
Information criteria for variable selection under sparsity

MAARTEN JANSEN
Departments of Mathematics and Computer Science, Université Libre de Bruxelles
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Abstract

The optimization of an information criterion in a variable selection procedure leads to an addi-
tional bias, which can be substantial in sparse, high-dimensional data. The bias can be compensated
by applying shrinkage while estimating within the selectedmodels. This paper presents modified
information criteria for use in variable selection and estimation without shrinkage. The analysis
motivating the modified criteria follows two routes. The first, explored for signal-plus-noise obser-
vations only, goes by comparison of estimators with and without shrinkage. The second, discussed
for general regression models, describes the optimizationor selection bias as a double-sided effect,
named a mirror effect in the paper: among the numerous insignificant variables, those with large,
noisy values present themselves as being more valuable thanan arbitrary variable, while in fact, they
carry more noise than an arbitrary variable. The mirror effect is developed for Akaike’s Information
Criterion and for Mallows’Cp, with special attention to the latter criterion as a stopping rule in a
least angle regression routine. The result is a new stoppingrule, not focusing on the quality of a lasso
shrinkage selection, but on the least squares estimator without shrinkage within the same selection.
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1 Introduction

This paper presents information criteria for estimators without shrinkage in model selection. Although
Mallows’ Cp (Mallows, 1973) criterion is an unbiased estimator of the expected average squared pre-
diction error of a model, it is an often reported fact (Woodroofe, 1982; Ishwaran, 2004; Loubes and
Massart, 2004; Stine, 2004; Ye, 1998) that minimization of the criterion overestimates the number of
variables needed to minimize the prediction error. Given anestimator within a selected model, Mallows’
Cp, like many other information criteria, has the form of a penalized likelihood or sum of squared residu-
als. When the penalty depends on the model size, then among all models of equal size, selection is based
on the sum of squared residuals. In the case of high-dimensional sparse models, it is easy to reduce the
sum of squared residuals by a well-chosen combination of falsely significant variables, thereby fitting
the observational errors. The false positives thus presentthemselves as being better in modelling the
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observations than variables that were selected in a purely arbitrary way, whereas in reality their estimates
deviate more from their values in the true model than do thosefor arbitrary variables. This two-sided
effect of appearance versus reality can be described as a mirror effect, and is the topic of this paper.

The mirror effect can be seen as statistics of residuals thatchange through the optimization of an
information criterion in variable selection. The outcome of the optimization depends on the errors, while
an information criterion has been designed to evaluate the quality of one specific model. The change of
statistics through the selection can be compensated for by ageneralized concept of degrees of freedom
(Ye, 1998), replacing the simple model size in the penalty. The mirror effect described in this paper is
closely related to that concept.

The paper provides data-dependent expressions for penalties in information criteria that correct a pri-
ori for the mirror effect. In principle the mirror effect paradigm can be adopted with any distribution for
the error, any set or search structure for the model selection problem, any information criterion and any
estimator within the selected model. As the mathematical details depends on the case, most of the discus-
sion in the paper concentrates on important examples, such as normal errors and least squares estimators.
This paper discusses the application for both Mallows’Cp and Akaike’s Information Criterion (Akaike,
1973). In the case of normal errors and Mallows’Cp, the resulting penalty term can be compared to a
lower bound that avoids inconsistent estimators (Birgé and Massart, 2007). The mirror correction, being
data-dependent, automatically finds the degree of sparsityin the given data. The simulation study in
Section 2.6 illustrates that in terms of prediction error, the mirror correction slightly outperforms meth-
ods that control the false discovery rate (Benjamini and Hochberg, 1995) or even the absolute number
of false positives (Donoho and Johnstone, 1994). These methods have been found to perform well in a
minimax sense (Donoho and Johnstone, 1999) with respect to the prediction error, but the focus on false
positives leads to estimators that are not adaptive to the true, significant components in the data.

The mirror correction proposed by this paper can also be seenas an alternative for shrinkage as a tool
to compensate for optimization randomness. The idea behindshrinkage is to temper the effect of false
positives. The tempering may even exactly undo the optimization bias. This occurs when the errors are
normally distributed and the shrinkage is realized throughℓ1 constrained regression, known as the lasso
or least absolute shrinkage and selection operator (Tibshirani, 1996) or basis pursuit (Chen et al., 1998).
Thanks to the shrinkage, the expression for Mallows’Cp in the optimization of the model uses the same
penalty as for evaluation of an estimator without shrinkagein a fixed model. This penalty is based on the
concept of generalized degrees of freedom (Ye, 1998). Both in low-dimensional (Zou et al., 2007) and
in high-dimensional (Tibshirani and Taylor, 2012) data, the number of degrees of freedom during a lasso
operation can be taken equal to model size. In the case of a signal-plus-noise model, the expression of
Mallows’ Cp thus reduces to that of Stein’s unbiased risk estimator (Stein, 1981; Donoho and Johnstone,
1995; Loubes and Massart, 2004), while lasso itself becomessoft-thresholding.

Firstly, shrinkage thus reduces the effect of false positives. Secondly, it may also be superior to
simple least squares in terms of prediction error, thanks toStein’s phenomenon (Stein, 1956). Thirdly,ℓ1
regularized least squares is a convex optimization problem, as are variants such as the Dantzig selector
(Candès and Tao, 2007). Without shrinkage, variable selection is a combinatorial optimization problem.
Fourthly, for a given penalty value,ℓ1 regularization imposes nearly the same degree of sparsity as an
estimator penalized by the model size, without further shrinkage (Donoho, 2006). It has also been proved
that, under certain conditions,ℓ1 constrained optimization is variable selection consistent, provided that
the true model variables are large enough, compared to the regularization parameter. That is, if all
variables in the true model are sufficiently significant and if the regularization parameter is not too high,
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then, forn → ∞, the set of nonzero variables in the selection equals the true set with probability tending
to one (Meinshausen and Bühlmann, 2006; Wainwright, 2009;Tropp, 2006; Zhao and Yu, 2006). Fifthly,
as illustrated in Figure 1(b), when using shrinkage, the curvature of the prediction error as a function of
model size is small near its minimum. This is in contrast to the delicate minimization of the prediction
error in absence of shrinkage. Sixthly, shrinkage providesa continuous transition between selection and
non-selection. Continuous operations are mathematicallymore tractable.

In spite of these benefits, the use of shrinkage may be problematic in high-dimensional problems.
First, it introduces a bias in the estimated parameters, even if the parameter is highly significant. This
can be controlled by choosing shrinkage rules that spare large variables (Gao, 1998), including Bayesian
shrinkage (Johnstone and Silverman, 2004). Secondly, as shrinkage reduces the effect of false positives,
it is tolerant to their presence. As a result, the shrinkage rule that minimizes the prediction error, rests on
a model with too many nonzeros. The minimum with small curvature in Figure 1(b) confirms the illusion
of an easy problem, whereas finding the best selection without shrinkage requires careful optimization.
While ℓ1 regularization mimics estimation without shrinkage quitewell for fixed penalty values, the
equivalence betweenℓ1 and estimation without shrinkage no longer holds for the optimization over the
penalty, or, equivalently, the optimization over the modelsize. The rather poor behavior of shrinkage
selection with data-driven choice of the penalty value explains why many state-of-the-art methods do not
optimize over the regularization, but rather opt for a minimax choice of it.

2 Mirror effect in variable selection without shrinkage

2.1 Optimization bias

This paper investigates the selection of variablesβi in a regression model

Y = µ+ ε = Kβ + ε = Kβ + σZ, (1)

whereZ is an-dimensional vector of standardized, independent and identically distributed errors with
var(Zi) = 1, for i = 1, . . . , n. The design matrixK has thusn rows. The number of columns,m, may
or may not be equal ton. In high-dimensional data, we typically findm ≫ n, but we assume that the
number of significant variables,n1, is always smaller thann.

Let β̂ be an estimator ofβ in model (1) wheren1 variables are allowed to be nonzero, and denote
µ̂ = Kβ̂. The objective is to find the value ofn1 and the corresponding estimatorβ̂ with n1 nonzeros
that minimizes the expected prediction error

PE(x) =
1

n
E
(
‖Kβ −Kβ̂‖2

)
. (2)

The binary selection vectorx ∈ {0, 1}m represents the model under consideration. LetKx be the
submatrix ofK containing the columns corresponding to the 1’s inx. For any linear estimator̂µ = AxY

within a given, deterministic modelx, the prediction error is estimated unbiasedly by Mallows’Cp,
which is in general∆p(Ax) = n−1SSE(β̂)+2σ2n−1tr(Ax)−σ2, whereSSE(β̂) = ‖Y −Kβ̂‖2 is the
sum of squared residuals. We use the symbol∆p because in most papersCp stands for a standardized
or studentized quantity. This paper concentrates on the least squares estimator̂βx = (KT

xKx)
−1KT

xY ,
whereβx denotes the subvector with the nonzero entries ofβ corresponding to the nonzeros inx. Using
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the orthogonalityKβ̂ = Kxβ̂x ⊥ (Y −Kβ̂) it follows thatE{∆p(x)} = n−1(‖Kβ‖22−E(‖Kβ̂‖22)+
2n1σ

2). The only expectation in the expression forE{∆p(x)} can be rewritten as

E(‖Kβ̂‖22) = E(‖PxKβ + Pxε‖
2
2), (3)

wherePx = Kx(K
T
xKx)

−1KT
x is the orthogonal projection onto the columns ofKx.

In the case where the selectionX depends on the observations, through optimization of∆p(x), (3)
becomes

E(‖Kβ̂‖22) = E(‖PXKβ‖22) + E(‖PXε‖22) + 2E
{
(PXKβ)T (PXε)

}

= E(‖PXKβ‖22) + E(‖PXε‖22) + 2(Kβ)TE(PXε).

This leads to an expected value of Mallows’ criterion, taking the optimization into account,

EX{∆p(X)} =
1

n

{
‖Kβ‖22 − E(‖PXKβ‖22)− E(‖PXε‖22)− 2(Kβ)TE(PXε) + 2n1σ

2
}
. (4)

The expected prediction error, on the other hand, can be written asPE(x) = n−1{‖Kβ‖22 +

E(‖Kβ̂‖22) − 2(Kβ)TE(Kβ̂)}. For fixedx, the expressions ofPE(x) andE{∆p(x)} lead to iden-
tical outcomes. For observation dependent selectionsX,

EX{PE(X)} =
1

n

{
‖Kβ‖22 + E(‖PXKβ‖22) + E(‖PXε‖22)− 2(Kβ)TE(PXKβ)

}

=
1

n

{
‖Kβ‖22 − E(‖PXKβ‖22) + E(‖PXε‖22)

}
. (5)

The difference between (4) and (5) is due to the observation-dependent selection process, which is
assumed to proceed in two steps. First, for a given model sizen1, the optimaln1 term selectionXn1

is computed, where the optimization takes place over the observed values of the∆p(X) or of any other
information criterion. Next, the prediction error of the best n1 term approximation is considered as
function ofn1.

The analysis ofEX{PE(X)}−EX{∆p(X)} is simplified by assuming that2n−1(Kβ)TE(PXε) =
o(n1n

−1). In the signal-plus-noise case, for instance, this followsfrom a symmetric random model on
β, or from the sparsity in Assumption 2. This leads to an expression for the difference between (5) and
(4), depending onn1 only,EX{PE(Xn1)} − EX{∆p(Xn1)} ≈ 2m(n1), where

m(n1) =
1

n
E(‖PXε‖22)−

n1

n
σ2. (6)

AsX can be observed, the selection bias can be estimated unbiasedly from

m̂(n1) =
1

n
E
(
‖PXε‖22 | X

)
−

n1

n
σ2. (7)

The prediction error can then be estimated from∆̂p(Xn1) = ∆p(Xn1) + 2m̂(n1).
This paper further analyzes the bias correction2m(n1), describing it in terms of an oracular variable

selection, defined as follows.
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Definition 1 Given the model (1), define the class of submodelsM ⊆ {0, 1}m, using the binary repre-
sentation introduced above. For each submodelx ∈ M, consider the least squares estimatorβ̂x within
that model.

Then the oracle selection is the modelxo
n1

that minimizeslimσ→0 PE(x) among all models inM
with sizen1. In other words, it is the output from a model selection and estimation that hasKβ as input,
rather thanY = Kβ + ε.

Givenn1 and the oracle selectionxo
n1

, its least squares prediction errorPE(xo
n1
) is the mirror

function.

The mirror function is thus the prediction error of a routinewhose model selection is based on the
oracular observationsKβ, whereas its estimator within the selected model is based onthe observations
Y = Kβ+ε. As the selectionxo

n1
does not depend onε, E{∆p(x

o
n1
)} = PE(xo

n1
). The use of the term

mirror function is motivated by the following argument. Again under the mild assumptions of sparsity,
stated in Section 2.3, it holds thatEX{PE(Xn1)}−PE(xo

n1
) ≈ m(n1) ≈ PE(xo

n1
)−EX{∆p(Xn1)}.

The oracle prediction error thus acts as the mirror that reflects∆p(Xn1) ontoPE(Xn1) and vice versa.

2.2 The mirror and other penalties

Defining the residual vectore = Y −Kβ̂ and the generalized degrees of freedom (Ye, 1998)ν(n1) =
E{εT (ε − e)}σ−2, it is well known thatΛp(Xn1) = SSE(β̂) + 2ν(n1)σ

2n−1 − σ2 is an unbiased
estimator ofEX{PE(Xn1)}, for any choice ofXn1 , random or fixed. The approximation proposed in
Section 2.1, (6), can thus be written asν(n1) = E(‖PXε‖22)σ

−2 + o(n1) and, consequently,m(n1) =
{ν(n1)− n1}n

−1σ2 + o(n1n
−1).

The mirror corrected penalty can be compared to the minimum penalty for consistent estimators
(Birgé and Massart, 2007). Being a lower bound, that penalty is not data-specific, unlike that proposed in
this paper. The same remark holds for the penalties proposedin Abramovich et al. (2007), for instance.
Simulations discussed in the Supplementary Material show that the mirror penalty detects the degree
of sparsity automatically. It can be shown that forn1 larger than that degree, the mirror penaltyν(n1)
increases faster than the lower bound of Birgé and Massart (2007). Unlike that lower bound, however,
the mirror paradigm is not limited to normal errors or to Mallows’ Cp criterion. See the Supplementary
Material for a full discussion.

2.3 Signal-plus-noise, using a random model forβ

We start the study of (6) in a simple signal-plus-noise modelY = β + ε, where the sparse signalβ
is observed directly, andm = n. Extension to the general form of (1) follows in Section 4. The least
squares estimator for givenx is β̂i = Yi xi, wherexi is a component of the selection vectorx. The best
n1 term selection, measured by theCp-value, consists of then1 largest elements fromY .

The study is facilitated by assuming that the sparse vector of parametersβ constitute ann-tuple of
independent realizations from a random variableβn with a density functionfβn(v). The subscriptn
denotes dependence onn, which will allow us to impose increasing sparsity in an asymptotic analysis.
The eventual outcome will be independent of the precise formof fβn(v).

In the signal-plus-noise modelYn = βn + ε, the error distribution is assumed to be independent
from n with varianceσ2 = E(ε2).
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We letXn1 denote the active subset of the index set{1, . . . , n}, corresponding to the ones in the
binary vectorXn1. The functions∆p(Xn1) andPE(Xn1) will be used to denote∆p(Xn1) andPE(Xn1).
We letX ′

n1
denote the complement ofXn1 in {1, . . . , n}. The setX ′

n1
contains the indices of the variables

with then0 = n − n1 smallest magnitudes. Defining the eventSn,n0 = { In a set ofn independent,
identically distributed realizations, the observed|Yn| is among then0 smallest magnitudes}, we have
P (Sn,n0) = n0n

−1. Symmetry in the random model forβn then allows us to state thatE{∆p(Xn1)} =
n0n

−1E(Y 2
n | Sn,n0) + 2n1n

−1σ2 − σ2. We also define the oracular version of the eventSn,n0 as
On,n0 = { In a set ofn independent, identically distributed realizations, the observed|βn| is among the
n0 smallest magnitudes}. The complement ofOn,n0 corresponds to the selectionxo

n1
in Definition 1. Let

X o
n1

be the set of indicesi for whichxon1,i
= 1. Starting fromE(Y 2

n | On,n0) = σ2 + E(β2
n | On,n0) it

follows thatE{∆p(X
o
n1
)} = n0n

−1E(Y 2
n | On,n0)+2n1n

−1σ2−σ2 = n1n
−1σ2+n0n

−1E(β2
n | On,n0)

and thusE{∆p(X
o
n1
)} − E{∆p(Xn1)} = n0n

−1{σ2 + E(β2
n | On,n0) − E(Y 2

n | Sn,n0)}. A mirrored
relation holds between the prediction errors. In order to check this, we start from a conditioning of the
prediction error onOn,n0 to find thatPE(X o

n1
) = n1n

−1σ2 + n0n
−1E(β2

n | On,n0), in line with the
unbiasedness of∆p(X

o
n1
). The prediction error can be written as

PE(Xn1) = PE(Xn1 | Sn,n0)P (Sn,n0) + PE(Xn1 | S′
n,n0

)P (S′
n,n0

)

= E(β2
n | Sn,n0)

n0

n
+ E(ε2 | S′

n,n0
)
n1

n
=

n0

n
E(β2

n | Sn,n0) + σ2 −
n0

n
E(ε2 | Sn,n0)

=
n1

n
σ2 +

n0

n

{
σ2 −E(ε2 | Sn,n0) + E(β2

n | Sn,n0)
}
. (8)

We now impose that the vector ofβn is sparse enough to allow an asymptotically perfect separation
between significant and error-dominated variables:

Assumption 1 Whenn → ∞, the prediction error of an oracular component selection isdominated
by the error present in the observations of the selected variables, that isPE(X o

n1
) = E{∆p(X

o
n1
)} ∼

n1n
−1σ2.

An implication of Assumption 1 follows from the above statedexpression ofPE(X o
n1
). We findn1n

−1σ2+
n0n

−1E(β2
n | On,n0) ∼ n1n

−1σ2, which becomesE(β2
n | On,n0) = o(n1n

−1).
The following assumption is about the performance of the non-oracular selection method.

Assumption 2 The selectionSn,n0 performs asymptotically as well asOn,n0, in the sense thatE(β2
n |

Sn,n0) = o(n1n
−1). asn → ∞.

In terms of a non-random model forβn, this means that the thresholdλn1 selectingn1 significant vari-
ables satisfiesn−1

∑n
i=1 β

2
i P (|Yi| < λ) = o(n1n

−1). The Supplementary Material includes a quanti-
tative discussion of the interpretation of Assumption 2 in function spaces imposing sparsity, such asℓp
balls withp < 2 or multiscale sparsity, such as Besov spaces. The discussion involves the introduction of
an index of sparsity, inspired by the g-index from bibliometry (Egghe, 2006). Assumption 2 is satisfied
if the data vectorβn is sparse, if the noise is not heavy tailed, so that it can be easily separated from the
data, and if the threshold or model size is near its optimal value.

Assumption 2 implies that

0 ≤ E(Y 2
n | Sn,n0)− E(ε2 | Sn,n0) = o

(n1

n

)
. (9)
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This follows from the equationE(Y 2
n | Sn,n0) − E(ε2 | Sn,n0) = E(β2

n | Sn,n0) + 2E(εβn | Sn,n0),
and the fact thatE(εβn | Sn,n0) < 0.

Assumptions 1 and 2 allow us to conclude that approximatingPE(Xn1) as the reflection ofE{∆p(Xn1}
with respect to the oracular mirrorE{∆p(X

o
n1
)} = PE(X o

n1
) does not disturb the optimization of the

prediction error. More precisely, introduce the approximation errors∆1,n and∆2,n by

E{∆p(X
o
n1
)} − E{∆p(Xn1)} =

n0

n

{
σ2 − E(ε2 | Sn,n0)

}
+∆1,n,

PE(Xn1)− PE(X o
n1
) =

n0

n

{
σ2 − E(ε2 | Sn,n0)

}
+∆2,n.

Thenlimn→∞ qn(n1) = 0, whereqn(n1) = ∆n/PE(Xn1) and∆n = ∆1,n+∆2,n. DefiningPE∆(Xn1) =
PE(Xn1) −∆n, we have, forn → ∞ and anyn1, that−qn(n1)PE(Xn1) ≤ PE∆(Xn1)− PE(Xn1) ≤
qn(n1)PE(Xn1), or, equivalently,PE(Xn1){1 − qn(n1)} ≤ PE∆(Xn1) ≤ PE(Xn1){1 + qn(n1)}. So,
if n̂1 andñ1 optimizePE(Xn1) andPE∆(Xn1) respectively, then

{
1− qn(ñ1)

}
PE(Xñ1

) ≤ PE∆(Xñ1
) ≤ PE∆(Xn̂1

) ≤
{
1 + qn(n̂1)

}
PE(Xn̂1

)

or

1 ≤
PE(Xñ1

)

PE(Xn̂1
)
≤

1 + qn(n̂1)

1− qn(ñ1)
. (10)

Thus the minimizers of the exact and approximate predictionerrors have asymptotically the same ef-
ficiency with respect to the prediction error. The approximate prediction error in its turn is estimated
unbiasedly bỹ∆p(Xn1) = ∆p(Xn1) + 2m(n1), with

m(n1) =
n0

n

{
σ2 − E(ε2 | Sn,n0)

}
= P (Sn,n0)

{
σ2 − E(ε2 | Sn,n0)

}
(11)

=

∫ ∞

−∞
fβn(v)

∫ ∞

−∞
(σ2 − e2)fε(e)P (Sn,n0 | Yn = v + e) de dv.

The mirror (11) and the corresponding double correction areillustrated in Figure 1(a), which depicts
the apparent information for a given model sizen1, found by minimizing Mallows’Cp, along with the
minimum prediction error for that model size. The contradiction between better-than-average appearance
and worse-than-average reality is seen in the two curves being reflections of each other with respect to
the oracular curve. TheCp curve has a minimum with small curvature, creating the illusion of an easy
problem. The model selected using this curve is however far too large.

2.4 The mirror effect in terms of thresholds

In this section we seek approximations to the mirror effect that satisfy three conditions. Firstly, the
error of approximation is small compared to the prediction error, in the sense that, asymptotically, it
does not disturb optimization of the estimated prediction error curve. Secondly, the expression is easy to
implement. Thirdly, for normal errors, it reduces to an expression that can be derived as a hard threshold
correction of Stein’s unbiased risk estimator. This correction is further discussed in Section 3.

We define the expected mirror contribution for a given component valuev as

t(n1, v) =

∫ ∞

−∞
(σ2 − e2)fε(e)P (Sn,n0 | Y = v + e) de. (12)
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The expected mirror in the model is then

m(n1) =

∫ ∞

−∞
fβn(v)t(n1, v) dv.

In a similar way, we can write the contribution of one component to the expected prediction error, given
its valuev, as

r(n1, v) = v2 P (Sn,n0 | βn = v) + E(ε2 | S′
n,n0

)P (S′
n,n0

| βn = v). (13)

The following lemma, proved in Appendix A, states that the expected mirror can be approximated
by assuming for each individual component that its error-free value is zero. The approximation error,
relative to the prediction error, tends to zero.

Lemma 1 Suppose that we observen independent samples fromYn = βn + ε, with βn and ε inde-
pendent. Further assume that the distributions ofε andβn are symmetric around the origin, and that
ε has a unimodal distribution and a quantile function satisfying Qε(1) = ∞. We impose the following
conditions:

1. the densityfε(e) has a bounded second derivative;

2. the densityfε(e) shows exponential decay as|e| → ∞;

3. the large values ofβn dominate the errors. More precisely, the decay offε(e) is essentially faster
than that offYn(e) in the sense that

lim
e→±∞

log fε(e)

log fYn(e)
= ∞;

4. The large values ofβn are sparse, in the sense that there exists a positivep∗ so that for any positive
δ one can find an integern∗ for whichP (|βn| < δ) ≥ p∗, for any integern ≥ n∗.

Further assume thatn1/n → 0 asn → ∞. Then the functiont(n1, v) defined in (12) satisfies

lim
n→∞

t(n1, βn)− t(n1, 0)

r(n1, βn)
= 0, (14)

for any sequenceβn. Hence

lim
n→∞

m(n1)− t(n1, 0)

r(n1, βn)
= 0.

We can thus uset(n1, 0) use as an approximate mirror.

In a final step we further approximate the mirror by replacingtheP (Sn,n0 | Yn = e) by a binary
functionI(|u| < λn1), with an appropriate thresholdλn1.

Lemma 2 Defining the thresholdλn1 = Q|Yn|(n0n
−1), whereQ|Yn| is the quantile function of|Yn|, and

τ(λn1) =

∫ λn1

−λn1

(σ2 − e2)fε(e)de, (15)

then, ifn0/n → 1 for n → ∞, and if the error-free data are sparse and dominant in the sense of Lemma
1, limn→∞ {m(n1)− τ(λn1)} /r(n1, βn) = 0.
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The proof is in Appendix A.
An argument similar to that in (10) ensures that replacingn0n

−1
{
σ2 − E(ε2 | Sn,n0)

}
with its ap-

proximation does not disturb the minimization ofE{∆p(Xn1)}. Referring to the discussion of (11), the
mirror correction can thus safely be approximated asPE(Xn1)− E{∆p(Xn1)} ∼ 2τ(λn1).

This expression does not depend on a model forβn, except through the thresholdλn1 . This threshold
can, however, be easily replaced by the empirical valueλ̂n1 = |Y |(n−n1:n), where|Y |(n−n1:n) stands for
the(n− n1)th order statistic in ann-vectorY .

If ε ∼ N(0, σ2), then the correction reduces to

PE(Xn1)− E{∆p(Xn1)} ∼ 4σ2 λn1φσ(λn1), n → ∞, (16)

whereφσ(e) is the density of zero mean normal random variable with varianceσ2.

2.5 Illustration of the mirror effect

The simulation in Figure 1 illustrates the discussions of the preceding sections. It was set up as fol-
lows. A vector ofn = 2000 sparse dataβ was generated according to the zero inflated Laplace model
fβ|β 6=0(v) = (a/2) exp(−a|β|), where, in this simulation,a = 1/5 andP (β 6= 0) = 1/20. The obser-
vations areY = β + ε, whereε is a vector of independent, standard normal errors. For thismodel, the
figure depicts the curve of∆p(Xn1) as a function ofn1. As defined in Section 2.1,Xn1 is then1 term
selection that minimizes∆p(X). For the same selection, Figure 1(a) also plotsPE(Xn1). The same
plot contains the mirror curvePE(xo

n1
), defined in Definition 1. Finally, Figure 1(b) contains the curve

of ∆p(Xn1) when using soft-threshold shrinkage within the modelsXn1 .

2.6 A comparative simulation study in the signal-plus-noise model

The simulation study, summarized in Table 1, compares the efficiency of several methods for sparse
variable selection with respect to the oracular predictionerror, that is,Eff = PE(oracle)/PE. The
oracle would select all variables with error-free value above the noise standard deviationσ. The data
were generated as in Johnstone and Silverman (2004), exceptfor the sample size, which was taken
to ben = 10, 000 instead ofn = 1000. One hundred replications of an-vector of observationsY
were generated, whereY = β + ε. The error vectorε is independent, homoscedastic, and normally
distributed, whereas the error-free dataβ are set to zero, except for a proportionp of the variables,
whose values areµ0. The sparsity parameterp equalsp = 0.005, while µ0 = 7. The table confirms
the relatively low efficiencies, reported in Johnstone and Silverman (2004), of soft threshold methods
using thresholds that estimate the minimum prediction error. The poor performance is entirely due to
the oversmoothing of soft-thresholding. Indeed, hard thresholding focussing on the false discovery rate
(Benjamini and Hochberg, 1995) or using empirical Bayes posterior median thresholds (Johnstone and
Silverman, 2004) is outperformed by hard thresholding minimizing generalized cross validation, which
estimates the prediction error. Indeed, its observed median efficiency is higher, as is its95% quantile. The
lower 5% efficiencies are, however, slightly less favorable for generalized cross validation than for the
false discovery rate and empirical Bayes methods. Closer inspection of the simulation study, not shown
in this table, reveals that this is due to imperfect estimation of the prediction error using generalized cross
validation. These imperfections are a drawback for any method that estimates the the prediction error in
a direct, data-adaptive way, rather than relying on minimaxresults (Donoho and Johnstone, 1994, 1999).
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Figure 1: Mallows’sCp in sparse variable selection with and without shrinkage. (a) Mirror effect, defined
in (11). The dashed line depicts Mallows’sCp for the selectionsXn1 that minimize∆p(X ), given model
sizesn1. The dash-dot line represents the prediction errorsPE(Xn1) for the same selections. The curves
of Mallows’sCp and the prediction errors are reflections of each other with respect to the oracular curve
PE(X o

n1
), depicted as a solid line. That mirror curve is the prediction error for a selection based on the

error-free values. (b) Prediction errors for hard- and soft-thresholding, black and grey lines respectively.
The hard threshold curve is the same as the dash-dot line in (a).

The table also illustrates that generalized cross validation is a more robust estimator of the prediction
error than is Stein’s unbiased risk estimator.

3 Undoing soft threshold bias

3.1 Soft-thresholding and Stein’s unbiased risk estimator

This section shows that, for the case of normal errors, the correction term for Mallows’Cp in (16) can be
obtained from an analysis that imports the difference between soft- and hard-threshold prediction errors
into the expression of Stein’s unbiased risk estimator.

Given a threshold valueλ, the difference in prediction errors between soft- and hard-thresholding
equals

PE(β̂H
λ )− PE(β̂S

λ) = −
λ2

n

n∑

i=1

P (|Yi| > λ) +
2λ

n

n∑

i=1

E(εiX
+
i )−

2λ

n

n∑

i=1

E(εiX
−
i )

= −
λ2

n

n∑

i=1

P (Xi = 1) +
2λ

n

n∑

i=1

E {sign(βi + ε) εXi} , (17)

whereX+ = I(Y > λ) andX− = I(Y < −λ). The first term of (17) can be estimated unbiasedly
by −λ2n−1

∑n
i=1Xi = −λ2N1n

−1, whereN1 is the total number of observed magnitudes above the
threshold.
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5% 50% 95%
SURE-soft 9.1 12.8 17.8
GCV-soft 8.5 12.9 17.9

EBayesthresh 36.4 58.9 88.9
FDR-thresh 35.0 58.8 100.0
SURE-hard 27.4 48.1 92.6
GCV-hard 34.4 73.4 100.0

Table 1: Quantiles of observed efficiencies in percentages for several threshold methods: SURE stands
for Stein’s unbiased risk estimation, GCV for generalized cross validation, FDR for false discovery rate;
soft and hard stand for soft- and hard-thresholding.

The second term (17) cannot be estimated in an unbiased way. It can, however, be approximated
by a constant, dependent on the threshold value, but not onβ. As follows from Proposition 1, the
approximation error tends to zero more rapidly than the prediction error itself, so it does not disturb the
maximization of the prediction error or of any estimate of it.

Proposition 1 Let ε be symmetrically distributed with an exponentially decaying density functionfε(e)
for whichlime→±∞ f ′

ε(e) exists, and let

κ(λ,β) =
1

n

n∑

i=1

E {sign(βi + ε)I(|βi + ε| > λ)ε} . (18)

Then there exists a functionc(λ) such that for any parameter vectorβ

λ
|κ(λ,β) − κ(λ, 0)|

PE(β̂H
λ )

≤ c(λ), with lim
λ→∞

c(λ) = 0. (19)

The proof is established in the Supplementary Material; seealso Section 4.3.
An argument similar to that in (10) allows us to replaceκ(λ,β) by κ(λ,0) = E {|ε| I(|ε| > λ)}

while keeping the quality of the minimization ofPE(β̂H
λ ).

In the case of soft thresholding, the well known (Stein, 1981; Donoho and Johnstone, 1995) expres-
sion for unbiased risk estimation for data with normally distributed errors isSURE(β̂λ) = n−1SSE(β̂λ)+
2N1n

−1σ2 − σ2. A quasi unbiased estimator for the hard thresholding prediction error can be obtained
by adding the estimator−λ2N1n

−1 + 2κ(λ, 0) for the terms of (17) to Stein’s unbiased risk estimator.
It is straightforward to verify thatSSE(β̂λST

) = SSE(β̂λHT
) + λ2N1n

−1. Moreover, for normal errors
ε ∼ N(0, σ2), we have thatE(εX+; 0) = σ2λφσ(λ) = σ2(λ/σ)φ1(λ/σ), leading to

SUREH(β̂λHT
) = SSE(β̂λHT

) +
2N1

n
σ2 − σ2 + 4σ2λφσ(λ). (20)

This is the same expression as (16), which followed from a different strategy and different approxima-
tions. The strategy in Sections 2.3 and 2.4 was first to quantify the mirror effect and then to approximate

11



it using a threshold expression, leading to (16). The current section has started from the observation that
soft-threshold shrinkage perfectly compensates for the mirror effect in the case of normal errors. From
there, approximating the difference between soft- and hard-thresholding has led to (20).

The expression can be further expanded towards generalizedcross validation for hard thresholding.

3.2 Akaike’s information criterion

For a given selectionx, Akaike’s information criterion can be defined asAIC(x) = 2 logL(x) −
2n1n

−1, whereL(x) is the maximum likelihood value within selectionx. This criterion is an asymp-
totically unbiased estimator for the Kullback–Leibler distance between a given model and the true ob-
servational distribution. When the criterion is used for optimization, the mirror correction in the case of
signal-plus-noise observations can be found with similar arguments as for Mallows’ criterion to be

AICm(n1) = −
n0

n
− log(2πσ̂2)− 2

n1

n

σ2

σ2
λ

− 2
ñ0

n

(
σ2

σ2
λ

− 1

)
, (21)

where, forλ = λn1 as defined in Lemma 2,σ2
λ = E(ε2| − λn1 < Yn < λn1) andñ0 = nP (|ε| < λn1).

The variance estimator̂σ2 = n−1
0

∑n
i=1(Yi − β̂i)

2 is based on squared residuals within the model under
consideration, while the varianceσ2 itself, in practice, is estimated in a way independent from the model,
or at least in a robust way, such as using the median absolute deviation. An alternative variance estimator,
based on generalized cross validation, is reported to be more robust, leading to better estimates of the
Kullback–Leibler distance.

For normal observations, the criterion reduces to

AICm(n1) = −
n0

n
− log(2πσ̂2)− 2

ñ0

n

{
n1/n+ 2λn1φσ(λn1)

ñ0/n− 2λn1φσ(λn1)

}
. (22)

The mirror effect in Akaike’s criterion is discussed in the Supplementary Material.

4 The mirror effect in sparse regression models

4.1 The mirror effect on covariance matrices

For the development of (7) for the mirror estimator in the general regression model (1), we defineη =
KTε with covariance matrixΣη = KTKσ2. ThenE

(
‖PXε‖22 | X

)
= σ2E(ηT

XΣ−1
η,XXηX | X),

whereΣη,XX is the submatrix ofΣη with the rows and columns corresponding to the 1’s inX. In a
similar way, submatrices are defined for the 1’s in the complementary binary vectorX ′ = 1−X.

Writing

E(ηT
XΣ−1

η,XXηX | X=x)= tr(Σ−1
η,xxΣη|X=x,xx) + E(ηT

x | X=x)Σ−1
η,xxE(ηx | X=x),

the second term is zero if we again consider a symmetric, random model forβ, so that the selection event
{X = x} preserves the symmetry in the error distribution. The remainder of this section concentrates
on the first term, which is the trace of a product of two matrices. The first,Σ−1

η,xx, is an inverse submatrix
of the unconditional covariance matrix. The second matrix has the same rows and columns, indicated by
x, but this time taken from the matrix of conditional covariances for the selection event.

12



The distribution of a fully unconditional quadratic formηT
xΣ

−1
η,xxηx could be found or simulated. In

case of normal observations, for instance, it would have a generalized central chi squared distribution.
The selection event{X = x}, however, carries information about the variables inηx, which is not trivial
to formally express.

The selection is decomposed as the intersection of two events {X = x} = X1 ∩ X0, whereX1 is
the event that the variables with labelxi = 1 satisfy the selection criterion, andX0 is the event that the
variables with labelxi = 0 do not meet the criterion. This decomposition allows to write thatΣη|X,xx =
cov(ηx | X) = cov{(ηx | X0) | X1}. As the eventX0 operates onηx′ , the inner conditioning is further
decomposed intocov(ηx | X0) = cov{E(ηx | ηx′) | X0}+ E{cov(ηx | ηx′) | X0}.

Summarizing the results so far, this section has decomposedthe mirror effect into a sequence of
conditionings. Under the assumption of symmetry in the vector β, the decomposition has led to

m̂(n1) =
1

n
σ2tr

(
Σ−1
η,xx[cov{E(ηx | ηx′ ,X0,X1)}+ E{cov(ηx | ηx′ ,X0,X1)}]

)
−

n1

n
σ2. (23)

The conditionings on the eventsX0 andX1 must be made concrete successively and taking into account
the precise selection procedure. First, the conditional random vectorηx′ | X0 is considered. From this
follow the expected values and covariances for the vectorscov(ηx | ηx′ ,X0) andE(ηx | ηx′ ,X0),
which are functions of theηx′ | X0. Then the information provided byX1 is incorporated. Section
4.2 develops the expressions for the case of selection by least angle regression and normally distributed
errors.

Normality leads toΣη|X0,xx = Ση,xx′Σ−1
η,x′x′cov(ηx′ | X0)Σ

−1
η,x′x′ΣT

η,xx′+Ση,x|x′ , with Ση,x|x′ =

Ση,xx−Ση,xx′Σ−1
η,x′x′ΣT

η,xx′ the Schur complement ofΣη,xx in Ση. In the case wherem < n, Σ−1
η,x′x′

denotes the Moore–Penrose generalized inverse ofΣη,x′x′ .

4.2 The mirror effect in least angle regression

Expression (23) can be evaluated by Monte Carlo simulation.Using a diagonalization made concrete
in Assumption 4, this section presents fast, approximate computations that work well in practice. The
diagonalized computation of the conditional expectationsin (23) is facilitated if the selection eventsX0

andX1 are rewritten in terms ofη, for which Assumption 3 is needed.
The idea is written out below for the case of least angle regression with normal errors. The least angle

regression routine (Efron et al., 2004) uses Mallows’Cp as a stopping criterion. The stopping rule implies
an optimization in a high-dimensional model, inducing the optimization bias or mirror effect described in
this paper. The lasso shrinkage, incorporated in the least angle regression routine or in alternatives such
as iterative soft thresholding (Daubechies et al., 2004), compensates for the optimization bias. When
the model is used for estimation without shrinkage, the mirror effect must be taken into account in the
stopping criterion during variable selection.

Least angle regression selects a variable according to the absolute values of the inner productsĉ =
KT (Y −K β̂LARS

x ) = KTε +KT (Kβ −Kβ̂LARS
x ). The selection threshold is thenλn1 = |ĉ|(n0:n),

this is then0th order statistic in vectorc of sizen, wheren0 = n − n1. The following assumption
expresses that the least angle regression routine performswell in identifying the true model.

Assumption 3 For n → ∞, least angle regression finds a selectionx∗ of sizen∗
1 that satisfies two

conditions. Firstly, it is sparse, so thatn∗
1 = o(n). Secondly, it contains the true model except for
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possible small components, so that‖KTKE(β̂LARS
x∗ )−KTKβ‖22 = O(n∗

1). In other words, the expected
estimator within the selection satisfies the normal equation, up to a bias which is dominated by the
estimation variance.

In any subsequent selection containingx∗, the differencêc−η = KTK(β̂−β) will primarily depend on
the errors, not on the estimation bias. As the variable selection is based on̂c, theith variable is selected
if |ηi| is large and theith component ofKTK(β̂ − β) is low. The latter term is low if theith column
of K belongs to a multicollinear set of selected columns. Conditioning the selection of a variable on a
large value of|ηi|, we thus have thatq1(i) = P (Xi = 1 | |ηi| ≥ λn1) depends on the relative positions
of the columns ofK on then-dimensional unit disk. Assuming a uniform distribution ofthe columns
over the disk, it holds thatq1(i) ≈ n/m. Similarly, definingq0(i) = P (Xi = 0 | |ηi| < λn1), we can
write q0(i) ≈ 1− q∗1, whereq∗1 is the proportion of nonzeros inβ. In sparse data,1− q∗1 ≈ 1.

The mirror effect is now computed in several steps, following the expressions of Section 4.1. Let
ζx′ = V T

x′ηx′ be the principal components of the marginal vectorηx′ , that is,cov(ηx′) = Vx′Λx′V T
x′ ,

with Λx′ a diagonal matrix containing the eigenvalues of the covariance matrix. A similar definition is
given forζx. Also definedx′ = V T

x′cx′ . Thencov(ηx′ | X0) = Vx′cov(ζx′ | X0)V
T
x′ .

Assumption 4 We assume that conditioning on theℓ∞ ball X0 =
⋂

i|xi=0{ĉ
2
i ≤ λ2

n1
} in terms ofcx′ is

well approximated by conditioning on the rotated ballXd
0 =

⋂
i|xd

i=0{d̂
2
i ≤ λ2

n1
}. In this definition, the

labelXd
i = 0 means that̂d2i < λ2

n1
. So, we assume thatcov(ζx′ | X0) ≈ cov(ζx′ | Xd

0).

As the components ofζx′ are independent, the impact of the eventXd
0 can be computed for each compo-

nent separately, using the result for orthogonal design in (16). Writingσ2
i = var(ζx′,i) = σ2Λx′,ii, the

statement of (16) reads asE(ζ2x′,i | ζ
2
x′,i > λ2

n1
)P (ζ2x′,i > λ2

n1
) = σ2

i P (ζ2x′,i > λ2
n1
)+2σ2

i λn1φσi(λn1).
As this expression conditions on the magnitude ofζx′,i, the rules of total probability and Bayes are used
to link it to {Xd

i = 0},

var(ζx′,i | X
d
i = 0) =

{
E
(
ζ2x′,i | X

d
i = 0, |ζi| < λn1

)
P
(
Xd

i = 0 | |ζi| < λn1

)
P (|ζi| < λn1)

+ E
(
ζ2x′,i | X

d
i = 0, |ζi| ≥ λn1

)
P
(
Xd

i = 0 | |ζi| ≥ λn1

)
P (|ζi| ≥ λn1)

}

/P (Xd
i = 0).

After simplification and introducingqd1 = P
(
Xd

i = 1 | |ζi| ≥ λn1

)
≈ n/m, andqd0 = P

(
Xd

i = 0 | |ζi| < λn1

)
≈

1, we get

var(ζx′,i | X
d
0) ≈ σ2

i

[
1−

qd12λn1φσi(λn1)

1− qd12{1 − Φσi(λn1)}

]
(24)

Expression (24) finds the elements of the diagonal covariance matrixcov(ζx′ | Xd
0), which approximates

cov(ζx′ | X0). Multiplication by Vx′ leads to the covariance matrixcov(ηx′ | X0), which is used in
the computation ofcov(ηx | X0); see Section 4.1. This matrix is then diagonalized ascov(ηx | X0) =
VxΛxV

T
x , andζx = V T

x ηx. The same type of approximation replaces the eventX1 by a rotated version,
leading tocov(ηx | X0,X1).

In simulations, the resulting approximate calculation ofm̂(n1) performs well, meaning that it allows
accurate estimation of the prediction error of a least square estimator without shrinkage in a bestn1
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False Positive PercentageFalse Negative PercentageFalse Discovery Percentage
5% 50% 95% 5% 50% 95% 5% 50% 95%

Cp 9.5 16.1 21.9 0 0 0 68.0 75.7 81.2
Cp + 2m̂ 0.5 1.8 3.5 0 0 0 10.5 25.0 37.5

Table 2: Quantiles for operating characteristics of least angle regression with and without mirror correc-
tion.

term model. Since the approximation assumes that the least angle regression routine reveals the essential
terms in the model, problems may occur in cases where this is difficult, in particular, when the number
of nonzeros inβ is large compared to the number of observationsn.

4.3 Comparative simulation study

This section investigates the effect on the variable selection of a least angle regression scheme of using
the new stopping criterionCp(Xn1)+2m̂(n1) instead ofCp(Xn1). Given the variety of design matrices
K and error models, this comparison cannot cover all possiblecases. The simulation study generates
200 instances of the model in (1), with a new design matrixK each time, whose elements are all inde-
pendently chosen from a uniform distribution on[0, 1]. The number of observations isn = 300, while
the number of parameters ism = 600. Each parameterβi is generated independently from a distribution
on {−1, 0, 1} with probabilitiesP (−1) = P (1) = p/2 andP (0) = 1 − p. The sparsity parameter is
taken to bep = 0.05. The errors are independently, identically distributedN(0, σ2) random variables,
so that the signal-to-noise ratio, defined asSNR = 10 log(‖Kβ‖22/nσ

2), equals10.
Table 2 summarizes the empirical values of three operating characteristics. The first is the false

positive percentage in each simulation run, defined as 100 times the number of false positives divided
by the number of zeros in the parameter vectorβ. The second is the false negative percentage, defined
as 100 times the number of missed nonzeros divided by the number of nonzeros in the parameter vector.
The third is the false discovery percentage, defined as 100 times the number of false positives divided by
the number of discoveries. For all three characteristics, the table displays three empirical quantiles.

Both the originalCp criterion and the mirror corrected version find all true nonzeros inβ, there are no
false negatives. The originalCp criterion, however, selects much larger models than the mirror corrected
criterion, thus containing far more zeros inβ. The median number of zeros selected by theCp criterion
amounts to16.1% of all the zeros in the full model and to a majority of75.7% of the selected variables.
Measured by the median values of the simulation study, the corrected criterion selects only1.8% of the
zeros, leading to a minority of25% of false positives among the selected variables. Larger numbers of
observations and parameters as well as other design matrices may lead to lower false discovery rates.

Supplementary material

Supplementary Material includes a proof of Proposition 1, the study of the mirror effect for Akaike’s
information criterion, a few interpretations on the proofsin Appendix A, a discussion on mirror penalties
versus penalties proposed in Birgé and Massart (2007), a discussion on Assumption 2, and a note on
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accompanying software.
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Appendices

A Proofs of Lemmas 1 and 2

A.1 Proof of Lemma 1

The termP (An,n0 | β = v) appearing in the expression (13) for the denominator of (14)can be decom-
posed into

P (An,n0 | βn = v) =

∫ ∞

−∞
P (An,n0 | Yn = y) fYn|βn

(y | v)dy.

Given an observationYn = y, the eventAn,n0 occurs if and only if then0th order statistic of the
remainingn− 1 observations is above|Yn| = |y|, soP (An,n0 | Yn = y) = P (|Yn|(n0:n−1) > |y|). This
is a non-increasing function of|y|. Hence

P (An,n0 | βn = v) ≥

∫

|y|<|v|
P (An,n0 | Yn = v) fYn|βn

(y | v)dy

= P (|Yn| < |v| | βn = v)P (An,n0 | Yn = v).

The second factor can we rewritten asP (An,n0 | Yn = v) = P{U(n0:n−1) > F|Yn|(|v|)}, where
U(n0:n−1) is then0th order statistic ofn−1 independent uniform variables on[0, 1]. If QX(p) denotes the
quantile function ofX, and ifvγ,n = Q|Yn|{QU(n0:n−1)

(1−γ)} for a positive constantγ, thenP (An,n0 |
Yn = vγ,n) = γ, andP (An,n0 | βn = vγ,n) ≥ P (|Yn| < |vγ,n| | βn = vγ,n) γ. Sincen0/n → 1, we
can apply Lemma 3, stated below, to arrive atQU(n0:n−1)

(1− γ) → 1 and thusP (An,n0 | βn = vγ,n) is
bounded byγ/2 in the limit. Moreover, sinceP (An,n0 |βn = v) must also be a non-increasing function
of |v|, the same lower bound holds for anyvn with magnitude belowvγ,n. For all these values, the ratio
{t(n1, vn)− t(n1, 0)}/r(n1, vn) thus tends to zero if{t(n1, vn)− t(n1, 0)}/v

2
n tends to zero.

Among the values ofvn with magnitude belowvγ,n, we first consider the case thatvn is arbitrarily
close to 0. Then, for fixedn, we have

Ln = lim
v→0

t(n1, v)

v2
=

1

2

∂2t

∂v2
(n1, 0) =

∫ ∞

−∞
(σ2−e2)fε(e)a

′′
n(e) de =

∫ ∞

−∞

{
(σ2 − e2)fε(e)

}′
a′n(e) de,

wherean(x) = P (An,n0 | Yn = x). As before, we interpret the eventAn,n0 given the observationYn =
x asan(x) = 1− FU(n0:n−1)

{
F|Yn|(|x|)

}
The order statisticU(n0:n−1) of independent, uniform random

variables has a Beta distribution with meanE(U(n0:n−1)) = n0/n and variancevar(U(n0:n−1)) = n0(n−
n0)/n

2(n+ 1).
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Denotingg(e) =
{
(σ2 − e2)fε(e)

}′
, we can write

Ln =

∫ ∞

0
{g(−e)−g(e)}dFU(n0 :n−1)

{
F|Yn|(e)

}
= E

[
g{−Q|Yn|(U(n0:n−1))} − g{Q|Yn|(U(n0:n−1))}

]

We approximateE
[
g{Q|Yn|(U(n0:n−1))}

]
byg{Q|Yn|(EU(n0:n−1))} = g{Q|Yn|(n0/n)} → 0 asn0/n →

1 whenn → ∞. The error of this approximation satisfies

(
E
[
g{Q|Yn|(U(n0:n−1))}

]
− g{Q|Yn|(n0/n)}

)2
≤ max

s∈[0,1]

[
dg{Q|Yn|(s)}

ds

]2
E
(
U(n0:n−1) −

n0

n

)2

= max
u∈R [{(σ2 − e2)fε(e)

}′′

f|Yn|(e)

]2
var(U(n0:n−1)).

The factorvar(U(n0:n−1)) = O(n1/n
2) whenn → ∞. The factor

{
(σ2 − e2)fε(e)

}′′
/f|Yn|(e) is

bounded for finiteu becausef ′′
ε (e) exists and is finite. It remains bounded forn → ∞ thanks to the

sparsity condition in the statement of Lemma 1. The factor tends to zero for infiniteu because of the
error-free domination condition in Lemma 1, namelylog fε(e)/ log f|Yn|(e) → ∞. This proves Lemma
1 for vn arbitrarily close to zero.

For all the other cases,r(n1, vn) does not converge to zero, whilet(n1, 0) →
∫∞
−∞(σ2−e2)fε(e) de =

0. So it suffices to prove thatt(n1, vn)/r(n1, vn) → 0. We pick an arbitrarily smallδ and we set

λδ,n = Q|Yn|

{
QU(n0:n−1)

(1− δ)
}
. Then,P (An,n0 | Yn = y) > δ if and only if |y| < λδ,n, hence, for

anyv,

t(n1, v) =

∫ λδ,n−v

−λδ,n−v
(σ2 − e2)fε(e)P (An,n0 | Y = v + e) de +O(δσ2).

If |vn| < vγ,n, but unbounded by a constant value, then1/r(n1, vn) ∼ 1/v2n → 0, while t(n1, vn) is
bounded byσ2. If |vn| < vγ,n and bounded by a constant, then

lim
n→∞

∫ λδ,n−vn

−λδ,n−vn

(σ2 − e2)fε(e)P (An,n0 | Y = vn + e) de = 0.

This follows from Lemma 4, stated below, and from the fact that λδ,n → ∞ for n → ∞.
Finally, if |vn| cannot be bounded byvγ,n for any positiveγ, then forn sufficiently large,

∫ λδ,n−vn

−λδ,n−vn

(σ2 − e2)fε(e)P (An,n0 | Y = vn + e) de < δ,

asλδ,n − vn ≤ −vγ,n → −∞, where we tookγ < δ. 2

The remainder of this section proves the auxiliary lemmas used above.

Lemma 3 LetU andV be independent and symmetrically distributed around zero and letfU(u) also
be unimodal. DefineW = V + U . Then, for any valueα ∈ [0, 1], Q|Y |(α) ≥ Q|U |(α).

Proof. It is straightforward to verify that for any valueα ∈ [0, 1], QX(α) ≥ QY (α) if and only ifFX(x) ≤
FY (x) for any valuex ∈ R. Second,F|Y |(x) = FY (x) − FY (−x). We now prove that for positivex it
holds thatFY (x) ≤ FU (x). Similar arguments hold for negativex.
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As the distribution ofU is symmetric and unimodal, we have for anyx, v > 0 that fU (x + v) ≤
fU(x− v), soFU (x+ v)− FU (x) ≤ FU (x)− FU (x− v) or FU (x+ v) + FU (x− v) ≤ 2FU (x).

Then, using the symmetry ofV , we can write

FY (x) =

∫ ∞

−∞
FU (x− v)fV (v)dv = E

{
FU (x− V )

}
=

1

2
E
{
FU (x− V ) + FU (x+ V )

}
≤ FU (x).

2

Corollary 1 LetWn = Vn+U , whereVn andU are independent and have symmetric distributions. Also
suppose thatU has a unimodal distribution onR. Then ifαn → 1 for n → ∞, we haveQ|Wn|(αn) →
∞, whatever the distributions ofVn.

Indeed,Q|Wn|(αn) ≥ Q|U |(αn) → ∞.

Lemma 4 Suppose that0 ≤ pn(x) ≤ 1 is monotone non-decreasing for negativex, and monotone non-
increasing for positivex andlimn→∞ pn(x) = 1 for any value ofx. Also assume thatA =

∫∞
−∞ |f(u)|du

exists and is finite, and defineIn =
∫ λn−c
−λn−c f(u)pn(u)du for constantc. Then, forlimn→∞ λn = ∞,

limn→∞ In = I =
∫∞
−∞ f(u)du.

Proof. Consider an arbitraryε and find a valueℓ∗ such thatλℓ for ℓ ≥ ℓ∗ is sufficiently large in the sense
that

∫∞
λℓ−c |f(u)|du+

∫ −λℓ−c
−∞ |f(u)|du < ε. Then find a valuem∗ so that form > m∗ : pm(λℓ∗) > 1−ε,

and definen∗ = max(ℓ∗,m∗), then forn > n∗,

|I − In| =

∣∣∣∣
∫ ∞

λn−c
f(u)du+

∫ −λn−c

−∞
f(u)du+

∫ λn−c

−λn−c
f(u){1− pn(u)}du

∣∣∣∣

≤

∫ ∞

λℓ−c
|f(u)|du+

∫ −λℓ−c

−∞
|f(u)|du+

∫ λℓ−c

−λℓ−c
|f(u)|{1 − pn(λℓ∗)} < ε+Aε.

2

A.2 Proof of Lemma 2

Until now, we hadm(n1) ∼ t(n1, 0) =
∫∞
−∞(σ2 − e2)fε(e)P (An,n0 | Yn = e) de.

As in the proof of Lemma 1, we use thatP (An,n0 | Yn = e) = P (|Yn|(n0:n−1) > |e|) = 1−FXn(|e|),
whereXn is then0th order statistic inn independent observations from|Yn|. Next we defineg1(e) =
(σ2−e2)fε(e) and we recycle the notationg(e) = g1(e)+g1(−e) for different purpose than in the proof
of Lemma 1. Finally we introduceG(e) =

∫ u
0 g(t)dt. It holds thatG(0) = 0 = G(∞).

The value oft(n1, 0) can then be expressed as

t(n1, 0) =

∫ ∞

−∞
g1(e) {1− FXn(|e|)} de =

∫ ∞

0
g(e) {1− FXn(e)} de =

∫ ∞

0
G(e)fXn(e) de

= E {G(Xn)} = E
[
G{Q|Yn|(U(n0:n−1))}

]
.
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This proof entails approximating the expression above byG[Q|Yn|{E(U(n0:n−1))}] =
∫ λn

−λn
(σ2−e2)fε(e) =

τ(λn), whereλn = Q|Yn|(EU(n0:n−1)). The approximation error satisfies

(
E
[
G{Q|Yn|(U(n0:n−1))}

]
−G{Q|Yn|(n0/n)}

)2
≤ max

s∈[0,1]

[
dG{Q|Yn|(s)}

ds

]2
E
(
U(n0:n−1) −

n0

n

)2

= max
u∈R [(σ2 − e2)fε(e)

f|Yn|(e)

]2
var(U(n0:n−1)).

Similar arguments as in the proof of Lemma 1 can be used here. The factorvar(U(n0:n−1)) = O(n1/n
2)

whenn → ∞. The first factor is bounded because of sparsity and dominance assumed in the statement
of Lemma 2. Ultimately we find that|t(n1, 0) − τ(λn)| = O(n

1/2
1 /n), which is slightly faster than

r(n1, vn). Indeed, from Expression (8), and taking into account thatE(ε2 | An,n0) ≤ σ2, we easily find
thatE{PE(Jn1)} ≥ n1

n σ2. That lower bound still holds when conditioning onVn = v. 2
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A Proof of Proposition 1

First we note that the denominator of (19) can be written as

PE(β̂H
λ ) =

1

n

n∑

i=1

β2
i P (Xi = 0) +

1

n

n∑

i=1

E
{
(Wi − βi)

2 | Xi = 1
}
P (Xi = 1). (25)

We write

κ(λ,β) =
1

n

n∑

i=1

κ(λ, βi),

where

κ(λ, β) = E {sign(β + ε) εX;β} =

∫ −λ−β

−∞
ufε(u)du+

∫ ∞

λ−β
ufε(u)du,

andX = I(|β + ε| ≥ λ), as before.
We also define the risk contribution of one component, as a function of the threshold value and the

component value.

r(λ, β) = β2 P (|β + ε| < λ) +E
{
ε2 | |β + ε| ≥ λ

}
P (|β + ε| ≥ λ),

so thatRH(λ,β) = n−1
∑n

i=1 r(λ, βi).
We now establish upper bounds for the one-component relative approximation error

λ
κ(λ, β)− κ(λ, 0)

r(λ, β)
,

depending on the behavior ofβ asλ increases. The threshold increases as function ofn. The sub-
sequent analysis shows that, whatever the behavior of a particular component with increasingn, the
one-component relative approximation error tends to zero.The dependence fromn in threshold and
component is omitted in the subsequent notations.

We distiguish between|β| − λ bounded from above and the case where|β| − λ is positive and
unbounded.

First we consider the case that−λ−Γ ≤ β ≤ λ+Γ, with Γ an arbitrary real number. We start from
the lower bound, valid in any case,

r(λ, β) ≥ σ2
0 P (|β + ε| > λ) + β2 P (|β + ε| ≤ λ) ≥ β2 P (|β + ε| ≤ λ).



Furthermore we have for0 ≤ β ≤ λ+ Γ that the factor

P (|β + ε| ≤ λ) = P (β + ε ≤ λ)− P (β + ε ≤ −λ) = P (ε ≤ λ− β)− P (ε ≤ −λ− β)

≥ P (ε ≥ Γ)− P (ε ≥ λ),

and the same expression holds for−λ− Γ ≤ β ≤ 0, with a similar proof.
This allows us to concentrate on the function

γ(λ, β) =
λ

β2

{
κ(λ, β) − κ(λ, 0)

}
.

We prove the following lemma:

Lemma 5 If E(ε2+ρ) exists and is finite for some positiveρ and the density functionfε(u) is symmetric
and has a converging derivative foru → ±∞, then the functionγ(λ, β), defined above, satisfies

lim
λ→∞

γ{λ, β(λ)} = 0,

for any functionβ(λ) bounded by±(λ+ Γ), whereΓ is zero or a positive real number.

Proof. Consider an arbitrarily smallδ > 0. We will prove that there exists a valueλ∗ so that ifλ > λ∗ it
holds thatγ{λ, β(λ)} < δ.

We first consider the case thatβ(λ) for someλ is arbitrarily close to zero. It is easy to verify that for
fixedλ, and symmetricfε(u),

lim
β→0

γ(λ, β) =
1

2
λ
∂2κ

∂β2
(λ, 0) = −λ

{
λfε(λ)

}′
.

Then for any positiveλ, there exists a valueβ0, so that for anyβ with |β| < β0,

|γ(λ, β)| < λ
∣∣{λfε(λ)}′

∣∣+ δ/2.

Moreover, asE(ε2) is finite, we havelimu→∞ u2fε(u) = 0. Sincelimu→∞ f ′
ε(u) exists, which for a

density function means it must be zero, we can apply de l’Hôpital’s rule to find

0 = lim
u→∞

ufε(u)

1/u
= lim

u→∞

{ufε(u)}
′

−1/u2
= lim

u→∞
u u{ufε(u)}

′

and thus
lim
u→∞

u{ufε(u)}
′ = 0.

Hence, there exists aλ∗
1 such that forλ > λ∗

1,

λ
∣∣{λfε(λ)}′

∣∣ < δ/2.

We thus have found a valueβ0, independent fromλ, for which

|γ(λ, β)| < δ,
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if |β| < β0 andλ sufficiently large.
Second, we consider the case thatβ(λ) for a given valueλ is small, but not arbitrarily close to zero.

More precisely, suppose thatβ0 < |β| < λ− λ1/(1+ρ), with 0 < ρ, then

|γ(λ, β)| ≤
λ

β2
0

∫ ∞

λ1/(1+ρ)
ufε(u) du,

and

lim
λ→∞

λ

∫ ∞

λ1/(1+ρ)

ufε(u) du = lim
x→∞

∫∞
x ufε(u) du

x−(1+ρ)

= lim
x→∞

xfε(x)

(1 + ρ)x−(2+ρ)

=
1

1 + ρ
lim
x→∞

x3+ρfε(x).

The latter limit must be zero in order forE(ε2+ρ) to be finite. We thus have a valueλ∗
2 above which

|γ(λ, β)| ≤ δ if β0 < |β| < λ− λ1/(1+ρ).
Third, we concentrate on valuesβ close to the threshold valueλ, namelyλ−λ1/(1+ρ) < |β| < λ+Γ.

As
|κ(λ, β)| ≤ E(|U |)/2,

we can write, forλ → ∞,

|γ(λ, β)| ≤
λ

(
λ− λ1/(1+ρ)

)2 E(|U |) → 0,

leading to the conclusion that there exists a valueλ∗
3 above which

∣∣∣γ(λ, β)
∣∣∣ ≤ δ if λ− λ1/(1+ρ) < |β| <

λ. Takingλ∗ = maxi=1,2,3 λ
∗
i concludes the proof of Lemma 5. 2

In order to finish the proof of Proposition 1, we have to consider one more case, that of unbounded
ζ(λ) = |β| − λ.

If ζ(λ) grows at least asλρ with postiveρ, possibly smaller than1, then the exponential decay of
fε(u) ensures thatλ [κ(λ, β) − κ(λ, 0)] → 0, while r(λ, β) converges toσ2.

Otherwise, that is, ifζ(λ)/λ → 0, then the dominating term inλκ(λ, β) is

λκ(λ, β) ∼ λ

∫ ∞

−ζ(λ)
ufε(u)du.

The contribution to the prediction error is bounded from below by

r(λ, β) ≥
{
λ+ ζ(λ)

}2
∫ −ζ(λ)

−2λ−ζ(λ)
fε(u)du.

The ratio of these two converges to zero (as follows from applying de L’Hôpital’s rule).
All together, we conclude that

λ |κ(λ,β) − κ(λ, 0)|

σ2
0

EN1
n + 1

n

∑n
i=1 β

2
i P (Xi = 0)

≤ max
β∈R λ |κ(λ, β) − κ(λ, 0)|

r(λ, β)
→ 0,

for λ → ∞.
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B The Mirror effect for Akaike’s Information Criterion

Akaike’s Information Criterion estimates the Kullback–Leibler distance of a model with respect to true,
unobserved distributions of the observations. LetgY (y) be the joint density ofn independent observa-
tionsY , and letfY (y;θ) be a model for these observations, withp parameters inθ, then the Kullback–
Leibler distance equals

KL{g, f(·,θ)} =
1

n

n∑

i=1

{Eg log gi(Yi)− Eg log fi(Yi;θ)} , (26)

wheregi andfi are the true and model marginal densities. It is obvious thatthe termsEg log gi(Yi) acts
as constants, and so model selection concentrates on the sum

Hx(θ) =
1

n

n∑

i=1

Eg{log fi(Yi;θ)}. (27)

In this notationHx, the subscriptx refers to the model under consideration. As introduced in Section
2,x is a binary vector of lengthn where the ones correspond to the parameters that are estimated in the
model, whereas the zeros are parameters that are not included in this particular model.

At this point, we restrict discussion to independent, homoscedastic, normally distributed data, that
is, the true model can be written asY = β + ε, whereε is a zero mean normal vector with constant
varianceσ2. This true model belongs to the space of models considered inour selection procedure. Let
β̃ andσ̃2 in a modelx be values of the unknown parameters under consideration, then

Hx(β̃, σ̃
2) =

1

n

n∑

i=1

Eg

{
−
(Yi − β̃i)

2

2σ̃2
−

1

2
log(2πσ̃2)

}

= −
1

n

n∑

i=1

{
(βi − β̃i)

2 + σ2

2σ̃2
+

1

2
log(2πσ̃2)

}
.

In practice, the values̃β andσ̃2 follow from an estimation procedure within a selected model. As a
consequence, the outcome is random, sayβ̂ andσ̂2, and hence, so is the value ofHx(β̂, σ̂

2).
Since we cannot evaluateHx(β̃, σ̃

2) because of the unobservedβ andσ2, we substitute the expected
value operatorEg by its empirical counterpart, based on an estimator of the unknown parameters, thus
defining

Q̂x(β̂, σ̂
2) =

1

n

n∑

i=1

{
−
(Yi − β̂i)

2

2σ̂2
−

1

2
log(2πσ̂2)

}
. (28)

Imposing a variance estimator based on the residuals,σ̂2 = n−1
0

∑n
i=1(Yi − β̂i)

2, we arrive at

Q̂x = −
1

2

n0

n
−

1

2
log(2πσ̂2).

In this expression,n0 = n− n1, wheren1 is number of nonzeros in the modelx.
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The difference in expectation betweenHx(β̂, σ̂
2) andQ̂x(β̂, σ̂

2) equals

E(Q̂x −Hx) = −
1

2

n0

n
+

1

2
E

[
σ2

σ̂2

1

n

n∑

i=1

{
(βi − β̂i)

2

σ2
+ 1

}]
. (29)

In the case of component selection in a sparsity model, that is, β̂i = Yi xi, with x the (not yet random)
model under consideration, we have thatσ̂2 = n−1

0

∑
i∈I0

Y 2
i and

∑n
i=1(βi − β̂i)

2 =
∑

i∈I0
β2
i +∑

i∈I1
(Yi−βi)

2, whereI1 is the set of indices corresponding to the ones in vectorx andI0 the comple-
mentary set. AsI1 andI0 are disjoint sets, both factors in the product of (29) have nocommon random
term, so these factors are independent. Moreover, under theassumption thatβi = 0 if i ∈ I0, we have
n0σ̂

2/σ2 ∼ χ2
n0

, soE(σ2/σ̂2) = n0/(n0 − 2). All this leads to

E(Q̂x −Hx) = −
1

2

n0

n
+

1

2

(
n0

n0 − 2

n+ n1

n

)
=

n0(n1 + 1)

n(n0 − 2)
∼

n1 + 1

n
.

Defining Akaike’s Information Criterion as

AIC(x) = 2Q̂x − 2
n1 + 1

n
, (30)

we see thatE{AIC(x)} ≈ 2EHx(β̂, σ̂
2), whereβ̂i = Yi xi andσ̂2 = n−1

0

∑n
i=1(Yi − β̂i)

2.
If X is found by minimization ofE{AIC(x)} for givenn1, thenI0 is no longer a fixed, but a random

set and at the same time, the zero mean components in this set are no longer independently, normally
distributed. The two factors in (29), conditionally independent onX, are now dependent.

In sparsity models, then1 parameters of the selected model are the positions of the nonzero elements
in β̂. The optimal value ofAIC(x) for givenn1 is obtained by choosing then1 observations inY with
largest magnitude. As in Section 2.3,Xn1 stands for the random set of selected components and we let
σ̂2
n1

= n−1
0

∑
i∈X ′

n1
Y 2
i . We further denoteKn1 andQ̂n1 for the values ofHx andQ̂x corresponding to

Xn1. We can write

E(Q̂n1 −Kn1) = −
1

2

n0

n
+

1

2
E


 σ2

σ̂2
n1



1 +

1

n

∑

i∈Xn1

ε2i
σ2

+
1

n

∑

i∈X ′

n1

β2
i

σ2






 .

We have that
1

n

∑

i∈Xn1

ε2i
P
→ σ2 −

1

n

∑

i∈X ′

n1

ε2i .

Again considering an independent, identically distributed random model forβ, as in Section 2.3, we find

1

n

∑

i∈Xn1

ε2i
P
→ σ2 −

n0

n
E(ε2 | An,n0).

For the penalty in Akaike’s information criterion after selection, this becomes

E(Q̂n1 −Kn1) → −
1

2

n0

n
+

1

2

{
σ2 + σ2 − n0

n E(ε2 | An,n0) +
n0
n E(β2

n | An,n0)

E(Y 2
n | An,n0)

}
.
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As in Section 2.3, Assumption 2 and its implication (9), we can omit o(n1/n) terms to arrive at

E(Q̂n1 −Kn1) ∼ −
1

2

n0

n
+

1

2

{
2σ2 − n0

n E(ε2 | An,n0)

E(ε2 | An,n0)

}
=

σ2

σ2
A

−
n0

n
,

whereσ2
A = E(ε2 | An,n0).

If we denoteσ2
λ = E(ε2 | −λn < Yn < λn) and ñ0 = nP (|U | < λn), then forλn defined in

Lemma 2 of the main article, this Lemma states that

n0

n
(σ2 − σ2

A) ∼
ñ0

n
(σ2 − σ2

λ),

where the asymptotic equivalence is relative with respect to the risk; see the Lemma for details. We can
write

E(Q̂n1 −Kn1) ∼
σ2

σ2
A

−
n0

n
=

σ2

σ2
A

n1

n
+

1

σ2
A

n0

n
(σ2 − σ2

A) ∼
σ2

σ2
A

n1

n
+

1

σ2
A

ñ0

n
(σ2 − σ2

λ).

Furthermore, we have

σ2
A ∼ σ2

λ +

(
1−

ñ0

n0

)(
σ2 − σ2

λ

)
= σ2

λ +O

(
n1

n− n1

)
,

so we can replaceσ2
A by σ2

λ, leading to

AICm(n1) = 2Q̂n1 − 2E(Q̂n1 −Kn1) = −
n0

n
− log(2πσ̂2)− 2

n1

n

σ2

σ2
λ

− 2
ñ0

n

(
σ2

σ2
λ

− 1

)
, (31)

which is (21) in the article.
The mirror effect in Akaike’s criterion is illustrated in Figure 2. The setup for the simulation dis-

played in Figure 2 has been the same as that of Figure 1 in the main article.

C Remarks about the proofs in Appendix A

Remark 1 The convergence analyses of both approximating expressions for the mirror rely on upper-
bounds for expressions of the form

max
u∈R {(σ2 − e2)fε(e)

f|Yn|(e)

}2

var(U(n0:n−1)).

We have found that the second factor converges, but just a bitfaster thanEPE(Jn1). In practice,
however, the first factor converges as well. Indeed, insteadof taking the maximum over allu ∈ R, we
can consideru in the neighborhood ofλn = Q|Yn|(n0/n), which tends to infinity. The heavier tail of the
error-free distribution then induces faster convergence.In the case of normal errors and a Laplace prior
for the noise-free data, for instance, additional convergence rate is of the orderO

(
exp[{log(n)}1/2]/n

)
,

which is just a little slower thanO{log(n)/n}.

Remark 2 The analyses of the approximating mirror expressions rely on the exact Beta distribution of
U(n0:n−1), necessary knowledge in the elaboration of its variance. This exact calculation, however, is
based on the assumption that the observations, and so the errors, are mutually independent. Neverthe-
less, it can be conjectured that even for dependent or correlated errors, the approximating expression for
the mirror effect still holds true.
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Figure 2: Akaike’s information criterion for bestn1 term selection with mirror effect. The solid line is
minus the logarithm of the Kullback–Leibler distance for the firstn1 variables of a sequence arranged
by an oracle that placed all observations in descending order of magnitude ofβi. The dashed, increasing
line is Akaike’s information criterion in its classical form applied to then1 largest observations inY .
This curve cannot be used to locate the correct extremum of the Kullback–Leibler curve. Its reflection
with respect to the oracle curve coincides approximately with the dot-dashed line, which is minus the
logarithm of the Kullback–Leibler distance for selection of then1 largest observations inY . This curve
is well estimated by the mirror corrected expressions for Akaike’s information criterion, depicted in grey
colors, stated in Equation (21) of the main article. When thevariance is estimated using generalized
cross validation (solid grey line), the outcome is better, compared to a variance estimation using median
absolute deviation.
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D The mirror penalty and the penalties of Birgé and Massart

The mirror correction can be seen as a modification of the penalty in a variable selection criterion, taking
the sparsity into account.

In the case of Mallows’sCp criterion, the mirror corrected version can be written as

∆̃p(n1) =
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 2

n0

n

{
σ2 − E(ε2|An,n0)

}
,

whereAn,n0 is the event thatYn is among then0 smallest observations in a sample of sizen, and
n1 = n − n0 is the number of non-small observations, i.e., the size of the selected set of variables. In a
sense explained in the paper, the criterion can be approximated by the expression

∆̃p(n1) ≈
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 2σ2

∫ λn1

−λn1

(
1−

u2

σ2

)
fε(u)du,

wherefε(u) is the error density andλn1 = Q|Y |(1 − n1/n), with Q|Y |(α) the quantile function of the
magnitude of the observationY in a Bayesian modelY = β + ε. The approximative criterion reduces,
in the case of normal errors, to

∆̃p(n1) ≈
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 4σ2λn1φσ(λn1),

whereφσ(x) is the normal probability density function with zero mean and varianceσ2.
An important benchmark in this respect is the minimum penalty resulting from the analysis by Birgé

and Massart (2007).
Before comparing the mirror penalty with the minimum penalty, I first list the main differences in

approach and results between their and my paper.

1. The newly proposed viewpoint of the problem as a mirror effect allows to establish a sparsity
correction for selection criteria other than Mallows’sCp, the case of AIC being worked out in the
text. The mirror correction is also possible for error densities other than normal.

2. The result of the new analysis is not a lower bound on the penalty, but a data-dependent penalty.
The data-dependency is realized by a threshold valueλn1 which is a quantile of the observations
Y in a Bayesian model. The Bayesian description has no furtherimpact in the practical imple-
mentation if we estimateλn1 by its empirical counterpart. The threshold appears in the bounds of
an integration of a function depending only on the error distribution. The threshold thus expresses
exactly what the mirror effect is about: given the number of selected variablesn1, the threshold
corresponding ton1 is a matter of the interaction between signal and noise, but onceλn1 has been
set, the correction necessary for its quality assessment isa matter of false positives created by error
effects only.

Birgé and Massart present a lower bound that avoids inconsistent estimators, although penalties be-
low the bound do not necessarily lead to problems (Birgé andMassart, 2007, page 42). The presented
lower bound is of the form

penBM(x) = Kx1σ
2
[
1 + 2 log(1/x1) + 2{log(1/x1)}

1/2
]
,

8
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Figure 3: Mirror penalty versus Birgé-Massart lower bound. In grey line: Mallows’s penalty term. In
solid black line: the mirror corrected penalty. In dashed line: the lower bound proposed by Birgé and
Massart. The mirror penalty is adaptive to the sparsity in the data. The steep increase is therefore deferred
to model sizes where errors start to play a role in the selection process.

wherex1 = n1/n. The mirror penalty, presented in the paper, can be written as

penmir(x1) = 2x1σ
2 + 4σ2λn1φσ(λn1).

Figure 3 compares the mirror penalty with an implementationof the lower bound for a typical case,
further explained below. We can draw the following conclusions.

1. Although at first sight, it seems that the mirror penalty violates the lower bound, the lower bound
should not be checked for its absolute value, but rather for its slope. Indeed, while a constant
may be added to all possible models to ensure that penalties are above a minimum, a steep slope
discourages models with too many selected variables.

2. The figure illustrates the adaptive nature of the mirror penalty: small models include only highly
significant variables. In the selection of those, there is noneed to take any error effect into account.
In that range, the distinction between significant variables and the errors is so clear that the non-
linear selection acts as an oracle that knows the order of theerror-free values ofβ. Such an oracle
can rely on Mallows’s penalty as a stopping criterium in selecting the right number of variables.
From a certain value ofn1, depending on the signal at hand, the errors play a role in theselection
procedure, resulting in a steep slope of the penalty in orderto keep these effects under control.
Birgé’s and Massart’s lower bound is not data-dependent, which explains the steep slope from the
beginning.

In order to verify that the mirror penalty increases sufficiently fast as soon as observational errors
affect the selection, we first consider the case where the observations contain only errors and no signal
(i.e.,βi = 0). Letλ(0)

n1 = Q|ε|(1− n1/n) = Φ−1
σ (1− x1), then the penalty

penmir0(x1) = 2x1σ
2 + 4σ2λ(0)

n1
φσ(λ

(0)
n1

).
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Figure 4: Plot of functiony(x1) = 1 − F|ε|{Q|Y |(1 − x1)} near origin. This function connects a data-
independent version of the mirror penalty to the actual, data-adaptive mirror penalty.

does not depend onF|Y |. Moreover, it can be verified that

dpenmir0(x1)

dx1
≥

dpenBM(x1)

dx1

for x1 near0.
Next, definey(x1) = 1 − F|ε|{Q|Y |(1 − x1)}, thenpenmir(x1) = penmir0{y(x1)}. The function

y(x1) is a bijection on[0, 1], whose behavior near 0 is depicted in Figure 4 for the same model as in
Figure 3. In these figures. the error-free data are modelled as zero inflated double exponential variables,
i.e., fβ(β | β 6= 0) = (a/2) exp(−a|β|), where in the figures the hyperparameter valuesa = 1/5 and
p = P (β | β 6= 0) = 0.05 were used. The model allows to elaborate analytically or numerically all
expected values without any simulation. By definition, it holds thaty(1) = 1, while y(x1) ≤ x1. The
function y(x1) is thus a bijective shrinking function. As a consequence, the behavior ofpenmir0(x1)
is inherited by the functionpenmir(x1) = penmir0(y(x1)), but with some delay. This implies that
penmir(x1) shows a steep increase as soon as error effects appear in the selection process.

E The interpretation of Assumption 2

Assumption 2 is expressed within the setting of a random model for the error-free parametersβn as
E(β2

n | Sn,n0) = o(n1/n). Translated into a fixed parameter model with a vectorβn = (βn,1, βn,2, . . . , βn,n),
this becomes an expected average over all not selectedi:

1

n0
E


 ∑

i∈X ′

n1

β2
n,i


 = o(n1/n).
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This can be rewritten as

1

n0
E


 ∑

i∈X ′

n1

β2
n,i


 =

1

n0
E

(
n∑

i=1

β2
n,iI(i ∈ X ′

n1
)

)
=

n

n0

1

n

n∑

i=1

β2
n,iP (i ∈ X ′

n1
),

leading to the formulationn−1
∑n

i=1 β
2
i P (|Yi| < λ) = o(n1n

−1), as found in the article, right after the
statement of Assumption 2.

The assumption can be interpreted as a bound on the lost information due to false negatives or missed
discoveries. It imposes a three-fold condition:

1. the vectorβn is sparse;

2. the errors do not hinder a good separation between significant and insignificant components inβn.
More precisely, the tail of the error distribution is not heavy, excluding large noise components
that could interfere with significant components inβn;

3. the model sizen1, or the threshold, is well chosen by the variable selection algorithm, so that it
indeed separates between significant and insignificant components.

The remainder of this section discusses the three conditions in a quantitative way.
The notion of sparsity is defined in an asymptotic way, imposing that forn → ∞, the vectorβn

becomes sparser, while its mean squared value is assumed to be constant. This can be formalized by
defining an invertible, non-decreasing, positive functionβn(x), defined on[0, 1] so that the ordered
absolute vector components satisfy|β|n,(i) = βn(i/n). Sparsity means that‖βn‖22 = 1, while for some
p < 2, βn(x) ∈ Lp(rn) with rn → 0. TheLp ball with radiusrn contains all functionsβ for which
‖βn‖p ≤ rn, where‖βn‖p =

∫ 1
0 βp

n(x)dx, for 0 < p ≤ 2.
We define an index of sparsityx1(n) ∈ [0, 1] as the value for which

∫ 1−x1(n)

0
β2
n(x)dx = x1(n). (32)

ThisL2-concentration index can be seen as the equivalent of the g-index in bibliometry (Egghe, 2006),
where sparsity corresponds to a low index value. Ifx1(n) is small, then the greater part (1 − x1(n)) of
the energy in the vectorβn is concentrated the large components, accounting for only afractionx1(n)
of the total size of the vector. This concentration is guaranteed for functions inLp balls, as follows from
the next lemma.

Lemma 6 If βn(x) ∈ Lp(rn), thenx1(n) ≤ r
2p/(2−p)
n {1− x1(n)}.

Searching for a variable selection satisfying
∑n

i=1 β
2
n,iP (i ∈ X ′

n1
) = o(n1), we look for model sizes

n1 close tonx1(n).
Forn1 = nx1(n), and denoting̃x1(n) =

∫ 1
1−x1(n)

β2
n(x)P{β̂ = 0 | β = βn(x)} dx, we find

∫ 1

0
β2
n(x)P{β̂ = 0 | β = βn(x)}dx ≤

∫ 1−x1(n)

0
β2
n(x) dx+ x̃1(n) = x1(n) + x̃1(n).
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Neglecting the small probabilityP{Yi < −λn | β = βn(x)}, for λn = βn{1− x1(n)}, the second term
can be bounded by

x̃1(n) ≤

∫ 1

1−x1(n)
β2
n(x) [1− Fε{βn(x)− λn}] dx =

∫ 1

0
X1(s) ds,

whereX1(s) =
∫ 1−ξn(s)
1−x1(n)

β2
n(x) dx andξn(s) = 1−β−1

n {λn+Q|ε|(s)}, with Q|ε|(s) the quantile function

of the error’s magnitude|ε|. Denoteζn(s) =
∫ 1−ξn(s)
0 β2

n(x)dx, thenX1(s) = ζ(s) − x1(n). The
functionX1(s) can be verified to be non-decreasing ins andX1(1) = 1− x1(n). For x̃1(n) ≤ 2x1(n),
it is thus sufficient thatX1{1−x1(n)} ≤ x1(n). The analysis of this condition uses the following lemma
for βn(x) ∈ Lp(rn).

Lemma 7 For anyξn, andζn =

∫ 1−ξn

0
β2
n(x)dx, we have

ζn − x1(n)

x1(n)− ξn
≤ r−2p/(2−p)

n .

From the lemma, it follows thatX1(s) ≤ r
−2p/(2−p)
n (x1(n) − ξn(s)). We want, fors = 1− x1(n) that

X1(s) ≤ x1(n), which is satisfied ifx1(n)− ξn(s) ≤ r
2p/(2−p)
n x1(n). We arrive at the condition

β−1
n

[
λn +Q|ε|{β

−1
n (λn)}

]
− β−1

n (λn)

1− β−1
n (λn)

≤ r2p/(2−p)
n . (33)

Condition (33) can be understood as follows: adding then1 largest noise component to then1 largest
signal component does not cause the signal rank orderβ−1

n to increase substantially.
If Condition (33) is satisfied, thenn1 = nx1(n) can be taken as model size that meets Assumption

2. As the assumption controls the loss due to missed discoveries, it is automatically satisfied for any
larger modeln1 > nx1(n), while the smallest modeln1 = nx1(n) tends ton1/n → 0 thanks to the
L2-concentration inLp balls.

F Software and reproducible figures

The figures and tables in this paper can be reproduced with routines that are part of the latest version of
ThreshLab, a MatlabR©software package available for download from
http://homepages.ulb.ac.be/∼majansen/software/threshlab.html.
See

1. help compareGCVSUREFDRebayesthresh for Table 1;

2. help illustrateLARSell0 for Table 2;

3. help illustratemirroreffect for Figures 1 and 2;

4. help comparemirrorpenaltyBirgeMassart for Figures 3 and 4.

12


