xc01x

c !1Rqk~ ĉ10c01
c

2ĉ10c01
c !1aĉ10x sin ax2kqĉ10 cosax,

~A1!

2B~x!5R~ ĉ10xc01x
s 2 ĉ10xc01x

s !2Rqk~ ĉ10c01
s 2ĉ10c01

s !

1aĉ10x cosax1kqĉ10 sin ax, ~A2!

2C~x!5R~ ĉ10xc01x
c 1 ĉ10xc01x

c !2Rqk~ ĉ10c01
c 1ĉ10c01

c !

2aĉ10x sin ax2kqĉ10 cosax, ~A3!

2D~x!52R~ ĉ10xc01x
s 1 ĉ10xc01x

s !1Rqk~ ĉ10c01
s

1ĉ10c01
s !2aĉ10x cosax1kqĉ10 sin ax,

~A4!

2E~x!5qĉ10xc01
c 1kĉ10c01x

c 1qĉ10xc01
c 1kĉ10c01x

c ,
~A5!

2H~x!52qĉ10xc01
s 2kĉ10c01x

s 2qĉ10xc01
s 2kĉ10c01x

s ,
~A6!

2J~x!5qĉ10xc01
c 1kĉ10c01x

c 2qĉ10xc01
c 2kĉ10c01x

c ,
~A7!

2K~x!52qĉ10xc01
s 2kĉ10c01x

s 1qĉ10xc01
s 1kĉ10c01x

s .
~A8!

APPENDIX B: COEFFICIENTS OF THE ORDINARY
DIFFERENTIAL EQVATIONS

a115E
2`

1`

ĉ10~x!@dx
22km

2 1RG~x!dx#ĉ10~x!dx, ~B1!

a125RkmE
2`

1`

ĉ10~x!ĉ10~x!dx52a11, ~B2!

a215kmE
2`

1`

G~x!ĉ10~x!ĉ10~x!dx, ~B3!

a225E
2`

1`

ĉ10~x!@dx
22km

2 # ĉ10~x!dx, ~B4!

n5E
2`

1`

ĉ10~x!ĉ10~x!dx. ~B5!
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If we are considering the case (q2k)5km , then

b115E
2`

1`

ĉ10~x!A~x!dx, ~B6!

b125E
2`

1`

ĉ10~x!B~x!dx, ~B7!

b215E
2`

1`

ĉ10~x!E~x!dx, ~B8!

b225E
2`

1`

ĉ10~x!H~x!dx. ~B9!

For the case (q1k)5km then

b115E
2`

1`

ĉ10~x!C~x!dx, ~B10!

b125E
2`

1`

ĉ10~x!D~x!dx, ~B11!

b215E
2`

1`

ĉ10~x!J~x!dx, ~B12!

b225E
2`

1`

ĉ10~x!K~x!dx. ~B13!
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