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Abstract

This paper integrates Burt-Adelson’s Laplacian pyramids with lifting schemes for the construc-
tion of slightly redundant decompositions. These decompositions implement multiscale smoothing
on possibly non-equidistant point sets. Thanks to the slight redundancy and to the smoothing oper-
ations in the lifting scheme, the proposed construction unifies sparsity of the analysis, smoothness
of the reconstruction and stability of the transforms. The decomposition is of linear computational
complexity, with just a slightly larger constant than the fast lifted wavelet transform. This paper also
discusses several alternatives in the design of non-stationary finite impulse response filters for a sta-
ble multiresolution smoothing system. These filters are adapted to each other and to the locations of
the observations.

1 Introduction

Multiscale decompositions for non-equispaced data have always been a non-trivial extension of the clas-
sical, equispaced, dyadic wavelet transforms. In the non-equidistant case, basis functions cannot be
dilations and translations of a single mother or father function. Indeed, the construction of these basis
functions, such as the one used in the lifting scheme [18, 19], starts off from the locations of the observa-
tions. When these observations are not equidistant, it is impossible to define functions that are shifts of
each other, neither is there a precise notion of scale, because the distance between adjacent observations
is not fixed. As a consequence, important parts of the theory supporting wavelet analyses need to be
reworked. Other constructions, including [3, 14, 1], stay within the classical wavelet decomposition, but
processing irregular samples may require preprocessing ormay be suboptimal from the computational
point of view.

The missing parts in the theory behind non-equispaced wavelet decompositions are related to prob-
lematic behavior of some of these decompositions in practical situations. Four issues in the design of
a decomposition can be identified. The first issue is perfect reconstruction (PR). The transform should
be invertible. In general, this condition is fairly easy to satisfy, especially in a classical lifting scheme,
where each operation is readily invertible. In other cases,such as the variant on lifting adopted in this
paper, it is an algebraic matter that can be solved scale by scale. The second issue is sparsity of the
analysis. In a lifting scheme construction, this objectiveis fairly easy to control. The third issue is the
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numerical condition of the decomposition and reconstruction. The condition can be controlled at two
levels. The first is scale-to-scale condition, i.e., the error propagation when proceeding from a fine scale
representation to one scale coarser with fine scale details.This one-step condition can be managed with-
out too many difficulties. More problematic is the overall numerical condition, that is, the numerical
condition when decomposing data at arbitrarily fine scale into details at many scales. The fourth issue
is smoothness of the basis functions at the synthesis side. These basis functions can be retrieved using
a numerical procedure called subdivision. This subdivision scheme, further explained below, essentially
finds the basis function by gradual refinement at successive scales. With observations at regular loca-
tions, the refinement takes place at midpoints in each step, and the infinite refinement scheme can be
analyzed completely by looking at a single step, resulting in a two-scale equation. When the refinement
is irregular, the two-scale equation itself becomes scale-dependent and therefore difficult to analyze.

Throughout this paper, smoothness at reconstruction and numerical condition will turn out to be
somehow contradictory objectives. The two objectives can be reconciled by replacing the critically down-
sampled lifting scheme by a redundant alternative. The result can be seen as a lifted and non-equispaced
version of Burt-Adelson’s Laplacian pyramid [2]. Lifted pyramids have been proposed in earlier work
[10] as well, in a different context, however, and with different design objectives. As the transform is
redundant, the inverse transform is not unique. We propose areconstruction with an additional smooth-
ing, thereby generalizing results for equispaced data [8, 15]. As the pyramid filter operations in this
paper are non-stationary, due to the non-equispaced natureof the observations, special attention is paid
to the grid-adaptive design of these sparse filter matrices,satisfying perfect reconstruction, and leading
to smooth reconstructions.

The paper is organized as follows. Section 2 summarizes the principle ideas of the lifting scheme,
whose tools will be adopted in the subsequent sections. All further sections describe original contribu-
tions of this paper. Section 3 replaces interpolation by smoothing as one of the basic techniques used in
a lifting scheme. Multiscale smoothing should be more robust to numerical errors and it should lead to
smoother reconstructions. The section explains that the incorporation of smoothing into lifting requires
the transform to become overcomplete, which leads to a nonequispaced version of a Laplacian pyramid.
The remainder of the section is devoted to design properties, including perfect reconstruction and van-
ishing moments, and their translation into design conditions. Section 4 illustrates the new multiscale
decompositions with an experiment on denoising, followed by a summary and discussion of the main
results in Section 5. Section 6 briefly describes the MatlabTMimplementation that comes with this paper.

2 The lifting scheme

2.1 Lifting steps

A wavelet decomposition is implemented as a sequence of filter banks, each having a high pass and
low pass output. The low pass output serves as input of the next filter bank. The repeated low pass
filtering has a telescoping effect, creating a contributions at different scalesj. The lifting scheme is an
implementation of a filter bank. All filter banks used in classical wavelet theory on equidistant point sets
can be decomposed into a sequence of lifting steps [6]. Thoselifting steps operate between two subsets
of the input data, as illustrated in Figure 1. In this section, we focus on a filter bank that operates at scale
j. That implies that we suppose that its input comes from the output of a previous filter bank at scale
j + 1, while one of its output branches is further processed by a filter bank at coarser scalej − 1. In a
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Figure 1: General lifting scheme and its inverse. The dots between the split stage and the actual lifting
steps represent the possibility of having a longer sequencethan just two steps.

lifting implementation, the input of the filter bank is partitioned intoevenandodd indexed subsets. That
is, if Jj is the set of indices into the data vectorsj, then lifting starts by splitting it intoJj = e∪ o, with
e ∩ o = ∅. This expression does not impose a strict even-odd alternated partitioning. Other splits are
possible, and sometimes also recommended, for instance if the observations are at irregular time points
[20, 21]. The actual lifting operations start after the split and appear in two kinds, depending on the
direction they work. Dual lifting operates from the even onto the odd branch, and can be interpreted
as a prediction of the odd indexed values, based in the evens.The difference between observed value
and neighbor based prediction is typically small, and acts as a wavelet or detail coefficient at the current
scale. Primal lifting operates on the odd branch, and can be interpreted as updating the even values before
proceeding to the next, coarse scale. The update can be seen as anti-aliasing in signal processing terms,
as numerical stabilization, or as variance reduction, smoothing in statistical terms.

A general lifting scheme consists of a sequence of mostly alternating dual and primal lifting steps.
As an illustration of the formalism, the remainder of this section elaborates the case of a single dual
step followed by a single primal step. Denote byPj the dual (prediction) lifting operation at scalej.
It is a nj,o × nj,e matrix, wherenj,o = |o| andnj,e = |e| are the cardinalities ofe ando respectively.
Similarly, thenj,e × nj,o matrixUj stands for the primal (update) lifting operation. Then, theforward
lifting transform is

wj = sj+1,o − Pj · sj+1,e (1)

sj = sj+1,e +Uj ·wj (2)

The inverse of the operation follows immediately by inversion of the expressions above.

sj+1,e = sj −Uj ·wj (3)

sj+1,o = wj + Pj · sj+1,e (4)

2.2 Underlying basis transform

In order to associate basis functions with this transform, we define a functionfj+1(t) = Φj+1(t) · sj+1,
whereΦj+1(t) is a vector ofprimal basis functions, i.e.,Φj+1(t) = [ . . . ϕj+1,k(t) . . . ]. The objective is
to find an expression that defines the set of basis functionsΦj+1(t). This will be the two-scale equation,
which for our setup takes the form of Expression 8. Two-scaleequations can be seen as the central tool
in wavelet theory.

3



Furthermore, the coefficientssj+1 are thought to be inner products offj+1(t) with a dual basis̃Φj+1,
i.e.,

sj+1 = Φ̃T
j+1 · fj+1(t),

this expression being a slight abuse of notation (inspired by its discrete analogue), denoting the vector of
inner products[. . . 〈ϕ̃j+1,k, f〉 . . .]

T .
One step of a (lifted) filter bank transforms this decomposition into another one

fj+1(t) = Φj(t) · sj +Ψj(t) ·wj,

with
sj = Φ̃T

j · fj+1(t), wj = Ψ̃T
j · fj+1(t), (5)

The functions inΨj(t) are named primal or synthesis wavelets, as they are used uponreconstruction of
a signal. Likewise, the functions iñΨj are dual or analysis wavelets, as they are used to decompose a
function into a (primal) lifting basis.

2.3 Dual basis equations

Plugging in (5) into (1) leads to the dual wavelet equations.The functionfj+1(t) can be omitted, since
the expression would hold foranyfj+1(t). Taking the transpose finally brings us to

Ψ̃j = Φ̃j+1,o − Φ̃j+1,e · P
T
j (6)

The two-scale equation follows similarly from (2)

Φ̃T
j = Φ̃T

j+1,e +Uj · Ψ̃
T
j

Taking transpose and plugging in (6) leads to

Φ̃j = Φ̃j+1,e · (I − PT
j U

T
j ) + Φ̃j+1,o · U

T
j (7)

2.4 Subdivision and primal basis, design of dual lifting steps

The primal basis functions follow from a different analysis, namely subdivision. We start from the
observation thatϕj,k = Φj · δk +Ψj · 0 with δk the Kronecker-delta at indexk, i.e.,δk,i = 0 for i 6= k
andδk,k = 1.

Feeding the inverse step with the inputssj = δk andwj = 0 leads tosj+1,e = δk andsj+1,o =
Pj · δk, which allows to writeϕj,k = Φj+1,e · δk + Φj+1,o · Pj · δk. We can repeat the same argument
for all k, i.e., we can feed the inverse step withI = [. . . δk . . .], to arrive at the two-scale equation (also
known as refinement equation)

Φj = Φj+1,e +Φj+1,o · Pj . (8)

If the input iswj = I = [. . . δk . . .] andsj = 0, then we arrive at the wavelet equation wavelet
equation

Ψj = −Φj+1,eUj +Φj+1,o · (I − PjUj). (9)

Solving the two-scale and wavelet equations reveals the underlying synthesis basis, and thus the
properties of any reconstruction in such basis. An important numerical solver is the actual subdivision
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scheme. It consists of iterated application of the two-scale equation in order to further refine the outcome
at scalej + 1 in terms of basis functions at increasingly finer scales. That is, we writeΦj or Ψj as
linear combinations ofΦj+1, thenΦj+2 and so on, by repeated application of (8) on its own output, and
with incrementing indexj. The hope is that the scaling functionsΦj “converge” to infinitely narrow
Dirac impulses, so that the sequence of coefficients in the linear combination reflect the properties of the
original basis functionsΦj orΨj .

It should be noted that the refinement for wavelet functions in Ψj involve the wavelet equation only
once, followed by an infinite refinement through the two-scale equation. The wavelet equation writes
wavelet functions as a simple linear combination of scalingfunctions, and thus it has no fundamental
impact onindividual limiting properties of the functions, in particular on their smoothness. The ensemble
of wavelet equations at each scale affects thejoint properties of the basis, such as its numerical stability
(see Section 2.5).

Besides on the smoothness of the primal basis, the dual lifting step has an immediate impact on the
sparsity of the transform. While smoothness of subdivisionis hard to analyze, the sparsity is fairly easy
to control. The dual lifting is a prediction that can be designed such that certain types of smooth functions
are predicted exactly, leading to all zero detail coefficients. These smooth functions are mostly polyno-
mials: the number of dual vanishing moments is the largest integerñ for which

∫
∞

−∞
Ψ̃T

j (t)t
ñ−1dt = 0.

It corresponds to the degree of polynomials with detail coefficients zero. All functions that can be ap-
proximated well by piecewise polynomials then decompose into wavelet coefficients that are close to
zero, except at the locations of jumps. The construction of the prediction is often based on interpolation
in the evens, for reasons of continuity that become clear in Section 3.

This construction naturally involves the location of the design points. The irregularity of the obser-
vations is thus taken into account [19]. This has the benefit that the basis functions will be grid-adaptive.
On the other hand, the two-scale equation will be grid-adaptive, and so it will be different at each scale.
This complicates the convergence analysis of the subdivision scheme. The multitude of possible refine-
ments and arbitrary grids leaves little hope for general results about smoothness of subdivision. Notable
exceptions include subdivision by cubic polynomial interpolation [4].

2.5 Design of primal lifting steps, primal moments

Wavelet basis functions are linear combinations of scalingfunctions, such that their integrals and possibly
also their higher moments are zero. Define the moments of the primal scaling and wavelet basis functions
as

M
(p)
j =

∫
∞

−∞

ΦT
j (t)t

pdt

O
(p)
j =

∫
∞

−∞

ΨT
j (t)t

pdt,

then we can integrate the two-scale- and wavelet equations.
Integrating (8) leads to

M
(p)
j =M

(p)
j+1,e + PT

j ·M
(p)
j+1,o (10)

Integrating (9) leads to
O

(p)
j = −UT

j ·M
(p)
j+1,e + (I −UT

j P
T
j ) ·M

(p)
j+1,o (11)
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Using the former expression to eliminateM (p)
j+1,e from the latter, we can write

O
(p)
j =M

(p)
j+1,o −UT

j ·M
(p)
j

This can be seen as the second step in a lifting scheme whose first step is (10). The first step transforms
even fine scaling coefficients into coarse scaling coefficients, so this step is an update. The second
step defines the details, so this step is prediction. We thus have anadjoint (or conjugate) update-first
lifting scheme with prediction operatorUT

j and update operatorPT
j , while the original lifting schema is

a prediction-first one.
Design of the update lifting step follows often from imposing vanishing moments in the primal basis,

i.e., O(p)
j = 0. The resulting expressionM (p)

j+1,o = UT
j · M

(p)
j can be seen as a set of equations in

unknownsUj (for givenPj, whose design determinesM (p)
j ). Primal vanishing moments contribute

to numerical stability. For instance, if the basis functions have no zero integral (i.e., one vanishing
moment), then the zero function can be decomposed in a nontrivial way and the decomposition converges
in quadratic norm (inL2) [13]. Without zero integrals, the basis functions cannot be called real wavelets.
Such basis is known as a hierarchical basis. Nonlinear processing (such as thresholding) in a hierarchical
basis is beneficial, but only in function spaces such as Sobolev spaces that impose more smoothness than
L2 [16]. Higher order primal vanishing moments are less crucial, and may be replaced by other criteria
that promote anti-aliasing, numerical stabilization, smoothing and variance reduction.

While the update step is necessary to impose zero integrals,and hence numerical stability inL2, it
may also — inevitably — introduce other forms of numerical instability. In particular, if the grid of data
points is very irregular, showing large gaps adjacent to small gaps, then noisy fluctuations on small gaps
may be blown up in an interpolating prediction that is evaluated across a large gap. In matrix terms, the
prediction operation coefficients are unbounded. The scaling functions that come out of the subdivision
have heavy side lobes, which almost overlap with similar lobes in adjacent scaling functions. The two
adjacent scaling basis functions are far from orthogonal. An update step that creates zero integral wavelet
functions out of these, cannot undo the obliqueness of the basis. Possible remedies consist of avoiding
as much as possible strongly inhomogeneous grids for interpolating prediction. This can be done by
relaxing the strict even-odd split into a more careful partitioning [20] or by constructing the interpolating
prediction on a different subset of the evens if the closest evens to a given odd are too close to each other
[21]. Such remedies are limited in the sense that they cannotideally take care of all possible sample
configurations.

3 Smoothing prediction

3.1 Kernel and local polynomial smoothing prediction

In order to bound the prediction coefficients, interpolation can be replaced by smoothing in the prediction.
This paper investigates the use of kernel smoothing and extensions as basic operations in the prediction
step. The prediction coefficientsPj,k,ℓ at scalej in the expression

wj,k = sj+1,2k+1 −
∑

ℓ

Pj,k,ℓsj+1,2ℓ,

6



are filled in byPj,k,ℓ = Pj,k(tj+1,2ℓ+1; tj+1,e), where

Pj,k(t; tj+1,e) =
K

(
t−tj+1,2k

hj+1

)

∑2j
i=1K

(
t−tj+1,2i

hj+1

) , (12)

whereK(t) is a kernel (a positive function),hj+1 is a scale dependent bandwidth, andj+1,i is theith
component of the grid vectortj+1. Kernel prediction coefficients constitute a convex combination of the
adjacent observations, i.e., the coefficients are positiveand sum up to one. Such prediction is numerically
stable.

Kernel prediction is a special case of local polynomial prediction [9], which takes the formPj =
[. . . P T

j (tj+1,2k+1; tj+1,e) . . .]
T wherePj(t; tj+1,e) is a row matrix of length equal to that oftj+1,e,

depending on variablet and defined by

Pj(t; tj+1,e) = T(ñ)(t)

(
T
(ñ)
j+1,e

T
Wj+1,e(t)T

(ñ)
j+1,e

)
−1

(
T
(ñ)
j+1,e

T
Wj+1,e(t)

)
. (13)

In this definition, we useT(ñ)(t) = [1 t . . . tñ−1], with ñ ∈ {1, 2, . . .} the order of the prediction,̃n− 1
being the polynomial degree. The caseñ = 1 corresponds to kernel prediction. Other notations adopted
in (13) include the vectortp, which stands for pointwise exponentiation of a vectort. This allows to
define the matrixT(ñ)

j+1,e = [1 tj+1,e . . . t
ñ−1
j+1,e]. Finally,Wj+1,e(t) is a diagonal matrix of weights with

elements(Wj+1,e)kk(t) = K
(
t−tj,e,k
hj+1

)
. Expression (13) takes the form of a locally weighted least

squares polynomial. The expression is locally weighted in the sense that the weights depend on the
value oft through the kernel function. Centering and orthogonalization lead to numerically more stable
expressions than (13). It should be noted that general localpolynomial prediction is not convex. It is,
however, possible to replace the weighted least squares formula in (13) by other constructions within the
kernel, see Section 3.7.

Kernel and local polynomial predictions have an important drawback. They are not continuous,
meaning that

lim
u→tj+1,2k

Pj(u; tj+1,e) · sj+1,e 6= sj+1,2k.

The continuity condition is essential for smooth subdivision, which explains the popularity of interpola-
tion in subdivision schemes. An example of subdivision withsmoothing prediction is simulated in Figure
2.

In order to overcome the discontinuity upon subdivision, the even indexed input has to undergo the
same smoothing operation. As a consequence, the predictionhas to be evaluated on both odds and evens
before being fed to all the fine scale coefficients. The detailbranch of the lifting scheme in Figure 3 thus
contains all fine scale indices, while the coarse scale branch keeps only the even indices from the fine
scale set.

The scheme can be translated into the following algorithmicsteps. Given the observationsYi =
f(ti) + εi, initialize the lifted smoothing transform as

JJ = {1, . . . , n} (index set)
sJ,k = Yk
tJ,k = tk
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Figure 2: Subdivision steps (1− 2− 3−∞) with smoothing prediction. We start with a single nonzero
scaling coefficient (and all wavelet coefficients are zero).The refinement thus leads to a scaling basis
function. But as the predictions (in grey, broken lines) arenot interpolating, they are not close to the
immediate even neighbors, leading to a fractal like limiting function. In each step, the boxes represent
the values in the even locations, the grey shaded circles correspond to the predicted values in the odds.
In the next step of the refinement, boxes and circles togetherbecome boxes (evens).
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Figure 3: Lifted smoothing and an inverse transform. The inverse transform is not unique, because
the decomposition is redundant. The symbols(↓ 2) and(↑ 2) stand for subsampling and upsampling
respectively and are defined in the text. They emphasize a change of dimension in the signal being
filtered. In practical implementations, upsampling and subsampling are integrated into the adjacent filter
or copy operation.
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The initialization is identical to that of the classical, critically downsampled lifting scheme. Next,iterate:

• Split becomesCopy. All values are declared odds and half of them are copied intothe even set.
In the flow chart, this is represented as a full copy followed by a subsampling(↓ 2) on the even
branch. Formally, we have

Jj = e = {2k|k ∈ Jj+1}

o = Jj+1.

The contrast with critically downsampled lifting lies in the definition of the odds, which iso =
Jj+1\Jj .

The number of detail coefficients at each scale is approximately twice the number in a critically
downsampled (fast) wavelet decomposition. Hence, the entire transform is overcomplete by a
factor 2. This redundancy is smaller than thelog(n) factor in a nondecimated translation-invariant
wavelet transform. The overcompleteness is the price to reconciliate smoothness of reconstruction
and numerical stability.

• Predict the odds by the evens.

wj = sj+1 − Pj · (↑ 2)sj+1,e.

The symbol(↑ 2) stands for upsampling. Strictly speaking, this is adding zeros between the
elements ofsj+1,e, so that the result has the same length assj+1. The prediction matrixPj is then
a square matrix. In practice, the size expansion fromsj+1,e to sj+1 is of course incorporated into
the prediction.

• Identify sj = sj+1,e.

As the transform is overcomplete, its inverse is not unique.The most straightforward reconstruction,
depicted in Figure 2, simply inverts the prediction bysj+1 = wj + Pj · (↑ 2)sj . This already delivers
all fine scale coefficients on the odd branch. The inverse transform determines the building blocks of
the reconstructions. These building blocks do no longer constitute a basis, but a frame. As will be
illustrated in Section 3.3, finding the frame functions proceeds in exactly the same way as with the
critically decimated lifting scheme explained in Section 2. If using the correct matrices, all tools in
critically decimated lifting can be copied for the overcomplete version as well.

3.2 Kernel smoothing prediction with pre-smoothing

Given that the reconstruction uses the even branch for the prediction only, exactly the same reconstruction
still holds if the even branch is prefiltered before being used for prediction in the forward phase. Smooth-
ing before subsampling reduces the aliasing, numerical, orbiasing effects of simple subsampling. The
resulting forward scheme is depicted in Figure 4, and corresponds to the following algorithm.

• Copy the full input on both even and odd branch . That is,

e = Jj+1

o = e.

9



2

2

H
~

In

s

− w

P

22

+

PH

+

Out

Figure 4: Lifted smoothing with pre-filtering on the evens. This can also be seen as a nonequidistant
Laplacian pyramid. The inverse transform is not unique. Theoption H = 0, corresponding to the
scheme in Figure 3, is still one of the solutions that lead to perfect reconstruction, independent from̃H.
For the sake of readability, the diagram hides the dependence of the filters on the scalej.

• Pre-smooth the scaling coefficients,thenkeep the evens, i.e., subsample. This subsampling re-
places the split in the version without pre-smoothing. The pre-smoothing or pre-filtering takes the
form

sj = (↓ 2)H̃j · sj+1.

• Predict, as before, but now the prediction is constructed on a set of pre-smoothed values.

The variant with pre-smoothing can also be seen as a nonequidistant sample version of Burt and
Adelson’s Laplacian pyramid [2]. In the literature on this pyramidal scheme, the operation(↓ 2)H̃j is
often termedreduce, while the operationPj(↑ 2) is known asexpand.

Since the inverse transform of Figure 3 can still be used, independently from the design of the pre-
smoother̃Hj , that pre-smoother can easily be made non-linear or data-adaptive.

The inverse transform is, however, not unique, and in a more general form an additional filterHj

may operate in the reconstruction from details to scaling coefficients. Those details were found by the
expression

wj =
(
I− Pj(↑ 2)(↓ 2)H̃j

)
sj+1. (14)

On the other hand, simple inversion of the prediction in analysis leads tosj+1 = wj + Pj(↑ 2)sj .
This expression provides the argument for the simple inverse transform in Figure 3, but it also imposes a
condition onHj in Figure 4. Indeed, in the scheme of Figure 4 the reconstruction ŝj+1 is

ŝj+1 = (I + Pj(↑ 2)(↓ 2)Hj)wj + Pj(↑ 2)sj

= (wj +Pj(↑ 2)sj) + Pj(↑ 2)(↓ 2)Hjwj.

Imposing that̂sj+1 = sj+1, and filling in the simple inversion into the first half of thisexpression, we
find that, for anysj+1, Pj(↑ 2)(↓ 2)Hjwj = 0, wherewj results from (14). This implies the perfect
reconstruction condition

Pj(↑ 2)(↓ 2)Hj

(
I− Pj(↑ 2)(↓ 2)H̃j

)
= 0. (15)

Assuming that the matrixPj(↑ 2) has full rank, multiplication on the left with its left inverse and on the
right with Pj(↑ 2), leads to

(↓ 2)HjPj(↑ 2) =
(
(↓ 2)HjPj(↑ 2)

)(
(↓ 2)H̃jPj(↑ 2)

)
.
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The optionHj = H̃j has been proposed and elaborated in [8]. The optionHj = 0 is a trivial solution.
For any optionsHj andH̃j with full rank reduce matrices, the condition above can be read as matrix
(↓ 2)H̃jPj(↑ 2) having eigenvalue 1, with geometrical multiplicity equal to its size. This implies the
condition that

(↓ 2)H̃jPj(↑ 2) = I. (16)

For a full rankedHj to exist in the synthesis, the presmoothing and prediction in the analysis thus needs
to be biorthogonal.

3.3 Design of biorthogonal filtersPj , H̃j and Hj

The discussion in Section (3.2) has lead to two expressions,(15) and (16), forperfect reconstruction
in case the synthesis uses a presmoothingHj. In absence of pre-smoothing at the synthesis, perfect
reconstruction is guaranteed by the lifting scheme itself.No additional condition is necessary in that
case.

Nevertheless, it makes sense to impose (16), even ifHj = 0, or at least a weaker form of that con-
dition. Expression (16) can be interpreted as conditions for H̃j, given a choice ofPj . Before motivating
the use of (16) with arguments other than perfect reconstruction involving a filterHj, it is necessary to
elaborate on the prediction operatorPj . The prediction operator is the only one that plays a role in the
subdivision scheme. It thus determines thesmoothness of the subdivision limit, and related to that,
the class of functions that can be produced by subdivision, i.e., the functions that can be represented
with all detail coefficients zero. For good smoothness properties, it is important that all constant and
linear functions are among that class [5]. Kernel smoothingdoes not reproduce linear functions, local
linear polynomials do. This condition can be understood as follows. A scheme aiming at smooth recon-
structions on a given grid should be able to reproduce that grid, i.e., the identical observationsy = t.
Otherwise the structure oft will be reflected in the reconstruction ofy. This paper thus suggests to use
local linear polynomials, rather than kernel smoothing.

Since the decomposition is overcomplete, it is not guaranteed that function thatcanbe represented
with all details zeros, actuallyhasall its details zero in a decomposition. The value of the details in a
decomposition depend on all operations used in that decomposition, includingH̃j , which plays no role in
the analysis of the subdivision scheme. Imposing (16) is sufficient to guarantee that all functions that can
be produced by subdivision have zero details in a decomposition. Indeed, given arbitrarysj, let sj+1 =
Pj(↑ 2)sj , thensj+1 can be represented with zero detail coefficients at scalej. Those detail coefficients
follow from (14). Plugging in (16) into (14) yields a zero identity for anysj . As elaborated in Section
3.5, the expression can be weakened by imposing the zero details only for polynomials, such that the
polynomials produces by the subdivision correspond to dualvanishing moments in the decomposition.

The pre-filter in the reconstruction,Hj , can be used to provide the synthesis withprimal vanishing
moments. That is, if the decomposition has lead to detailed coefficientswj at successive scalesj, then
the synthesis reconstructs a function

fJ(t) = ΦL(t) · sL +
J−1∑

j=L

Ψj(t) ·wj,

where

O
(p)
j =

∫
∞

−∞

ΨT
j (t)t

pdt = 0,

11



for a designer’s choice ofp. Define the scaling moments

M
(p)
j =

∫
∞

−∞

ΦT
j (t)t

pdt.

The valuesM (p)
j follow from the subdivision scheme, hence from the choice ofPj . The wavelet equation

can be found by plugging in the identity matrixI into the reconstruction diagram, which leads to

Ψj(t) = Ψj(t) · I = Φj+1(t) ·
(
I− Pj(↑ 2)(↓ 2)Hj

)
.

Imposing zero momentsO(p)
j = 0 then leads to the primal moment equations

M
(p)
j+1

T(
I− Pj(↑ 2)(↓ 2)Hj

)
= 0. (17)

This equation can be used to designHj in function of the prediction operatorPj. Afterwards, the perfect
reconstruction condition (15) can be used to find corresponding operations̃Hj . Condition (15) can also
be used to translate (17) into a condition forH̃j . Indeed, the combination of (15) and (17) implies
immediately that

M
(p)
j+1

T(
I− Pj(↑ 2)(↓ 2)H̃j

)
= 0. (18)

This equation can be interpreted as follows. Obviously,H̃j has an effect on the wavelet coefficients, but
not on the wavelet basis functions. If (18) is satisfied, thenthe coefficientswj are such that at each scale
j, ∫

∞

−∞

tpΨj(t)wjdt = 0, (19)

independent from which synthesis is being used. Thisglobal primal momentcondition ensures — thanks
to the overcompleteness of the transform and whatever primal wavelet function will follow from the
reconstruction — that the decomposition into detail functions

∆fj(t) =
∑

k

wj,kψj,k(t),

satisfies
∫
∞

−∞
∆fj(t)t

p = 0, even if
∫
∞

−∞
tpΨj(t)dt 6= 0.

The global primal moment condition (19) of the decomposition is inherited from local primal mo-
ments at the reconstruction phase through the perfect reconstruction condition (15) in way similar to how
(16) is the translation of the perfect reconstruction to thedecomposition stage only. Expressions (19) and
(16) can be used to design the decompositionbeforethe synthesis (instead of vice versa). Even if the
synthesis does not construct basis functions with vanishing moments, imposing the global vanishing
moment condition provides numerical stability of the transform.

This paper thus proposes to first investigate the subdivision throughPj and then to complete the
design of the analysis through̃Hj , independent from the synthesis. The synthesis follows in the third
step of the design. In the analysis, the degrees of freedom left by the constraints of vanishing moments
and perfect reconstruction, can be used to maximize the sparsity of the decomposition. This is the topic
of the next section.
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3.4 Solving the design equations for the decomposition

Sparsity of the decomposition is promoted by a good choice ofprediction operator and by sparse matrices
H̃j .

Given the prediction operatorPj , the matrixH̃j is designed to satisfy the conditions (16) and (18).
This may proceed in three steps:

1. Find a sparse solutioñHj,1 for (16). Sparsity inH̃j,1 is imposed row by row: for each rowi of
H̃j,1, it is checked which rowsj in theith column ofPj contain nonzeros. A solution with as few
nonzeros as possible around columnj in row i of H̃j,1 is then tried until a zero residual is obtained.

2. Find a sparse solutioñHj,0 for the homogeneous version of (16), i.e., for the condition
(↓ 2)H̃jPj(↑ 2) = 0.
The techniques for obtaining sparsity are the same as in the first step of the algorithm.

3. Find a matrixX such that̃Hj = H̃j,1 +XH̃j,0 satisfies (18). Writing

A = M
(p)
j

T
Pj(↑ 2)

B = M
(p)
j

T(
I− Pj(↑ 2)(↓ 2)H̃j,1

)

O = (↓ 2)H̃j,0,

Expression (18) reduces toAXO = B, which can be solved in two stages

(a) First solveUO = B for U . Given thatM (p)
j is non-sparse and has a limited number of rows,

matrixU will not be sparse. As a matter of fact, the set of equations istypically redundant.

(b) Find a sparse solution for the underdetermined equationAX = U .

Details about the algorithm can be found in the MatlabTMimplementation accompanying this paper.
More information follows in Section 6.

3.5 Shared invariance instead of biorthogonality

The biorthogonality condition (16) is quite restrictive. This condition is sufficient, but not necessary,
to guarantee that all functions produced by subdivision aredecomposed in the overcomplete transform
with all details coefficients zero. It should be noted that this condition is not fulfilled in absence of a
prefilter, i.e., ifH̃j = I. In the context of subdivision with smoothing prediction, the price to pay for
this biorthogonality is, however, high. Indeed, the prefilter has to anticipate for the smoothing by doing
the opposite thing, that is, blowing up highly frequent oscillations. Such operation introduces undesired
oscillations, leading to numerical instabilities. Also, when the prediction is interpolating and the point
set is irregular, biorthogonal prefiltering may suffer fromunboundedness.

As an alternative, zero details coefficients can be imposed only for those functions for which the
subdivision has been designed to reproduce. In particular,the local polynomial prediction scheme is
intended to preserve polynomials up to degreeñ − 1. That is, given the subsampled observational grid
tj+1, if sj+1,i = tpj+1,i with p = 0, 1, . . . , ñ − 1, then

(
I− Pj(↑ 2)(↓ 2)

)
sj+1 = 0. For such input, we
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Figure 5: Lifted smoothing with pre-filtering at the decomposition and update step in both decomposition
and reconstruction.

impose that
(
I− Pj(↑ 2)(↓ 2)H̃j

)
sj+1 = 0. Denoting byT(ñ)

j+1 =
[
1 tj+1 . . . t

ñ−1
j+1

]
(wheretpj+1 is the

vector with elementstpj+1,i), this is realized if

H̃jT
(ñ)
j+1 = T

(ñ)
j+1. (20)

That is,T(ñ)
j+1 must be invariant under̃Hj. Condition (20) replaces the biorthogonality condition in(16).

A straightforward construction of a sparse solution for (20) follows by realizing thatPj satisfies a similar
invariance expression, namely

Pj(↑ 2)(↓ 2)T
(ñ)
j+1 = T

(ñ)
j+1.

The prefilter can thus be constructed from the same family as the prediction, for instance, local poly-
nomial prediction may be preceded by local polynomial prefiltering of the same polynomial degree,
with possibly different bandwidths. When prefilter and prediction share invariance properties, the detail
coefficients are offsets between observations and values that have gone through two similar smoothing
operations. Such double smoothing also appears in other studies, for instance in the context of bias re-
duction [11] or robust nonparametric regression [12]. The approach through a shared invariance property
is essentially different from the biorthogonality approach, which imposes prefilters that are, in a certain
sense, the inverse of the prediction, so that both operations annihilate each other, rather than sharing any
property.

A prefilter constructed from the same family as the prediction may not satisfy the global moment
condition in (18). LetH̃j,1 be such a solution. As in Section 3.4, this solution is corrected byH̃j =

H̃j,1 +XH̃j,0, whereH̃j,0 satisfies the homogeneous equationH̃j,0T
(ñ)
j+1 = 0. The null space defined by

this expression is much larger than that in Section 3.4, allowing sparser solutions.
Prefilters sharing invariance properties with the prediction are thus faster in construction, with a

sparser and numerically more stable result than biorthogonal prefilters. The price to pay is that there is
no nontrivial biorthogonal prefilter possible in the reconstruction. Such a prefilter can be replaced by
an update step, as indicated in Figure 5. This update step canbe designed for local primal vanishing
moments, improving on the global primal vanishing moments by a prefilter in the analysis.
Remark

It can be observed that even without a perfect global vanishing moment, a prefilter has a stabi-
lizing effect. A simple, straightforward prefiltering could, for instance, be a Haar prefiltersj,k =
sj+1,2k−1 + sj+1,2k, or an observational grid dependent version of it (known as unbalanced Haar)
sj,k = (∆j+1,2k−1sj+1,2k−1+∆j+1,2ksj+1,2k)/∆j,k, where∆j,k = (tj,k+1−2tj,k+ tj,k−1)/2. The ex-
planation for the relatively good performance of such a simple scheme is that numerical stability follows
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from asymptotical global primal vanishing moments in any measure. This can be the Lebesgue measure,
but also the empirical design measure [7]. Haar prefilters donot preserve lines on arbitrary observational
grids, leading to a decomposition with more nonzeros than necessitated by the subdivision scheme.
Remark

If the reconstruction is designed to be independent from theprefilter, this prefilter can be made
nonlinear or data-adaptive at no price.

3.6 Choosing the bandwidth and other transform parameters

The multiscale local polynomial transform presented in this paper depends on four parameters: the degree
of the local polynomial, the kernel function, the bandwidthat each scale and the number of primal
vanishing moments. The first three of these parameters together determine the limiting function of the
subdivision process, hence the smoothness of the primal basis function.

The degree of the local polynomial directly defines the number of dual vanishing moments. That
number equals the degree plus one. Vanishing moments control the sparsity of the representation.

Unlike in kernel or local polynomial smoothing methods, thekernel bandwidth is not in the first
place a smoothing parameter, but rather one of the three parameters fixing the limiting function of the
subdivision process. The bandwidth has an important interpretation w.r.t. the scale in the multiresolution
decomposition. As the interobservational distances are irregular, there is no unique scale following
from the observations themselves, as would be the case in a classical wavelet analysis on equidistant
data. The bandwidth takes the role of scale at each level. Associated to the role of the bandwidth is
the property that the number of observations involved in theprediction filter may be time- or location-
varying. This property compensates for possible differences in sample rates along the observational
axis. It is reasonable to impose that the average number of observations involved in the prediction filters
remains approximately the same across the consecutive levels during the transform. The bandwidths, i.e.,
the scale of the filtering, should thus be inversely proportional to the split or subsampling rate. In case
of even-odd splitting, where roughly half of the observations are omitted at each stage, the bandwidthhj
at scalej = L, . . . , J − 1 can thus be taken to behj = 2L−jhL, whereL is the coarsest scale (often
set to beL = 0) andJ is the resolution level of the observations. The latter equals J = log2(N) in
classical wavelet analysis. It is an interesting topic of further research to investigate if schemes with
wider bandwidths at fine scales for additional smoothing arebeneficial. If the bandwidth behaves as
hj = qL−jhL, with 1 < q < 2, then the result after subdivision is smoother and still hasfinite support.

Next to the evolution of the bandwidth across scales is the choice of the finest scale bandwidth. Its
value should not be too large as it is the only opportunity to analyze fine scale effects. On the other
hand, precautions should be taken when bandwidths are smallcompared to the local sampling rate.
Indeed, small bandwidths cover only a limited neighboring points. The number of neighbors may then
be insufficient to comply with the number of vanishing moments imposed by the design of the transform.
Secondly, those predicting points may happen to be all, or nearly all, on the same side of the predicted
value. For local constant regression, i.e., kernel estimation, this poses no real problem, as the prediction
is always convex. For local linear or higher order regression, the effect is large prediction coefficients,
resulting in numerically unstable decompositions, especially if the prediction is followed by an update
step for primal vanishing moments.

The software developed for this framework is equipped with aroutine that allows “flexible” band-
widths so that narrow bandwidths can be extended in a way dependent on the local observational grid:
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if the global bandwidth for the current scale includes too few adjacent points for stable prediction, com-
plying with the design conditions, then the algorithm searches for more neighbors left and right from the
current band.

3.7 Convex prediction coefficients

Although instabilities have already been reduced using smoothing instead of interpolation and using flex-
ible bandwidths, further improvement is necessary by imposing convex prediction coefficients. Convex
coefficients follow automatically in the cases of linear interpolating prediction and constant local least
squares prediction. In general local least squares prediction, and given a flexible bandwidth, as discussed
above in Section 3.6, we impose that all prediction coefficients are positive. Since the first dual vanishing
moment requires them to sum up to one, the positivity condition implies convexity. Local polynomial
regression using least squares with the positivity condition leads to a non-convex combinatorial opti-
mization problem, namely, find̂β that minimizes

‖Wj+1,e(t)(Y − Tj+1,eβ)‖

for β satisfying the conditions (fori ∈ e)

∂(T(ñ)(t)β)

∂Yi
≥ 0.

The predictionPj(t; tj+1,e) = T(ñ)(t)β̂ replaces (13). The software written for this paper finds a
local optimum for this problem. As the neighborhoods for theprediction of a given point are local, the
complexity of the optimization problems remains under control.

4 Illustrations and simulations

4.1 The frame functions

As the proposed signal decomposition is redundant, the building blocks do not constitute a basis, but
rather a frame. Figure 6 compares scaling functions from subdivision with interpolating polynomial
predictions and scaling functions from subdivision with local polynomial smoothing as prediction step.
For the interpolating subdivision, cubic polynomials wereused. The resulting scaling function is smooth,
corresponding to theoretical results [4], but, depending on the grid of sample locations, the function may
show heavy side lobes. This is due to the fact that every prediction involves two neighbors on the left and
two on the right. Such an approach does not weight the importance of the neighbors according to their
distance. Using kernel (local constant) smoothing as prediction is insufficient to capture the structure of
the grid. Indeed, as local constants cannot reproduce the function y(t) = t, it can be expected that the
locationsti have an effect on the decomposition.

4.2 The analysis or decomposition

The frame functions are determined by the reconstruction, and thus by the refinement or subdivision
scheme. As the proposed representation is overcomplete, the decomposition into this frame is not unique.
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Figure 6: Scaling functions for (respectively) cubic interpolation prediction, local constant (kernel)
smoothing prediction and local linear smoothing prediction.

Figure 7: Test signal and noisy sample. Sample size isn = 2067.

In particular, the prefilter step is subject of design. As discussed in Sections 3.3 and 3.5, biorthogonal
design on irregular grids is time consuming and restrictive, leading to decompositions that are non-
sparse, unstable, or both. Hoewever, for prefilters with shared invariance properties as well, the current
implementation of the design methods in Sections 3.4 and 3.5is not always successful in combining
the properties (mostly dual vanishing moments) with sparseand stable preservation of the global primal
vanishing moments. Since an update step has already been proposed as an alternative for a biorthogonal
pair of prefilters and prediction, this update step can also be used to overcome the inconveniences of
prefilter that violates the global primal moment condition.

4.3 A denoising example

The following illustrations and simulations were performed on the test signal

f(t) =





sin(9t)
4
4(0.62 − t)2/(0.62 − 0.4)2

8(1−
√
1− (t− 0.62)2/(0.7 − 0.62)2)

8(1−
√
1− (0.85 − t)2/(0.85 − 0.7)2)

2 + 9(t− 0.85)

for t ∈ [0, 1] with transition points0.3 ; 0.4 ; 0.62 ; 0.7 ; 0.85. The signal is sampled atn = 2067
locationsti which were generated as (ordered) independent realizations of uniform random variables on
[0, 1]. Additive normal (Gaussian) noiseε is added to this sample, to observey = f + ε in a signal-to-
noise ratio ofSNR = 20 log10 (‖f‖/‖ε‖) = 10dB.

Although the observational grid is statistically uniform,Figure 2 in [21] illustrates that the irregular-
ities pose a challenge in finding a stable and smooth reconstruction: a reconstruction from a transform
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Denoising the observations from Figure 7. (a) Using linear interpolating prediction and two-
taps update. (b) Using cubic interpolating prediction and two-taps update. (c) Using local constant
smoothing prediction, no update, no prefilters. (d) Using local linear smoothing prediction, no update,
no prefilters. (e) Using local linear smoothing prediction,two-taps update, linear smoothing prefilter. (f)
Using convex local linear smoothing prediction, two-taps update, linear smoothing prefilter.

that ignores the irregularities is stable but wiggly, whilea grid-adaptive critically sampled decomposi-
tion is unstable. Figure 8 compares the noise reduction capacities of several options in a nonequispaced
Laplacian pyramid scheme. All methods thus adopted the factor 2 redundancy of the pyramid, includ-
ing the interpolating prediction schemes, were such redundancy is not strictly necessary. The choice
for redundant interpolating prediction is motivated by fairness of comparison, as reconstruction from
overcomplete schemes may result in additional smoothing. The kernel used in the local polynomial
smoothing is the cosine function, i.e.,K(t) = (π/4) cos(πt/2) for −1 ≤ t ≤ 1. Experiments (not
displayed in the figures) suggest that prefilters in an interpolating scheme have relatively little impact.

The linear interpolating prediction with two-taps update of Figure 8(a), which the nonequispaced
extension of the Cohen-Daubechies-Feauveau (CDF) wavelets with 2 primal and 2 dual vanishing mo-
ments, performs quite well in the sense of numerical stability: the estimation is fairly unbiased. Nev-
ertheless, smoothness of this decomposition is limited, asit only reproduces straight lines. Trying to
increase the smoothness, using cubic interpolating prediction, we arrive at 8(b). This decomposition is
no longer an extension of a member of the CDF family. The result is smoother indeed, but peaks are
less sharply reconstructed, and above all, the reconstruction shows unpleasant blobs, due to numerical
instabilities. These blobs may be more serious in other settings than the one shown in the figure. Figures
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Figure 9: Boxplot of the difference in output SNR between convex local linear smoothing prediction with
presmoothing and linear interpolating prediction, both methods with two-taps update. The population of
differences has a positive mean, indicating that local linear smoothing is superior to linear interpolation
as prediction method.

(c) and (d) compare local constant and local linear predictions. The local constant one clearly struggles
with the irregularity of the point set. Both schemes show a remarkable and unacceptable vertical shift,
due to the lack of local primal moments, i.e., building blocks with zero integral. This is remedied by
adding an update step in Figures (e) and (f). Both Figures also introduce a local linear presmoothing.
The difference between (e) and (f) is that in (f) the smoothing operations are constraint to have convex
coefficients, which leads to a smoother and more stable result, with sharper reconstructions of the peaks.

Figure 9 summarizes the result of a simulation study of a hundred times 2067 noisy observations
from the signal in Figure 7 (again withSNR = 10dB). The boxplot represents the observed pairwise
differences in output signal-to-noise ratios of the two most stable routines in the previous discussion,
namely convex local linear smoothing prediction with presmoothing on one hand and linear interpolating
prediction on the other hand, both methods equipped with a two-taps update for local primal vanishing
moments. These methods correspond, respectively, to the results displayed in Figures 8(f) and (a). The
mean output SNR values are21.45dB for the linear interpolating prediction method and22.30dB for the
convex local linear smoothing prediction with presmoothing.

5 Concluding discussion

This paper has introduced the idea of multiscale smoothing,by plugging in well-known statistical meth-
ods of kernel smoothing and local polynomial smoothing intoa lifting scheme. The decomposition can
be applied to irregularly observed data, with a sample size not necessarily dyadic (a power of two). As
explained in the paper, when smoothing replaces interpolation as basic lifting step, a slight redundancy
in the transform is necessary to deal with problems of discontinuity. This overcompleteness is of factor
2, which is far below the redundancy factor in a classical non-decimated wavelet transform. The scheme
can be seen as a nonequispaced version of a Laplacian pyramid. The paper discusses an extension of
the prefiltered analysis and reconstruction in such a scheme, thereby illustrating that some options in
the regular sample case proposed in [8] become problematic in the irregular sample case. Some of the
benefits from such prefiltering are better realized by an additional update step, leaving more degrees of
freedom to the design of fast prefilters. Moreover, update steps allow for the construction of building
blocks with zero integrals, i.e., without intercept or DC component.

Using smoothing as basic operation in the subdivision or refinement process behind a wavelet trans-
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form offers several advantages and perspectives. Comparedto interpolation as basic design tool, smooth-
ing allows easier control on the numerical condition of the refinement process. No interpolation beyond
simple polylines performs with good numerical condition onirregular grids. Next to interpolation in a
lifting scheme, wavelets on irregular point sets could alsobe constructed by elaboration from existing
two-scale equations in such general settings. Examples include B-splines [5]. As far as experiments
allowed to conclude, these constructions equally suffer from numerical problems on irregular point sets.
The reason could be called a “mixture of scales”, meaning that irregular point sets typically show an
intermittent density of observations, which conflicts withthe basic idea of a multiscale analysis, where
each level is characterized by its scale of operations.

Smoothing as basic operation suffers less from intermittent densities of observations, but it requires
redundancy for the sake of smooth reconstructions. It couldbe conjectured that the combination of
smooth and stable basis functions in a critically downsampled wavelet transform on a regular dyadic grid
is an exceptional coincidence. Orthogonal (thus stable) constructions on irregular data structures exist,
such as on graphical data [17], but these do not consider any sort of smoothness on these graphs. The
combination of smoothness and stability seems to require overcompleteness.

Using smoothing as basic operation in subdivision has another advantage compared to interpolating
refinement. The output of the smoothing operation can be usedin a refinable measure of local smooth-
ness. In particular, as local linear polynomial smoothing allows to estimate the local derivative of the
underlying noise-free function, a parallel multiscale analysis for the derivatives can be constructed for
using in estimation and hypothesis testing.

The methodology of this paper can also be used for the design of Laplacian pyramid schemes for
the construction of multiscale versions of a wide variety ofdata analysis techniques, including nonlinear
methods, or methods adapted for non-Gaussian data and so on.

6 Accompanying software

The methods described in this paper have been implemented inMatlabTMroutines that are available as
part of a software package called ThreshLab. ThreshLab can be downloaded from http://homepages.ulb.ac.be/∼
After installation, typeillustrateRWT 2GHtPU or help illustrateRWT 2GHtPU for getting
started with multiscale local polynomial lifting.

References

[1] A. Antoniadis and J. Fan. Regularized wavelet approximations. J. Amer. Statist. Assoc.,
96(455):939–955, September 2001.

[2] P. J. Burt and E. H. Adelson. Laplacian pyramid as a compact image code.IEEE Trans. Commun.,
31(4):532–540, 1983.

[3] T. Cai and L.D. Brown. Wavelet shrinkage for nonequispaced samples. Annals of Statistics,
26(5):1783–1799, 1998.

[4] I. Daubechies, I. Guskov, and W. Sweldens. Regularity ofirregular subdivision. Constructive
Approximation, 15(3):381–426, 1999.

20



[5] I. Daubechies, I. Guskov, and W. Sweldens. Commutation for irregular subdivision.Constructive
Approximation, 17(4):479–514, 2001.

[6] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps.J. Fourier Anal.
Appl., 4(3):245–267, 1998.

[7] V. Delouille, J. Simoens, and R. von Sachs. Smooth design-adapted wavelets for nonparametric
stochastic regression.J. Amer. Statist. Assoc., pages 643–658, 2004.

[8] M. N. Do and M. Vetterli. Framing pyramids. IEEE Transactions on Signal Processing,
51(9):2329–2342, 2003.

[9] J. Fan and I. Gijbels.Local Polynomial Modelling and its Applications. Chapman and Hall, London,
1996.

[10] M. Flierl and P. Vandergheynst. An improved pyramid forspatially scalable video coding. InProc.
IEEE Int. Conf. on Image Proc. — ICIP ’05, pages 878–881, 2006.

[11] H. He and L.-S. Huang. Double smoothing for bias reduction in local linear regression.Journal of
Statistical Planning and Inference, 139:1056–1072, 2009.

[12] R.-Ch. Hwang, Z.-H. Lin, and C.K. Chu. Double smoothingrobust estimators in nonparametric
regression.Sankhya: The Indian Journal of Statistics, 71(A, Part 2):298–330, 2009.

[13] M. Jansen and P. Oonincx.Second generation wavelets and applications. Springer, 2005.

[14] A. Kovac and B. W. Silverman. Extending the scope of wavelet regression methods by coefficient-
dependent thresholding.J. Amer. Statist. Assoc., 95:172–183, 2000.

[15] L. Liu, L. Gan, and T.D. Tran. Lifting-based laplacian pyramid reconstruction schemes. InProc.
IEEE Int. Conf. on Image Proc. — ICIP ’08, pages 2812–2815, 2008.

[16] R. Lorentz and P. Oswald. Criteria for hierarchical bases in sobolev spaces.Appl. Comp. Harmon.
Anal., 8(1):32–85, 2000.

[17] S. K. Narang and A. Ortega. Perfect reconstruction two-channel wavelet filter-banks for graph
structured data. To Appear:To Appear, 2012.

[18] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.Appl.
Comp. Harmon. Anal., 3(2):186–200, 1996.

[19] W. Sweldens. The lifting scheme: a construction of second generation wavelets.SIAM J. Math.
Anal., 29(2):511–546, 1998.

[20] W. Van Aerschot, M. Jansen, and A. Bultheel. Adaptive splitting for stabilizing 1-d wavelet de-
compositions.Signal Processing, 86(9):2447–2463, 2006.

[21] E. Vanraes, M. Jansen, and A. Bultheel. Stabilizing wavelet transforms for non-equispaced data
smoothing.Signal Processing, 82(12):1979–1990, December 2002.

21


