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Abstract

The optimization of an information criterion in a variablgection procedure leads to an addi-
tional bias, which can be substantial in sparse, high-dgioeral data. The bias can be compensated
by applying shrinkage while estimating within the selecteddels. This paper presents modified
information criteria for use in variable selection and mstiion without shrinkage. The analysis
motivating the modified criteria follows two routes. The ffirsxplored for signal-plus-noise obser-
vations only, goes by comparison of estimators with and euttshrinkage. The second, discussed
for general regression models, describes the optimizatia@election bias as a double-sided effect,
named a mirror effect in the paper: among the numerous iifigignt variables, those with large,
noisy values present themselves as being more valuablatharbitrary variable, while in fact, they
carry more noise than an arbitrary variable. The mirrorafie developed for Akaike’s Information
Criterion and for Mallows’C),, with special attention to the latter criterion as a stogpinle in a
least angle regression routine. The result is a new stopplagnot focusing on the quality of a lasso
shrinkage selection, but on the least squares estimatbhoutishrinkage within the same selection.
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1 Introduction

This paper presents information criteria for estimatorthatit shrinkage in model selection. Although
Mallows’ C,, (Mallows, 1973) criterion is an unbiased estimator of thpeeted average squared pre-
diction error of a model, it is an often reported fact (Woaafeg 1982; Ishwaran, 2004; Loubes and
Massart, 2004; Stine, 2004; Ye, 1998) that minimizationhef triterion overestimates the number of
variables needed to minimize the prediction error. Giveestimator within a selected model, Mallows’
C,, like many other information criteria, has the form of a dezeal likelihood or sum of squared residu-
als. When the penalty depends on the model size, then amlangdels of equal size, selection is based
on the sum of squared residuals. In the case of high-dimesaisgparse models, it is easy to reduce the
sum of squared residuals by a well-chosen combination sélfalsignificant variables, thereby fitting
the observational errors. The false positives thus prasemselves as being better in modelling the



observations than variables that were selected in a pureityary way, whereas in reality their estimates
deviate more from their values in the true model than do tfiosarbitrary variables. This two-sided
effect of appearance versus reality can be described agar mifect, and is the topic of this paper.

The mirror effect can be seen as statistics of residualsctieatige through the optimization of an
information criterion in variable selection. The outconfi¢he optimization depends on the errors, while
an information criterion has been designed to evaluate uhétg of one specific model. The change of
statistics through the selection can be compensated forg@nearalized concept of degrees of freedom
(Ye, 1998), replacing the simple model size in the penaltye mirror effect described in this paper is
closely related to that concept.

The paper provides data-dependent expressions for peltinformation criteria that correct a pri-
ori for the mirror effect. In principle the mirror effect @atigm can be adopted with any distribution for
the error, any set or search structure for the model seteptioblem, any information criterion and any
estimator within the selected model. As the mathematidalildedepends on the case, most of the discus-
sion in the paper concentrates on important examples, suobrmal errors and least squares estimators.
This paper discusses the application for both Mallo@/s'and Akaike’s Information Criterion (Akaike,
1973). In the case of normal errors and Mallow,, the resulting penalty term can be compared to a
lower bound that avoids inconsistent estimators (Birgkassart, 2007). The mirror correction, being
data-dependent, automatically finds the degree of sparsitye given data. The simulation study in
Section 2.6 illustrates that in terms of prediction errbe mirror correction slightly outperforms meth-
ods that control the false discovery rate (Benjamini andhhecg, 1995) or even the absolute number
of false positives (Donoho and Johnstone, 1994). Theseaudethave been found to perform well in a
minimax sense (Donoho and Johnstone, 1999) with respelat forediction error, but the focus on false
positives leads to estimators that are not adaptive to tiee significant components in the data.

The mirror correction proposed by this paper can also bea®an alternative for shrinkage as a tool
to compensate for optimization randomness. The idea bedtiridkage is to temper the effect of false
positives. The tempering may even exactly undo the optitioizdias. This occurs when the errors are
normally distributed and the shrinkage is realized throéigbonstrained regression, known as the lasso
or least absolute shrinkage and selection operator (Tdoshil996) or basis pursuit (Chen et al., 1998).
Thanks to the shrinkage, the expression for Mallo@s’in the optimization of the model uses the same
penalty as for evaluation of an estimator without shrinkiageefixed model. This penalty is based on the
concept of generalized degrees of freedom (Ye, 1998). Bolbw-dimensional (Zou et al., 2007) and
in high-dimensional (Tibshirani and Taylor, 2012) dat&, ttumber of degrees of freedom during a lasso
operation can be taken equal to model size. In the case ohalgius-noise model, the expression of
Mallows’ C,, thus reduces to that of Stein’s unbiased risk estimatoir(S1881; Donoho and Johnstone,
1995; Loubes and Massart, 2004), while lasso itself becanighresholding.

Firstly, shrinkage thus reduces the effect of false pasitivSecondly, it may also be superior to
simple least squares in terms of prediction error, thani&em’'s phenomenon (Stein, 1956). Thirdly,
regularized least squares is a convex optimization proptenare variants such as the Dantzig selector
(Candes and Tao, 2007). Without shrinkage, variable Befets a combinatorial optimization problem.
Fourthly, for a given penalty valué; regularization imposes nearly the same degree of sparsiaina
estimator penalized by the model size, without furthemdtage (Donoho, 2006). It has also been proved
that, under certain conditions, constrained optimization is variable selection consisterovided that
the true model variables are large enough, compared to thdarezation parameter. That is, if all
variables in the true model are sufficiently significant drttié regularization parameter is not too high,
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then, forn — oo, the set of nonzero variables in the selection equals tleesetwith probability tending
to one (Meinshausen and Biihimann, 2006; Wainwright, 2068yp, 2006; Zhao and Yu, 2006). Fifthly,
as illustrated in Figure 1(b), when using shrinkage, theature of the prediction error as a function of
model size is small near its minimum. This is in contrast ®dklicate minimization of the prediction
error in absence of shrinkage. Sixthly, shrinkage provalesntinuous transition between selection and
non-selection. Continuous operations are mathematioadige tractable.

In spite of these benefits, the use of shrinkage may be pralilerm high-dimensional problems.
First, it introduces a bias in the estimated parameters) éube parameter is highly significant. This
can be controlled by choosing shrinkage rules that spage lariables (Gao, 1998), including Bayesian
shrinkage (Johnstone and Silverman, 2004). Secondlyramkabe reduces the effect of false positives,
it is tolerant to their presence. As a result, the shrinkadgethat minimizes the prediction error, rests on
a model with too many nonzeros. The minimum with small cumatn Figure 1(b) confirms the illusion
of an easy problem, whereas finding the best selection witktminkage requires careful optimization.
While ¢; regularization mimics estimation without shrinkage quitell for fixed penalty values, the
equivalence betweefy and estimation without shrinkage no longer holds for thénoigition over the
penalty, or, equivalently, the optimization over the mosiee. The rather poor behavior of shrinkage
selection with data-driven choice of the penalty value aix@ why many state-of-the-art methods do not
optimize over the regularization, but rather opt for a miaknchoice of it.

2 Mirror effect in variable selection without shrinkage

2.1 Optimization bias

This paper investigates the selection of varialiieg a regression model
Y=p+e=KpB+e=KpB+7Z, D

where Z is an-dimensional vector of standardized, independent andiwgly distributed errors with
var(Z;) = 1,fori = 1,...,n. The design matri¥< has thus: rows. The number of columns;, may
or may not be equal ta. In high-dimensional data, we typically find >> n, but we assume that the
number of significant variables,, is always smaller than.

Let E be an estimator g8 in model (1) wheren; variables are allowed to be nonzero, and denote
n=K B The objective is to find the value of, and the corresponding estimaﬁrwith n1 NONZEros
that minimizes the expected prediction error

PE(z) = - B (KB ~ KBI?). @

The binary selection vectat € {0,1}™ represents the model under consideration. Kgtbe the
submatrix of K’ containing the columns corresponding to the 1'girFor any linear estimatqi = A,Y
within a given, deterministic modet, the prediction error is estimated unbiasedly by Mallows;,
which is in general\, (A ) = n'SSg(B) + 2020 tr(A,) — 02, whereSSg(3) = |Y — K 3|2 is the
sum of squared residuals. We use the symbplbecause in most papefs, stands for a standardized
or studentized quantity. This paper concentrates on ttst seares estimatqﬁm = (KI'K,)'KLY,
where(3, denotes the subvector with the nonzero entrig8 obrresponding to the nonzerosain Using
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the orthogonalityk 8 = K3, L (Y — K@) itfollows that E{A,(z)} = n~ (| K 8|3 — E(| KB32) +
2n102). The only expectation in the expression #6{A,(x)} can be rewritten as

E(|KBI3) = E(| PoKB + Paell3), ®3)

whereP, = K,(KL K,) 'KL is the orthogonal projection onto the columnsiof.
In the case where the selectioh depends on the observations, through optimizatioAgfx), (3)
becomes

B(IKBIZ) = E(IPxKBI3) + B(|Pxel) +2B{ (PxKB)T (Pxe) }
= B(IPxKBI) + E(|Pxel) +2(KB)T E(Pxe).

This leads to an expected value of Mallows’ criterion, tgkihe optimization into account,
1
Ex{8,(X)} = — {IKBI3 - E(IPx KBI3) — E(|Pxel3) — 2(KB)" B(Pxe) + 2107} . (4)
The expected prediction error, on the other hand, can baewrdasPE(x) = n~'{|K3|3 +

E(|KB|32) — 2(KB)T E(KB)}. For fixedx, the expressions dPE(z) and E{A,(x)} lead to iden-
tical outcomes. For observation dependent select®ns

Ex(PE(X)} = —{IKBI3 + E(IPxKAI3) + E(|Pxel3) — 2(K8)" E(Px KB)}
= {IKBI3 - B(IPxKBIR) + B(|PxelB)} ©)

The difference between (4) and (5) is due to the observatgpendent selection process, which is
assumed to proceed in two steps. First, for a given modelsizéhe optimaln; term selectionX,,,
is computed, where the optimization takes place over thergbd values of thé\,(X) or of any other
information criterion. Next, the prediction error of thesbe; term approximation is considered as
function ofn;.

The analysis offx {PE(X)}—Ex {A,(X)} is simplified by assuming thai 1 (K 3)T E(Pxe) =
o(nin~1). In the signal-plus-noise case, for instance, this follfres a symmetric random model on
3, or from the sparsity in Assumption 2. This leads to an exgioesfor the difference between (5) and
(4), depending om; only, Ex{PE(X,,)} — Ex{A,(Xy,)} = 2m(n;), where

1 ny
= —E(||Pxe|?) — —o2. 6
m(m) = ~B(|Pxel) - 1o (6)
As X can be observed, the selection bias can be estimated udilyi&sen
~ 1 ny
() = —F (IIPxel3 | X) — ;a? 7

The prediction error can then be estimated frﬁg(Xm) = Ap(Xp,) +2m(ny).
This paper further analyzes the bias correction(n, ), describing it in terms of an oracular variable
selection, defined as follows.



Definition 1 Given the model (1), define the class of submodéls- {0,1}™, using the binary repre-
sentation introduced above. For each submaelel M, consider the least squares estimagy within
that model.

Then the oracle selection is the modg], that minimizedim,_,o PE(x) among all models in\1
with sizen;. In other words, it is the output from a model selection artdrestion that hasi'3 as input,
rather thanY = K3 + ¢.

Givenn; and the oracle selectior;, , its least squares prediction errdPE(x;,,) is the mirror
function.

The mirror function is thus the prediction error of a routinbose model selection is based on the
oracular observation& 3, whereas its estimator within the selected model is basddenbservations
Y = KfB+e¢. Asthe selectior;, does notdepend an E{A, (x5, )} = PE(x;,,). The use of the term
mirror function is motivated by the following argument. Againder the mild assumptions of sparsity,
stated in Section 2.3, it holds thaty {PE(X,, )} — PE(x;,,) =~ m(n1) = PE(z}, ) — Ex{Ap(Xn,)}-
The oracle prediction error thus acts as the mirror thatatsfie, (X,,, ) ontoPE(X,,,) and vice versa.

2.2 The mirror and other penalties

Defining the residual vectar =Y — KB and the generalized degrees of freedom (Ye, 1948) ) =
E{eT(e — e)}o~2, itis well known thatA,(X,,,) = SSk(B) + 2v(n1)o*n~t — 0% is an unbiased
estimator ofEx {PE(X,, )}, for any choice ofX,,,, random or fixed. The approximation proposed in
Section 2.1, (6), can thus be writtena8:1) = E(||Pxel|3)c~2 + o(n1) and, consequentlyn(n;) =
{v(n1) —nitn~to? + o(nin=1).

The mirror corrected penalty can be compared to the minimamalty for consistent estimators
(Birgé and Massart, 2007). Being a lower bound, that pgrstiot data-specific, unlike that proposed in
this paper. The same remark holds for the penalties progos&lramovich et al. (2007), for instance.
Simulations discussed in the Supplementary Material sttt the mirror penalty detects the degree
of sparsity automatically. It can be shown that farlarger than that degree, the mirror penaliy:, )
increases faster than the lower bound of Birgé and Masa@ét7). Unlike that lower bound, however,
the mirror paradigm is not limited to normal errors or to Malk’ C,, criterion. See the Supplementary
Material for a full discussion.

2.3 Signal-plus-noise, using a random model fo8

We start the study of (6) in a simple signal-plus-noise mdde= 3 + ¢, where the sparse signél
is observed directly, anth = n. Extension to the general form of (1) follows in Section 4.eTkast
squares estimator for givenis BZ- =Y, z;, wherez; is a component of the selection vectar The best
n1 term selection, measured by thg-value, consists of the; largest elements frork.

The study is facilitated by assuming that the sparse vedtpa@meterg3 constitute am-tuple of
independent realizations from a random varigblewith a density functionfs,(v). The subscript,
denotes dependence anwhich will allow us to impose increasing sparsity in an apyotic analysis.
The eventual outcome will be independent of the precise fufrify, (v).

In the signal-plus-noise mod&f,, = 3,, + &, the error distribution is assumed to be independent
from n with variances? = E(<?).



We let X,,, denote the active subset of the index §gt...,n}, corresponding to the ones in the
binary vectorX,,, . The functions,(X,,, ) andPE(X,,, ) will be used to denoté ,(X,,, ) andPE(X,,, ).
We letx) | denote the complement &f,, in {1,...,n}. The sett] contains the indices of the variables
with theng = n — n; smallest magnitudes. Defining the eveéhit,, = { In a set ofn independent,
identically distributed realizations, the observag| is among then, smallest magnitudés we have
P(Sn.ne) = non~t. Symmetry in the random model fg}, then allows us to state th@t{A,(X,,)} =
non LE(Y,2 | Snan) + 2n1n~to? — o?. We also define the oracular version of the evépt,, as
On.no = { In a set ofn independent, identically distributed realizations, theerved 3, | is among the
no smallest magnitudgs The complement ab,, ,,, corresponds to the selectiafi in Definition 1. Let
Xy, be the set of indicesfor which 2 ; = 1. Starting fromE(Y;? | On ) = 0° + E(B] | Opn,) it
follows thatE{A, (XS )} = ngn ' E(Y;? | Oppo)+2min~to?—0? = nin~to?+non ' E(B2 | Onne)
and thusE{A, (X2 )} — E{Ap(Xn,)} = non o2 + E(B2 | Onne) — E(Y,2 | Spno)}. A mirrored
relation holds between the prediction errors. In order teckfthis, we start from a conditioning of the
prediction error or0,, ,, to find thatPE(X?,) = nin~'o? 4+ non 'E(B2 | Onn,), in line with the
unbiasedness ak,(X;? ). The prediction error can be written as

PE(Xm) = PE(Xm ‘ Sn,no)P(Sn,no) +PE(Xn1 ‘ Svlm )P(S/ )

»y10 n,no

n n n n
= BE(B2| Suny) — + EE | Shpg) — = —E(B2 | Spng) + 02— —E( | Snno)
n n n n
n n
= 20?4+ 200% — B(? | Sung) + BB | Suna) }- ®)

We now impose that the vector ¢f, is sparse enough to allow an asymptotically perfect seiparat
between significant and error-dominated variables:

Assumption 1 Whenn — oo, the prediction error of an oracular component selectiord@minated
by the error present in the observations of the selectedabées, that iSPE(X) ) = E{A,(X7)} ~
nln_102.
Animplication of Assumption 1 follows from the above stategbression oPE(X;? ). We findnin~'o?+
non YE(B2 | Opny) ~ nin~to?, which becomesZ (52 | Op o) = o(nin1).

The following assumption is about the performance of themi@tular selection method.

Assumption 2 The selectiors,, ,,, performs asymptotically as well &3, ,,,, in the sense thak (32 |
Snng) = o(nin~1). asn — oo.

In terms of a non-random model fgk,, this means that the thresholg, selectingr; significant vari-
ables satisfiea ! >"" | B2P(|Y;| < A) = o(nin™!). The Supplementary Material includes a quanti-
tative discussion of the interpretation of Assumption 2undtion spaces imposing sparsity, suct?,as
balls withp < 2 or multiscale sparsity, such as Besov spaces. The disaussives the introduction of
an index of sparsity, inspired by the g-index from bibliomdEgghe, 2006). Assumption 2 is satisfied
if the data vectog3,, is sparse, if the noise is not heavy tailed, so that it can bityeseparated from the
data, and if the threshold or model size is near its optimialeva

Assumption 2 implies that

ni

0 < BY? | Sung) = BE | Suna) =0 (). ©)

6



This follows from the equatiod®(Y,2 | Spn.ny) — E(2 | Snng) = E(B2 | Snng) + 2E(eBn | Snng)s
and the fact thaE(¢/3,, | Sp.ng) < O.

Assumptions 1 and 2 allow us to conclude that approximadiBgY,,, ) as the reflection aE{ A, (X, }
with respect to the oracular mirrdt{A, (X} )} = PE(X},) does not disturb the optimization of the
prediction error. More precisely, introduce the approxioraerrorsA; , andAs ,, by

0 n
B{AX2)} = B{Ay(Xn)} = ={0? = B(e® | Sung) | + A
@{02 — B sn,no)} + Agn.

Thenlim,,_, gn(n1) = 0, Whereg, (n1) = A, /PE(X,,) andA, = A ,+As .. DefiningPEA (X;,,) =
PE(X,,) — A,, we have, fom — oo and anyn,, that—g,(n1)PE(&X,,) < PEA(X,,) — PE(A,,) <
4n(n1)PE(X,,, ), or, equivalentlyPE(Xy, ){1 — gu(n1)} < PEa(Xy,) < PE(Xy,){1 + ga(n1)}. So,
if n; andn; optimizePE(&,,,) andPEa (X,,,) respectively, then

PE(X,,) - PE(XY) =

n

{1 - 4u(7) }PE(X5,) < PEA(%,) < PEA(%,) < {1+ ga(@1) [ PE(%,)
or R
| < PE(X5,) < L+ gn (1)
PE(X5,) = 1 —gn(n1)
Thus the minimizers of the exact and approximate predictisors have asymptotically the same ef-

ficiency with respect to the prediction error. The approxengrediction error in its turn is estimated
unbiasedly byA,(X,,,) = A, (X, ) + 2m(nq), with

(10)

mm) = {0~ B Suny) } = P(Snn){0® = E(E | Sum) | (11)

nOO oo

= / f8,(v) / (02 — 62)f€(e)P(Sn,nO | Y, =v+e)de dv.
—00 —00
The mirror (11) and the corresponding double correctiorillgtrated in Figure 1(a), which depicts

the apparent information for a given model sizg found by minimizing Mallows’C,, along with the
minimum prediction error for that model size. The contréidit between better-than-average appearance
and worse-than-average reality is seen in the two curvegbreilections of each other with respect to
the oracular curve. Th€), curve has a minimum with small curvature, creating theitlnf an easy
problem. The model selected using this curve is howevepfatarge.

2.4 The mirror effect in terms of thresholds

In this section we seek approximations to the mirror effbet satisfy three conditions. Firstly, the
error of approximation is small compared to the predictiomre in the sense that, asymptotically, it
does not disturb optimization of the estimated predictionrecurve. Secondly, the expression is easy to
implement. Thirdly, for normal errors, it reduces to an egsion that can be derived as a hard threshold
correction of Stein’s unbiased risk estimator. This cdioecis further discussed in Section 3.

We define the expected mirror contribution for a given congmdivaluev as

t(ny,v) = /OO (02 — eQ)fe(e)P(Snmo |Y =v+e)de. (12)

—00



The expected mirror in the model is then

m(ny) = /00 I8, (v)t(n1,v) dv.

In a similar way, we can write the contribution of one comparte the expected prediction error, given
its valuev, as

r(ny,v) = v? P(Sn,no | Bn =v) + E(€2 | S;l,n()) P(S;z,no | Bn = v). (13)

The following lemma, proved in Appendix A, states that thpaented mirror can be approximated
by assuming for each individual component that its erree-fvalue is zero. The approximation error,
relative to the prediction error, tends to zero.

Lemma 1 Suppose that we observeindependent samples frol), = 5, + ¢, with 5, and ¢ inde-
pendent. Further assume that the distributiong @ind 3,, are symmetric around the origin, and that
¢ has a unimodal distribution and a quantile function safisflyQ.(1) = oco. We impose the following
conditions:

1. the density/.(e) has a bounded second derivative;
2. the densityf.(e) shows exponential decay g$ — oo;

3. the large values o8,, dominate the errors. More precisely, the decay dk) is essentially faster
than that offy; (e) in the sense that

4. The large values ¢f,, are sparse, in the sense that there exists a positiva that for any positive
0 one can find an integet* for which P(|3,| < 0) > p*, for any integem > n*.

Further assume that; /n — 0 asn — co. Then the function(n;, v) defined in (12) satisfies
t(’l’ll, ﬁn) - t(nly 0)

li =0 14
noo " r(nt, Ba) ’ (4
for any sequencg,,. Hence
lim 7 = H.0)

n—00 T(nl, ﬁn)

We can thus usénq,0) use as an approximate mirror.

In a final step we further approximate the mirror by replading P(S,, », | Y, = e) by a binary
function I (Ju| < A,,), with an appropriate threshold,, .

Lemma 2 Defining the threshold,,, = Q\y, |(non"'), whereQ)y, | is the quantile function d#,|, and
)\"1

) = [ (0% - @)t 15)
_>‘n1

then, ifng/n — 1 for n — oo, and if the error-free data are sparse and dominant in theseesf Lemma
1,lim, o0 {m(n1) — 7(\py) } /7(n1, Bn) = 0.



The proof is in Appendix A.

An argument similar to that in (10) ensures that replacipg ™' {o? — E(c? | S,,5,)} With its ap-
proximation does not disturb the minimization B{A, (X, )}. Referring to the discussion of (11), the
mirror correction can thus safely be approximated&$Y,,,) — E{A, (X, )} ~ 27(An,).

This expression does not depend on a modetforexcept through the threshaold, . This threshold
can, however, be easily replaced by the empirical vﬁu{e: Y| (—ny:m)» Where|Y|,_,, .,y stands for
the (n — nq)th order statistic in am-vectorY .

If e ~ N(0,0?), then the correction reduces to

PE(XVM) - E{AP(‘an)} ~ 402 )\nl ¢U(An1)> n — o0, (16)

whereg, (¢) is the density of zero mean normal random variable with vaga?.

2.5 lllustration of the mirror effect

The simulation in Figure 1 illustrates the discussions ef pneceding sections. It was set up as fol-
lows. A vector ofn = 2000 sparse dat@® was generated according to the zero inflated Laplace model
fs1820(v) = (a/2) exp(—alf]), where, in this simulationg = 1/5 and P($8 # 0) = 1/20. The obser-
vations areY” = 3 + ¢, wheree is a vector of independent, standard normal errors. Fontlodel, the
figure depicts the curve @k, (X, ) as a function of:;. As defined in Section 2.1X,,, is then; term
selection that minimizes\,(X). For the same selection, Figure 1(a) also pRE X ,,,). The same
plot contains the mirror curvBE(x;, ), defined in Definition 1. Finally, Figure 1(b) contains theweu

of A,(X,,) when using soft-threshold shrinkage within the mod¥lg .

2.6 A comparative simulation study in the signal-plus-nois model

The simulation study, summarized in Table 1, compares theiezfcy of several methods for sparse
variable selection with respect to the oracular predicgoror, that is,Eff = PE(oracle/PE. The
oracle would select all variables with error-free value\abthe noise standard deviation The data
were generated as in Johnstone and Silverman (2004), efarefiie sample size, which was taken
to ben = 10,000 instead ofn = 1000. One hundred replications ofavector of observationy”
were generated, whe® = 3 + e. The error vectoe is independent, homoscedastic, and normally
distributed, whereas the error-free d#laare set to zero, except for a proportiprof the variables,
whose values argy. The sparsity parameterequalsp = 0.005, while ;o = 7. The table confirms
the relatively low efficiencies, reported in Johnstone aitde8nan (2004), of soft threshold methods
using thresholds that estimate the minimum predictionrerfthe poor performance is entirely due to
the oversmoothing of soft-thresholding. Indeed, hardstmpéding focussing on the false discovery rate
(Benjamini and Hochberg, 1995) or using empirical Bayeggra® median thresholds (Johnstone and
Silverman, 2004) is outperformed by hard thresholding mining generalized cross validation, which
estimates the prediction error. Indeed, its observed meffiency is higher, as is i8% quantile. The
lower 5% efficiencies are, however, slightly less favorable for gelieed cross validation than for the
false discovery rate and empirical Bayes methods. Closgettion of the simulation study, not shown
in this table, reveals that this is due to imperfect estiomatif the prediction error using generalized cross
validation. These imperfections are a drawback for any otkthat estimates the the prediction error in
a direct, data-adaptive way, rather than relying on minimegxilts (Donoho and Johnstone, 1994, 1999).
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Figure 1: Mallows’sC), in sparse variable selection with and without shrinkageMaror effect, defined

in (11). The dashed line depicts Mallowg’ for the selectionst,, that minimizeA,(X’), given model
sizesn;. The dash-dot line represents the prediction efdiéX,,, ) for the same selections. The curves
of Mallows’s C, and the prediction errors are reflections of each other w#pect to the oracular curve
PE(X}, ), depicted as a solid line. That mirror curve is the predictoror for a selection based on the
error-free values. (b) Prediction errors for hard- and-su#sholding, black and grey lines respectively.
The hard threshold curve is the same as the dash-dot ling.in (a

The table also illustrates that generalized cross vatidaig a more robust estimator of the prediction
error than is Stein’s unbiased risk estimator.

3 Undoing soft threshold bias

3.1 Soft-thresholding and Stein’s unbiased risk estimator

This section shows that, for the case of normal errors, thection term for MallowsC), in (16) can be
obtained from an analysis that imports the difference betwsoft- and hard-threshold prediction errors
into the expression of Stein’s unbiased risk estimator.

Given a threshold valug, the difference in prediction errors between soft- and {thardsholding
equals

. . PR 2\ 2\ & _
PE(BY) — PE(8}) = - P(lY;[ > A) + - > B(eX]) - - > E(eX;)
i=1 i=1 i=1
PEp 2\ — ,
= - P(Xi=1)+=) E{sign(8; +)eX,}, (17)
[ [
whereX™ = I(Y > X\) and X~ = I(Y < —)\). The first term of (17) can be estimated unbiasedly
by —A2n=13"" | X; = —A2Nyn~!, whereV; is the total number of observed magnitudes above the
threshold.
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5% | 50% | 95%
SURE-soft|| 9.1 | 12.8| 17.8
GCV-soft|| 85 | 12.9| 17.9
EBayesthresh| 36.4 | 58.9 | 88.9
FDR-thresh|| 35.0 | 58.8 | 100.0
SURE-hard|| 27.4| 48.1| 92.6
GCV-hard || 34.4| 73.4| 100.0

Table 1: Quantiles of observed efficiencies in percentagesedveral threshold methods: SURE stands
for Stein’s unbiased risk estimation, GCV for generalizeass validation, FDR for false discovery rate;
soft and hard stand for soft- and hard-thresholding.

The second term (17) cannot be estimated in an unbiased wagn,| however, be approximated
by a constant, dependent on the threshold value, but ngt.ois follows from Proposition 1, the
approximation error tends to zero more rapidly than theiptiet error itself, so it does not disturb the
maximization of the prediction error or of any estimate of it

Proposition 1 Lete be symmetrically distributed with an exponentially dengydensity functiorf(e)
for whichlim._, 1 f/(e) exists, and let

1< ,
BN B) = — > B {sign(B; +)I(|i + ¢ > N} (18)
=1
Then there exists a functieri\) such that for any parameter vectgr

A |li()\,§})3(l—a§())\,0)| E C()\)’ with )\h_,ngo C()\) = 0. (19)

The proof is established in the Supplementary Material aés® Section 4.3.

An argument similar to that in (10) allows us to replage\, 3) by (A, 0) = E{|e|I(le] > \)}
while keeping the quality of the minimization m(@f).

In the case of soft thresholding, the well known (Stein, 138dnoho and Johnstone, 1995) expres-
sion for unbiased risk estimation for data with normallytidlsited errors i§URE(BA) = n*lssE(BA)jL
2N1n~ o2 — 2. A quasi unbiased estimator for the hard thresholding ptiedierror can be obtained
by adding the estimator \2N1n~! + 2x(), 0) for the terms of (17) to Stein’s unbiased risk estimator.
It is straightforward to verify thaSSE(BAST) = SSE(BAHT) + A2N;n~1. Moreover, for normal errors
e ~ N(0,02), we have thaB (s X +;0) = 02 \¢,(\) = 02(\/o)é1(\/o), leading to

_ . 2N
SUREH (Bxyy) = SSE(Bayy) + 7102 — 02 + 407 Ao (N). (20)

This is the same expression as (16), which followed from feidint strategy and different approxima-
tions. The strategy in Sections 2.3 and 2.4 was first to dgiyathi mirror effect and then to approximate
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it using a threshold expression, leading to (16). The ctiseation has started from the observation that
soft-threshold shrinkage perfectly compensates for threoméffect in the case of normal errors. From
there, approximating the difference between soft- and-tfeesholding has led to (20).

The expression can be further expanded towards generaliaed validation for hard thresholding.

3.2 Akaike’s information criterion

For a given selectiorx, Akaike's information criterion can be defined a3C(x) = 2log L(x) —
2n1n~!, whereL(x) is the maximum likelihood value within selectian This criterion is an asymp-
totically unbiased estimator for the Kullback—Leiblertdisce between a given model and the true ob-
servational distribution. When the criterion is used fotimzation, the mirror correction in the case of
signal-plus-noise observations can be found with similguments as for Mallows’ criterion to be
m no ~2 ni 0'2 ﬁ(] O'2
AIC™(n1) = —— —log(270°) —2— — —2— (—2 - > , (21)
n n UA n UA
where, for\ = \,,, as defined in Lemma 23 = E(c?| — \,, <Y, < \,,) @andng = n P(le| < An,).
The variance estimat@?® = ngy ' S0 (Y; — 3;)% is based on squared residuals within the model under
consideration, while the variane€ itself, in practice, is estimated in a way independent frberhodel,
or at least in a robust way, such as using the median absautatidn. An alternative variance estimator,
based on generalized cross validation, is reported to be nofust, leading to better estimates of the
Kullback-Leibler distance.
For normal observations, the criterion reduces to

AIC™(ny) = —% — log(2162) — 222 { (22)

n

ny/n+ 2 n, ¢o(Any)
no/n — 2, 0o (Any)

The mirror effect in Akaike’s criterion is discussed in thepplementary Material.

4 The mirror effect in sparse regression models

4.1 The mirror effect on covariance matrices

For the development of (7) for the mirror estimator in theagahregression model (1), we define=

K™e with covariance matrix>, = K”Ko?. ThenE (|Pxel3 | X) = o*E(m%k Y, kxnx | X),

whereX,, x x is the submatrix ob:,, with the rows and columns corresponding to the 1'sXin In a

similar way, submatrices are defined for the 1's in the completary binary vectoX’' =1 — X.
Writing

E("?%E;,{XX"?X | X =)= tr(z;y,laca:EMX:ac,acac) + E(ng ’ X::B)E;],lacacE(nw | X =),

the second term is zero if we again consider a symmetricporandodel for3, so that the selection event
{X = x} preserves the symmetry in the error distribution. The redei of this section concentrates
on the first term, which is the trace of a product of two magicene first,E;}m, iS an inverse submatrix

of the unconditional covariance matrix. The second mataix the same rows and columns, indicated by
x, but this time taken from the matrix of conditional covadean for the selection event.
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The distribution of a fully unconditional quadratic ford %, ... n. could be found or simulated. In
case of normal observations, for instance, it would haveremgdized central chi squared distribution.
The selection everdtX = x}, however, carries information about the variablegjnwhich is not trivial
to formally express.

The selection is decomposed as the intersection of two &y&at= x} = X; N Xy, whereX; is
the event that the variables with labgl = 1 satisfy the selection criterion, ari}, is the event that the
variables with labet; = 0 do not meet the criterion. This decomposition allows toewvftat>,, x ., =
cov(ng | X) = cov{(ns | Xo) | X1}. As the even, operates om,, the inner conditioning is further
decomposed intOOV(% | XO) = COV{E(% | 77&:’) | XO} + E{COV(% | 77:3’) | XO}'

Summarizing the results so far, this section has decomptbeedirror effect into a sequence of
conditionings. Under the assumption of symmetry in theae@t the decomposition has led to

- 1 _ n
m(nl) = EU2U‘<E"}B:B [COV{E(niE ‘ Nz’ Xo, Xl)} + E{COV(no: ‘ Nz Xo, Xl)}]) - ;10’2' (23)

The conditionings on the events andX; must be made concrete successively and taking into account
the precise selection procedure. First, the conditionadeen vectom,, | X, is considered. From this
follow the expected values and covariances for the vector$n, | n.,Xo) and E(ng | 1z, Xo),
which are functions of they,, | Xo. Then the information provided b¥; is incorporated. Section
4.2 develops the expressions for the case of selection byadegle regression and normally distributed
errors.

Normality leads to,)x, ze = Sn.za' S e oV (M2r | X0), bias
,ifmng,mf the Schur complement &f;, ... in ¥,,. In the case wherer < n, ¥
denotes the Moore—Penrose generalized inversg, Qf ..

T .
D APE DIMMPR with 3y, 10 =
-1

27]7:1::1: - Envmm/ ET] n7mlw/

4.2 The mirror effect in least angle regression

Expression (23) can be evaluated by Monte Carlo simulatidsing a diagonalization made concrete
in Assumption 4, this section presents fast, approximatepetations that work well in practice. The
diagonalized computation of the conditional expectation@3) is facilitated if the selection evenig,
andX; are rewritten in terms afy, for which Assumption 3 is needed.

The idea is written out below for the case of least angle sjpa with normal errors. The least angle
regression routine (Efron et al., 2004) uses Mallo@/sas a stopping criterion. The stopping rule implies
an optimization in a high-dimensional model, inducing tp&rmization bias or mirror effect described in
this paper. The lasso shrinkage, incorporated in the legge aegression routine or in alternatives such
as iterative soft thresholding (Daubechies et al., 200dmpensates for the optimization bias. When
the model is used for estimation without shrinkage, the anieffect must be taken into account in the
stopping criterion during variable selection.

Least angle regression selects a variable according tdog@de values of the inner produais=
KT(Y — K BUARS) = KTe 4 KT(K 3 — KBLARS) The selection threshold is the,, = 1€l (ng:m)»
this is thength order statistic in vectoe of sizen, whereny = n — ny. The following assumption
expresses that the least angle regression routine perfeeths identifying the true model.

Assumption 3 For n — oo, least angle regression finds a selectioh of sizen] that satisfies two
conditions. Firstly, it is sparse, so that; = o(n). Secondly, it contains the true model except for
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possible small components, so that” K E(BLARS)— KT K 8|2 = O(n}). In other words, the expected
estimator within the selection satisfies the normal equatigp to a bias which is dominated by the
estimation variance.

In any subsequent selection containieig the differencee—n = KTK(B—B) will primarily depend on
the errors, not on the estimation bias. As the variable setets based o, the:th variable is selected
if |n;| is large and théth component ok TK (3 — () is low. The latter term is low if théth column
of K belongs to a multicollinear set of selected columns. Camitg the selection of a variable on a
large value ofn;|, we thus have that; (i) = P (X; = 1| |n;| > Ay,) depends on the relative positions
of the columns of{’ on then-dimensional unit disk. Assuming a uniform distributiontb& columns
over the disk, it holds that; (i) ~ n/m. Similarly, defininggo(i) = P (X; =0 | || < Apn,), We can
write ¢ (2) ~ 1 — ¢}, whereg; is the proportion of nonzeros ji. In sparse datd, — ¢} ~

The mirror effect is now computed in several steps, follapihe expressions of Section 4.1. Let
(o = VxT, 14 be the principal components of the marginal veejgr, that is,cov(n,) = Vm/Am/VmT, :
with A,/ a diagonal matrix containing the eigenvalues of the comagamatrix. A similar definition is
given for¢,. Also defined, = V.l c,. Thencov(ng | Xo) = Varcov(Ce | Xo) VL.

Assumption 4 We assume that conditioning on thg ball Xy = ﬂilmizo{@? < A2 }interms ofc, is
well approximated by conditioning on the rotated s = ﬂﬂxdzo{d? < )\311}. In this definition, the
label X¢ = 0 means thatl? < A2, . So, we assume thabv (Cz | Xo) ~ cov(Car | X3).

As the components af, are independent, the impact of the evKﬁtcan be computed for each compo-
nent separately, using the result for orthogonal desiga 6. (Writing o7 = var((y ;) = 0%Agr i, the
statement of (16) reads &C2, ; | 3/, > Ao )P(C2 > A2 )) = 07 P(C2r ;> A% ) +207 My oy (Any )

As this expression conditions on the magnitudé_,of;, the rules of total probability and Bayes are used
to link it to {X¢ = 0},

var(Gar | X¢=0) = {B (s 1 X = 0,161 <y ) P (X = 0116] < Ay ) PG < Any)

+ B (2 | X7 = 0,161 = M) P (X =011G] > Ay ) PIG = D) }
/P(X{=0).

After simplification and introducing{ = P (X¢ = 1| |G| > A\,) & n/m,andgd = P (XZ =0 | |G| < Any) &~
1, we get

d
Var(c:v’z‘ ’ Xg) ~ Uz‘2 |:1 _ Q12)‘m¢0i()‘m) :| (24)
’ 1 - Q%Q{l — @5, (Any)}

Expression (24) finds the elements of the diagonal covagiamatrixcov (¢, | X&), which approximates
cov(Cx | Xo). Multiplication by V, leads to the covariance matrixv(n, | Xo), which is used in
the computation ofov(n, | Xo); see Section 4.1. This matrix is then diagonalized@sn, | Xo) =
VaeAz VI, and¢, = V.I'n,. The same type of approximation replaces the eXgrity a rotated version,
leading tocov(n, | Xo, X1).

In simulations, the resulting approximate calculatiomdf.;) performs well, meaning that it allows
accurate estimation of the prediction error of a least sjestimator without shrinkage in a best
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False Positive PercentagleFalse Negative PercentagleFalse Discovery Percentade
5% | 50%| 95% 5% | 50% |  95% 5% | 50% |  95%
Cp, | 95| 161 21.9 0 0 0 68.0| 75.7 81.2
Cp,+2m | 05| 1.8 35 0 0 0 10.5| 25.0 37.5

Table 2: Quantiles for operating characteristics of leagtearegression with and without mirror correc-
tion.

term model. Since the approximation assumes that the legkt segression routine reveals the essential
terms in the model, problems may occur in cases where thificutt, in particular, when the number
of nonzeros in3 is large compared to the number of observations

4.3 Comparative simulation study

This section investigates the effect on the variable deledf a least angle regression scheme of using
the new stopping criteriofy, (X, ) +2m(n;) instead ofC), (X, ). Given the variety of design matrices
K and error models, this comparison cannot cover all possiédes. The simulation study generates
200 instances of the model in (1), with a new design makfieach time, whose elements are all inde-
pendently chosen from a uniform distribution fn1]. The number of observationsis= 300, while

the number of parametersis = 600. Each parametes; is generated independently from a distribution
on{—1,0,1} with probabilitesP(—1) = P(1) = p/2 andP(0) = 1 — p. The sparsity parameter is
taken to bep = 0.05. The errors are independently, identically distribufé, #2) random variables,
so that the signal-to-noise ratio, definedsa& = 101log(|| K 3||3/no?), equalslo.

Table 2 summarizes the empirical values of three operafiragacteristics. The first is the false
positive percentage in each simulation run, defined as h0€stithe number of false positives divided
by the number of zeros in the parameter veg@oiThe second is the false negative percentage, defined
as 100 times the number of missed nonzeros divided by the euofilmonzeros in the parameter vector.
The third is the false discovery percentage, defined as tr#stthe number of false positives divided by
the number of discoveries. For all three characteristiestable displays three empirical quantiles.

Both the originalC, criterion and the mirror corrected version find all true renag in3, there are no
false negatives. The original, criterion, however, selects much larger models than theomgorrected
criterion, thus containing far more zeros@ The median number of zeros selected bydhecriterion
amounts tal6.1% of all the zeros in the full model and to a majority ©f.7% of the selected variables.
Measured by the median values of the simulation study, thecied criterion selects onlly8% of the
zeros, leading to a minority &f5% of false positives among the selected variables. Largeteusnof
observations and parameters as well as other design nsatnag lead to lower false discovery rates.

Supplementary material
Supplementary Material includes a proof of Propositionhg, $tudy of the mirror effect for Akaike’s

information criterion, a few interpretations on the proofé\ppendix A, a discussion on mirror penalties
versus penalties proposed in Birgé and Massart (2007)s@usion on Assumption 2, and a note on
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accompanying software.
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Appendices

A Proofs of Lemmas 1 and 2

A.1 Proof of Lemma 1

The termP(A,, », | 8 = v) appearing in the expression (13) for the denominator of ¢a#)be decom-
posed into

P(An g | Bn =v) = / P(Ann, | Yo =y) fYn\ﬁn(y | v)dy.

Given an observatiory;,, = y, the event4,, ,,, occurs if and only if thenoth order statistic of the
remainingn — 1 observations is abové’,| = |y|, SOP(An e | Yo = y) = P(IYn|(ng:n—1) > |yl). This
is a non-increasing function ¢f|. Hence

P(An,no ’ /Bn - U) > /| ‘ ‘P(An,no ’ Yn = U) fYn\Bn(y ’ U)dy
yi<|v
= P(|Yal <|v]|Bn=2)P(Anng | Yo =v).

The second factor can we rewritten 8%A,, ., | Y, = v) = P{Upgm—1) > Fly,|(Jv])}, where
U(no:n—1) IS thength order statistic of. —1 independent uniform variables ¢ 1]. If @ x (p) denotes the
quantile function of, and ifv, , = Qy, {Qu,,.._,,(1 —~)} for a positive constant, thenP (A », |
Yo =vyn) =7 andP(Ann, | Bn = vym) 2> P ([Ya] < |vynl| Bn = vyn) 7. Sinceng/n — 1, we
can apply Lemma 3, stated below, to arriveat, ., (1 —7) = 1and thusP(Ann, | B = vyn) IS
bounded byy/2 in the limit. Moreover, sinceé’(A,, »,|3, = v) must also be a non-increasing function
of |v|, the same lower bound holds for any with magnitude below., ,,. For all these values, the ratio
{t(n1,v,) — t(n1,0)}/r(n1,v,) thus tends to zero ift(n1,v,) — t(n1,0)}/v2 tends to zero.

Among the values of,, with magnitude below, ,,, we first consider the case that is arbitrarily
close to 0. Then, for fixed, we have

Lo = lig 82 = 20 = [ e @aide = [ {0 =)L)} ) de
wherea, (z) = P(An n, | Yo = ). As before, we interpret the evedt, ,,, given the observatiol,, =
zasay () =1 - Fy, .y {Fly,|(Iz])} The order statisti€/,,,.,_1) of independent, uniform random
variables has a Beta distribution with me&(U,,,.,—1)) = no/n and variancear(U,,,.,—1)) = no(n—
no)/n%(n +1).
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Denotingg(e) = {(o2 — ¢*)f.(e)}’, we can write
L = / {g }dFU(no n— 1){F]Yn|( )} =F [g{_Q|Yn\(U(n0:n—1))} - g{Q|Yn|(U(non—1))}]

We approximate® [g{Q\y,,|(U(ne:n—1))}] BY 9{ Qv (EU(ngin—1))} = 9{Q)y,.|(n0/n)} — 0asng/n —
1 whenn — oo. The error of this approximation satisfies

2
(B [51Qu o )] ~ {@uglno/m})” < e [ (- 20

s€[0,1] ds n
(02 — ) ()}

The factorvar(U,,,.n—1)) = O(n1/n*) whenn — oco. The factor{(c?® — e?)f(e } / fiv,i(€)
bounded for finiteu becausef!(e) exists and is finite. It remains bounded for— oo thanks to the
sparsity condition in the statement of Lemma 1. The factodseto zero for infiniteuw because of the
error-free domination condition in Lemma 1, namely f.(e)/log f}y,|(e) — oo. This proves Lemma
1 for v,, arbitrarily close to zero.
For all the other cases(n1, v, ) does not converge to zero, whilgr1, 0) — [ (62—e€?) f-(e) de =
0. So it suffices to prove that(ni,v,)/r(n1,v,) — 0. We pick an arbltrarlly smalb and we set
A = Qv {QU(nO:nfl)(l — 5)} . Then,P(A, », | Yo = y) > difand only if |y| < A5, hence, for
anywv, R
S,n—V
t(ny,v) = / (0% — A f-(e)P(Apny | Y = v +e)de + O(55?).
—A§,n—V
If |vn| < v, but unbounded by a constant value, then(ny,v,) ~ 1/v2 — 0, while t(ny,v,) is
bounded by?. If |v,| < v,, and bounded by a constant, then

Aé,nfvn

lim (0% — ) fo(e)P(Apng | Y = v, +€)de = 0.

n—o0 B P——

This follows from Lemma 4, stated below, and from the fact thg, — oo for n — oo.
Finally, if |v, | cannot be bounded hy, ,, for any positivey, then forn sufficiently large,

Aé,nfvn

/ (0% — ) fo(e)P(Apny | Y = v, + €) de < 6,
7>‘6,n7'Un

asAsy, — vp < —vy, — —00, Where we tooky < 4. 0

The remainder of this section proves the auxiliary lemmasl above.

Lemma 3 LetU and V' be independent and symmetrically distributed around zewblat f;;(u) also
be unimodal. Defing” =V + U. Then, for any value € [0, 1], Qy|(a) > Qu|(c).

Proof. Itis straightforward to verify that for any valaec [0, 1], Q@ x(a) > Qy («) if and only if Fx (z) <
Fy (x) for any valuex € R. Second}y|(r) = Fy(z) — Fy(—=). We now prove that for positive it
holds thatFy (x) < Fy(x). Similar arguments hold for negative
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As the distribution ofU is symmetric and unimodal, we have for anyv > 0 that fy(z + v) <
fulz —v), soFy(z +v) — Fy(z) < Fy(z) — Fy(z —v) or Fy(z +v) + Fy(z —v) < 2Fp(z).
Then, using the symmetry &f, we can write

& 1
Fy(z) = / Fir(z — v) fy (v)dv = E{FU(x - V)} - §E{FU(95 — V) + Fy(z + V)} < Fy(z).
O
Corollary 1 LetW,, = V,,+U, whereV,, andU are independent and have symmetric distributions. Also
suppose thal/ has a unimodal distribution of. Then ifa,, — 1 for n — oo, we haveQw,,|(an) —

oo, whatever the distributions af,,.

Indeed,Q|Wn|(O‘n) > Q\U|(O‘n) — 00.

Lemma 4 Suppose that < p,(x) < 1 is monotone non-decreasing for negatiyeand monotone non-

increasing for positive: andlim,,,« p, () = 1 for any value of:. Also assume that = [~ _|f(u)|du
exists and is finite, and defifg = fﬁn_fc f(w)pp(u)du for constante. Then, forlim,, )\n = 00,

limy oo I =1 = ffooo flu)du

Proof. Con3|der an arbitraryand find a valug¢* such that\, for ¢ > ¢* is sufficiently large in the sense
that [, [ f(u)ldu+ [ A7C| f(u)|du < e. Then find a valuen* so that form > m* : pp (A=) > 1—¢,
and deflnm = max(f* *), then forn > n*,

oo —An—cC An—cC
\I—-1, = /)\ fuw)du + /_ flu)du + / Ff) {1 — pp(u)}du

n—=C 00 —An—cC

IN

A () du + / T ) ldu + / @I = pae)} < e Ae.

¢—cC 00 —Ap—cC

A.2 Proof of Lemma 2

Until now, we hadm(ni) ~ t(n1,0) = [%_(02 — €®) fo(e) P(Ann, | Yo = €) de.

Asinthe proof of Lemma 1, we use tha{ A, n, | Yo = €) = P(|Ya|(ngm—1) > le]) = 1-Fx,, (le]),
WhereXn is thength order statistic im independent observations froffi,|. Next we defingy; (e) =
(0% — %) f.(e) and we recycle the notati(y{e) = g1(e) + g1 (—e) for different purpose than in the proof
of Lemma 1. Finally we introducé/(e) = [ g(¢)dt. It holds thatG(0) = 0 = G(c0).

The value oft(nq,0) can then be expressed as

om0 = [ " g1(e) {1 Fy, (lel)} de = /0 T ge) {1 - Fx, ()} de = /0 " Gle) fx () de

—00

= FE{G(X,)}=F [G{Q|Yn|(U(n0:n—1))}] :
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This proof entails approximating the expression abov&y,y, [{ E(U(,y.n—1)) }] = f_Aﬁ (02—e2)f-(e) =
7(An), where, = Qy, | (EU(,y:n—1))- The approximation error satisfies

<E [G{Q‘YR‘(U@O:”,D)}] - G{Q|Yn|(n0/n)})2 < max {W]QE <U(n0:n,1) - %)2
o2 —e2)f-(e)]”
T R {( f|Yn|()6];( )} varUngm-n)-

Similar arguments as in the proof of Lemma 1 can be used héeefattorvar (U, .,—1)) = O(ny/n?)
whenn — oo. The first factor is bounded because of sparsity and doméassumed in the statement
of Lemma 2. Ultimately we find thalt(n;,0) — 7(A\,)| = O(n1’?/n), which is slightly faster than
r(n1,v,). Indeed, from Expression (8), and taking into account fiaf | A, ,,,) < o2, we easily find

that E{PE(Jy,,)} > “o?. That lower bound still holds when conditioning &h = v. O
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A Proof of Proposition 1

First we note that the denominator of (19) can be written as
PN 1< 1<
PE(BY) = = 2Pp(X;=0)+=Y E{(W,-8)*|X; =1} P(X; =1). 25
B = L L APXG =0+ 03 B{W = | Xi=1} PK=D). (29

We write

where
-\

[e.9]

ufe(u)du + / ufe(u)du,

k(\, B) = E {sign(B +¢)eX;B} = / A8

—00
andX = I(|5 +¢| > \), as before.

We also define the risk contribution of one component, as etifum of the threshold value and the
component value.

r(\B) =B P(IB+el <N+ E{*||B+e| = A} P(IB+¢] = V),

sothatRy (A, B) =n= 130 r(\, Bi).
We now establish upper bounds for the one-component relapproximation error

£\, B) = £(A,0)
r(AB)

depending on the behavior ¢f as A increases. The threshold increases as function. offhe sub-
sequent analysis shows that, whatever the behavior of &ydart component with increasing, the
one-component relative approximation error tends to zdiee dependence from in threshold and
component is omitted in the subsequent notations.

We distiguish betweefy3| — A bounded from above and the case whgte— )\ is positive and
unbounded.

First we consider the case that — I < 5 < XA + I, with I" an arbitrary real number. We start from
the lower bound, valid in any case,

A

r(\B) = 0 P(IB+¢| >N +B°P(|B+¢e| <A) > B2P(|B+¢| < N).



Furthermore we have far < 8 < X\ + I that the factor

P(|B+¢el <)X = PB+e<AN)—-PB+e<-N)=PlEe<A—p)—P<-2-0)
> Ple>T)—P(e>N),
and the same expression holds fak — I" < 8 < 0, with a similar proof.
This allows us to concentrate on the function

A

{K(0,8) = k(0,0)}.
We prove the following lemma:

Lemma 5 If E(s2*7) exists and is finite for some positiyeand the density functiofi (u) is symmetric
and has a converging derivative for— +oo, then the functiony (), 3), defined above, satisfies

Jim y{A, B(A)} =0,

for any function3(\) bounded byt (X + I'), wherel" is zero or a positive real number.

Proof. Consider an arbitrarily small> 0. We will prove that there exists a valué so that ifA > \* it
holds thaty{\, 5(\)} < é.

We first consider the case that\) for some) is arbitrarily close to zero. It is easy to verify that for
fixed A\, and symmetri¢f (u),

1. 0%k

lim 7(A. ) = A5 (0,0) = =) {)\fe(A)}/.

B—0 - 5

Then for any positive\, there exists a valugy, so that for anys with |3| < Sy,

YO B < A {Af-(N Y|+ 6/2.

Moreover, asF(s?) is finite, we havelim, .. u?f.(u) = 0. Sincelim, .. f.(u) exists, which for a
density function means it must be zero, we can apply de litddp rule to find

0= tim 0ty LAY i o utur oy

and thus
ILm u{uf-(u)} = 0.

Hence, there exists. & such that forx > A7,
MY < 8/2

We thus have found a valug, independent from\, for which

v\, B)| <0,



if |8 < Bo and\ sufficiently large.
Second, we consider the case thék) for a given value\ is small, but not arbitrarily close to zero.
More precisely, suppose thag < |5] < A — A/(1H2) with 0 < p, then

)\ o0
OB < 5 / wfo () du,

AL/ (1+p)
and
. o [ uf(u) du
)\h—>Holo)\/)\1/(1+p) ufe(u)du = $11_>H;O i)
xfe(x)
(

w00 (1 + p)z—C+0)

— 1 3+p
= Tr e @)

The latter limit must be zero in order fd?(s2**) to be finite. We thus have a valug above which
Y\ B)| < §if By < [B] < A= AVUFP),
Third, we concentrate on valugslose to the threshold valug namelyh — A1/ (140 < |5] < A+T.
As
k(A B < E(U])/2,
we can write, for\ — oo,
A

YA, B)| < m E(|U]) — 0,

leading to the conclusion that there exists a valg@above whict‘h()\, B)‘ <SiF A=A/ < 8] <

A. Taking \* = max;—1 2,3 A} concludes the proof of Lemma 5. O
In order to finish the proof of Proposition 1, we have to coesiohe more case, that of unbounded
(A) = 18-

If ((\) grows at least ag” with postivep, possibly smaller than, then the exponential decay of
f=(u) ensures thak [k(A, B) — (A, 0)] — 0, while (A, 3) converges to>.
Otherwise, that is, if (\) /A — 0, then the dominating term ik (A, 8) is

[e.9]

A(A B) ~ A /—C(A) ufe(u)du

The contribution to the prediction error is bounded fronoleby

r0.8) > {1+ C()\)}Q / Y

—2X—¢(A)
The ratio of these two converges to zero (as follows fromdpglde L'Hopital’s rule).
All together, we conclude that
AN B) — k(A0 A (N B) — k(A0
_ MAOB) KOO A Ie(O8) = 5(,0)
05 “nt T n 2im B P(Xi=0)  BeR r(X, B)

— 0,

for A — oo.



B The Mirror effect for Akaike’s Information Criterion

Akaike’s Information Criterion estimates the Kullback-hler distance of a model with respect to true,
unobserved distributions of the observations. ¢tfy) be the joint density ofi independent observa-
tionsY, and letfy (y; @) be a model for these observations, witparameters i, then the Kullback—
Leibler distance equals

KL{g, f(-.0 Z{E log g;(Y;) — Eylog fi(Yi;0)}, (26)

whereg; and f; are the true and model marginal densities. It is obviousttiatermsE, log g;(Y;) acts
as constants, and so model selection concentrates on the sum

Ho(0) = = 3" F,log /i(¥i:0)). @)
=1

In this notationH,, the subscripte refers to the model under consideration. As introduced iti@e
2, x is a binary vector of length where the ones correspond to the parameters that are extimahe
model, whereas the zeros are parameters that are not iddluttds particular model.

At this point, we restrict discussion to independent, haredastic, normally distributed data, that
is, the true model can be written 8 = 8 + &, wheree is a zero mean normal vector with constant
variances?. This true model belongs to the space of models consideredriselection procedure. Let
3 anda? in a modelz be values of the unknown parameters under consideratien, th

Ho(B.5%) = —ZE{ i — ﬁZ) %log@w&?)}
_ _%Z{W%Mg(zw#)}.

i=1

In practice, the value§ ando? follow from an estimation procedure within a selected model a
consequence, the outcome is rqndom,@aﬁd”aﬂ, and hence, so is the value Bf,(3,5?).

Since we cannot evaluaté,. (3, %) because of the unobservgcando?, we substitute the expected
value operatoiy, by its empirical counterpart, based on an estimator of th@own parameters, thus
defining

5 A I~ (i-B) 1
~2\ _ S A e 7 ~2
Q=(B,5%) =~ 2; { gz~ 5 loa(2m5?) b (28)
Imposing a variance estimator based on the residaals; n, ' >0, (Y; — Bi)2, we arrive at
1
Qo = —52 = —log<2m )
n

In this expressionpy = n — ny, wheren; is number of nonzeros in the model



The difference in expectation betwesh, (3,52) andQ, (3, 52) equals

E(@w—Hw):_l@+}E [%%Z{w+l}

g

(29)

=1

In the case of component selection in a sparsity model, $h§g = Y; z;, with x the (not yet random)
model under consideration, we have tadt = n,' Y.z Y2 and 30 (8; — 5:)? = Sier, 67 +
>ier, (Yi— $3;)?, whereZ, is the set of indices corresponding to the ones in vectandZ, the comple-
mentary set. Ag; andZ, are disjoint sets, both factors in the product of (29) havearamon random
term, so these factors are independent. Moreover, understwemption that; = 0 if i € Zy, we have
nyo?/o? ~ x2,,s0E(0?/5%) = ng/(no — 2). All this leads to

B(Qe = He) = =577+ 5

1 ng 1( ng n+n1>_n0(n1+1) ny+1

nop—2 n n(ng — 2) n

Defining Akaike’s Information Criterion as

AIC(2) = 20, — 2™+ (30)

n

we see thafZ{ AIC ()} ~ 2EH,(B,52), wheref; = Y; z; ands? = ng ' 7, (Vi — Bi)2.

If X is found by minimization o2{AIC(x)} for givenn;, thenZ is no longer a fixed, but a random
set and at the same time, the zero mean components in thisesetd onger independently, normally
distributed. The two factors in (29), conditionally indepent onX, are now dependent.

_In sparsity models, the, parameters of the selected model are the positions of theenmelements
in 3. The optimal value oAIC(x) for givenn, is obtained by choosing the, observations irt” with
largest magnitude. As in Section 2.3, stands for the random set of selected components and we let
o2 =mngyt Zie&ﬁl Y;2. We further denotéx.,,, and@,, for the values offf,, andQ,, corresponding to

ni

X, . We can write

m i€X),

~ 1ng 1 o? 1 e2 1 (2
1€Xn,

We have that

1 P 1
Ly ane Ly e
n n

1€Xn, i€X),
Again considering an independent, identically distridutgndom model foB, as in Section 2.3, we find
1 P no
o2 e oot = REE | Anpg).
ZEan
For the penalty in Akaike’s information criterion after eetion, this becomes

- ing 1 {a%a?—%E(eﬂAn,mH%E(3|An,no>}

% - —_
5 T3 E(YZ | Ann)
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As in Section 2.3, Assumption 2 and its implication (9), we oanito(n/n) terms to arrive at

Ing 1 (202 —2E(? | Ayn,) a2 ng
Knl) E =

E(O. — ~_Z0 2
(Qn, 2n 2 (€2 ] Apng)

=7
whereo? = E(e? | Anng)-

If we denotec; = E(e? | =\, < Y, < \,) andng = n P(|U| < A,), then for\,, defined in
Lemma 2 of the main article, this Lemma states that

o, 2 2y Mo, 2 2
n(U o4) n(U %)

where the asymptotic equivalence is relative with respethé risk; see the Lemma for details. We can
write

Furthermore, we have
0,24NU§+ <1—@> (02—02) :U§\+O< nl ),

so we can replace? by o3, leading to

2 2
AICm(nl) = 2Qn1 - 2E(Qm - Km) = _@ - log(27732) - 2ﬂ U_ - 2@ <U_2 B 1) ) (31)
n g
A
which is (21) in the article.
The mirror effect in Akaike’s criterion is illustrated indire 2. The setup for the simulation dis-
played in Figure 2 has been the same as that of Figure 1 in thearigle.

C Remarks about the proofs in Appendix A

Remark 1 The convergence analyses of both approximating expres$oorthe mirror rely on upper-
bounds for expressions of the form

(02— e fo(e))?

We have found that the second factor converges, but just tadtier than EPE(7,,). In practice,
however, the first factor converges as well. Indeed, inst#deking the maximum over all € R, we
can consider: in the neighborhood of,, = Q\y,(n0/n), which tends to infinity. The heavier tail of the
error-free distribution then induces faster convergeriogthe case of normal errors and a Laplace prior
for the noise-free data, for instance, additional conveigerate is of the orde® (exp[{log(n)}/2]/n),
which is just a little slower tha® {log(n)/n}.

Remark 2 The analyses of the approximating mirror expressions relyhe exact Beta distribution of
Uno:n—1), NECESSAry knowledge in the elaboration of its varianceis €kact calculation, however, is
based on the assumption that the observations, and so theseare mutually independent. Neverthe-
less, it can be conjectured that even for dependent or ctedlerrors, the approximating expression for
the mirror effect still holds true.
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Figure 2: Akaike’s information criterion for beat; term selection with mirror effect. The solid line is
minus the logarithm of the Kullback-Leibler distance foe firstn; variables of a sequence arranged
by an oracle that placed all observations in descending ofdeagnitude of3;. The dashed, increasing
line is Akaike’s information criterion in its classical forapplied to the:; largest observations ik.
This curve cannot be used to locate the correct extremumedKthiback—Leibler curve. Its reflection
with respect to the oracle curve coincides approximately Wie dot-dashed line, which is minus the
logarithm of the Kullback—Leibler distance for selectidrthe n, largest observations i. This curve

is well estimated by the mirror corrected expressions fagikél's information criterion, depicted in grey
colors, stated in Equation (21) of the main article. Whenuhegance is estimated using generalized
cross validation (solid grey line), the outcome is bettempared to a variance estimation using median
absolute deviation.



D The mirror penalty and the penalties of Birgé and Massart

The mirror correction can be seen as a modification of thelfyeinaa variable selection criterion, taking
the sparsity into account.
In the case of Mallows’s”, criterion, the mirror corrected version can be written as

~ 1 ~ n1 no
By(m) = =[5 - Y3 +251 0% +222{ 0% = B[ Anny) |

where 4,, ,, is the event that,, is among then, smallest observations in a sample of sizeand
ny = n — ng is the number of non-small observations, i.e., the size®btiected set of variables. In a
sense explained in the paper, the criterion can be appradhiy the expression

(1 - Z—Z) f-(w)du,

where f.(u) is the error density and,,, = Q)y|(1 —n1/n), with Q}y|(a) the quantile function of the
magnitude of the observatidn in a Bayesian modél” = 5 + ¢. The approximative criterion reduces,
in the case of normal errors, to

x ~ 2, oM 9 g [t
Ry~ Lig - w13 + 220 1 20

1
n _>\n1

~ 1, n
Byp(m) ~ 5 = Y13 +2"20 + 402Xy 60 Oy ),

whereg, (z) is the normal probability density function with zero meaxl amriances?.

An important benchmark in this respect is the minimum pgnaisulting from the analysis by Birgé
and Massart (2007).

Before comparing the mirror penalty with the minimum peyaditfirst list the main differences in
approach and results between their and my paper.

1. The newly proposed viewpoint of the problem as a mirroectflallows to establish a sparsity
correction for selection criteria other than Mallow€’s, the case of AIC being worked out in the
text. The mirror correction is also possible for error déesiother than normal.

2. The result of the new analysis is not a lower bound on thalperbut a data-dependent penalty.
The data-dependency is realized by a threshold vajyevhich is a quantile of the observations
Y in a Bayesian model. The Bayesian description has no fuithpact in the practical imple-
mentation if we estimatg,,, by its empirical counterpart. The threshold appears in thentds of
an integration of a function depending only on the errorritistion. The threshold thus expresses
exactly what the mirror effect is about: given the numberealésted variables, the threshold
corresponding ta; is a matter of the interaction between signal and noise, tce 8, has been
set, the correction necessary for its quality assessmamhitter of false positives created by error
effects only.

Birgé and Massart present a lower bound that avoids instargi estimators, although penalties be-
low the bound do not necessarily lead to problems (BirgéMadsart, 2007, page 42). The presented
lower bound is of the form

pengy(x) = Kz10? [1 + 2log(1/z1) + 2{log(1/x1)}1/2] ,

8
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Figure 3: Mirror penalty versus Birgé-Massart lower bouihd grey line: Mallows’s penalty term. In
solid black line: the mirror corrected penalty. In dashedlithe lower bound proposed by Birgé and
Massart. The mirror penalty is adaptive to the sparsity@dita. The steep increase is therefore deferred
to model sizes where errors start to play a role in the selegiocess.

wherex; = ny/n. The mirror penalty, presented in the paper, can be written a
pen,; (1) = 2r10° + 402)\m bo(Any)-

Figure 3 compares the mirror penalty with an implementatibtine lower bound for a typical case,
further explained below. We can draw the following conauasi.

1. Although at first sight, it seems that the mirror penaliylates the lower bound, the lower bound
should not be checked for its absolute value, but rathertfoslope. Indeed, while a constant
may be added to all possible models to ensure that penattegbave a minimum, a steep slope
discourages models with too many selected variables.

2. The figure illustrates the adaptive nature of the mirroraity: small models include only highly
significant variables. In the selection of those, there ingwd to take any error effect into account.
In that range, the distinction between significant varialglad the errors is so clear that the non-
linear selection acts as an oracle that knows the order @rtioe-free values gB. Such an oracle
can rely on Mallows’s penalty as a stopping criterium in stéhgy the right number of variables.
From a certain value of, depending on the signal at hand, the errors play a role isdhetion
procedure, resulting in a steep slope of the penalty in aé&eep these effects under control.
Birgé’s and Massart’s lower bound is not data-dependehigiwexplains the steep slope from the
beginning.

In order to verify that the mirror penalty increases suffitlie fast as soon as observational errors
affect the selection, we first consider the case where theredtsons contain only errors and no signal

(i.e.,8; = 0). Let)\%ol) = Q|(1 —n1/n) = ®_1(1 — z1), then the penalty

Pty (@1) = 2010% + 402206, (AY).

1 1
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Figure 4: Plot of functiony(z1) = 1 — Fj;{Qy|(1 — x1)} near origin. This function connects a data-
independent version of the mirror penalty to the actuah-@ataptive mirror penalty.

does not depend ofjy|. Moreover, it can be verified that

dpenmirO(xl) > dpenp)(71)
dzy - dzy

for 21 near0.

Next, definey(z1) = 1 — Fi.{Qy|(1 — x1)}, thenpen,;, (z1) = pen,;o{y(x1)}. The function
y(z1) is a bijection on[0, 1], whose behavior near 0 is depicted in Figure 4 for the sameshaxlin
Figure 3. In these figures. the error-free data are modefierti inflated double exponential variables,
i.e., fg(B | B #0) = (a/2)exp(—alB|), where in the figures the hyperparameter values 1/5 and
p = P(B | B # 0) = 0.05 were used. The model allows to elaborate analytically orerically all
expected values without any simulation. By definition, itdsothaty (1) = 1, while y(z1) < z1. The
function y(x;) is thus a bijective shrinking function. As a consequence,ld&havior ofpen,;.o(z1)
is inherited by the functiomen,; (1) = pen,;.o(y(z1)), but with some delay. This implies that
pen, ;. (1) shows a steep increase as soon as error effects appear @lebios process.

E The interpretation of Assumption 2
Assumption 2 is expressed within the setting of a random infmighe error-free parameters, as

E(B2 | Snny) = o(n1/n). Translated into a fixed parameter model with a ve@or= (8.1, 8n.2, - - - » Bun ),
this becomes an expected average over all not selécted

nioE ( Z ﬁgl) = o(ny/n).

i€
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This can be rewritten as

1 2 1 - 2 / 2 /
nOE Ze%l ﬁn,i - noE (izlﬁn,i ZGX ) nonZﬁnz ZGXTM)’
leading to the formulation = >"" | B2P(|Y;| < A) = o(n1n™1), as found in the article, right after the
statement of Assumption 2.

The assumption can be interpreted as a bound on the lostriafam due to false negatives or missed
discoveries. It imposes a three-fold condition:

1. the vecto3, is sparse;

2. the errors do not hinder a good separation between sigmifemd insignificant components/y.
More precisely, the tail of the error distribution is not tigaexcluding large noise components
that could interfere with significant componentsap;

3. the model sizen;, or the threshold, is well chosen by the variable selectigorahm, so that it
indeed separates between significant and insignificant coens.

The remainder of this section discusses the three congditioa quantitative way.

The notion of sparsity is defined in an asymptotic way, impgghat forn — oo, the vector3,,
becomes sparser, while its mean squared value is assumedctinbtant. This can be formalized by
defining an invertible, non-decreasing, positive functigy{x), defined on|0, 1] so that the ordered
absolute vector components sati§y,, ;) = 8, (i/n). Sparsity means thdt3,[|3 = 1, while for some
p < 2, Bn(z) € Ly(ry) with r, — 0. The L, ball with radiusr,, contains all functiongs for which
1Bullp < 7, where|| B, ||, = fo Bh(z)dz, for0 < p < 2.

We define an index of sparsmyl( ) € [0, 1] as the value for which

1—z1(n)
/0 ﬁg(x)dac = z1(n). (32)

This Lo-concentration index can be seen as the equivalent of thdexiin bibliometry (Egghe, 2006),
where sparsity corresponds to a low index valuer;ifr) is small, then the greater pait ¢ x(n)) of
the energy in the vectgs,, is concentrated the large components, accounting for offgcéion 1 (n)
of the total size of the vector. This concentration is gutrea for functions irl,, balls, as follows from
the next lemma.

Lemma 6 If 5,(x) € L,(ry), thenzi(n) < rip/@_p){l —x1(n)}.

Searching for a variable selection satisfylng , 52 ;P(i € X;, ) = o(n1), we look for model sizes
ny close tonzy(n).
Forn; = na:(n), and denoting?; (n) = [, o1 2) P{B =08 = Bn(x)} dz, we find

1 N 1—z1(n)
| B@)P13=018=u(o))do < / 82 () do + Fa(n) = wa(n) + Fa(n).
0 0

11



Neglecting the small probabilit{Y; < —\, | 8 = Bn(x)}, for A, = 5,{1 — z1(n)}, the second term
can be bounded by

1 1
x 2 — x) — x = s)ds
Filn) < /m(n)m) 1= B{fu() =M} dor = [ Xi(s)a

whereX; (s fll Ens x) dz ands, (s) = 1-5, H{Au+Q-(s)}, with Q. (s) the quantile function

J:l(n
of the error’s magnltud¢s\. Denote(,(s) = folfg"(s) B2(z)dz, then X1(s) = ((s) — x1(n). The
function X (s) can be verified to be non-decreasingsiand X (1) = 1 — z1(n). Forzi(n) < 2z1(n),
it is thus sufficient thafy {1 —xz1(n)} < z1(n). The analysis of this condition uses the following lemma
for Bp(x) € Ly(ry).

1_5" —
Lemma 7 For any&,, and¢,, = / B2 (z)dx, we have Cn = 71(n) < rr2w/2-p),
0 z1(n) — &
From the lemma, it follows thak; (s) < 15 /7P (21 (n) — €4(s)). We want, fors = 1 — 21 (n) that
X;(s) < 21(n), which is satisfied ift; (n) — &,(s) < 72"/ @™z, (n). We arrive at the condition

Bt M + QB ()] = B (W) < y20/(2=p)
1-— 5771()\11) -

Condition (33) can be understood as follows: addingth&argest noise component to the largest
signal component does not cause the signal rank gigléto increase substantially.

If Condition (33) is satisfied, then; = nxz1(n) can be taken as model size that meets Assumption
2. As the assumption controls the loss due to missed disesyet is automatically satisfied for any
larger modeln; > nx(n), while the smallest model; = nz;(n) tends ton;/n — 0 thanks to the
Lo-concentration i, balls.

(33)

F Software and reproducible figures

The figures and tables in this paper can be reproduced witthesuthat are part of the latest version of
Thr eshLab, a MatlaliR)software package available for download from

htt p:// homepages. ul b. ac. be/ ~maj ansen/ sof twar e/t hreshl ab. ht m .

See

1. hel p conpar e GCVSUREFDRebayest hr esh for Table 1;
2. help illustratelLARSel | Ofor Table 2;

3. help illustratenirroreffect for Figures 1 and 2;
4

. hel p conparem rrorpenal tyBi rgeMassart for Figures 3 and 4.
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