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Abstract

This paper integrates Burt-Adelson’s Laplacian pyramids \ifting schemes for the construc-
tion of slightly redundant decompositions. These decoiitipas implement multiscale smoothing
on possibly non-equidistant point sets. Thanks to the sligthundancy and to the smoothing oper-
ations in the lifting scheme, the proposed constructiofiessparsity of the analysis, smoothness
of the reconstruction and stability of the transforms. Thkeaimposition is of linear computational
complexity, with just a slightly larger constant than thstflifted wavelet transform. This paper also
discusses several alternatives in the design of non-stafidinite impulse response filters for a sta-
ble multiresolution smoothing system. These filters argtathto each other and to the locations of
the observations.

1 Introduction

Multiscale decompositions for non-equispaced data havayal been a non-trivial extension of the clas-
sical, equispaced, dyadic wavelet transforms. In the mpridéstant case, basis functions cannot be
dilations and translations of a single mother or father fiomc Indeed, the construction of these basis
functions, such as the one used in the lifting scheme [18 si&its off from the locations of the observa-
tions. When these observations are not equidistant, itf@asible to define functions that are shifts of
each other, neither is there a precise notion of scale, Bedhe distance between adjacent observations
is not fixed. As a consequence, important parts of the thegopating wavelet analyses need to be
reworked. Other constructions, including [3, 14, 1], stdthim the classical wavelet decomposition, but
processing irregular samples may require preprocessimgagrbe suboptimal from the computational
point of view.

The missing parts in the theory behind non-equispaced wadecompositions are related to prob-
lematic behavior of some of these decompositions in pralcituations. Four issues in the design of
a decomposition can be identified. The first issue is perfanstruction (PR). The transform should
be invertible. In general, this condition is fairly easy tiisfy, especially in a classical lifting scheme,
where each operation is readily invertible. In other casesh as the variant on lifting adopted in this
paper, it is an algebraic matter that can be solved scale ddg.sdhe second issue is sparsity of the
analysis. In a lifting scheme construction, this objecta/éairly easy to control. The third issue is the



numerical condition of the decomposition and reconstouctiThe condition can be controlled at two
levels. The first is scale-to-scale condition, i.e., themrpropagation when proceeding from a fine scale
representation to one scale coarser with fine scale detéils.one-step condition can be managed with-
out too many difficulties. More problematic is the overalimerical condition, that is, the numerical
condition when decomposing data at arbitrarily fine scate details at many scales. The fourth issue
is smoothness of the basis functions at the synthesis sideseTbasis functions can be retrieved using
a numerical procedure called subdivision. This subdivisicheme, further explained below, essentially
finds the basis function by gradual refinement at successdles With observations at regular loca-
tions, the refinement takes place at midpoints in each stepttee infinite refinement scheme can be
analyzed completely by looking at a single step, resulting fwo-scale equation. When the refinement
is irregular, the two-scale equation itself becomes sdafgendent and therefore difficult to analyze.

Throughout this paper, smoothness at reconstruction aneercal condition will turn out to be
somehow contradictory objectives. The two objectives @rebonciled by replacing the critically down-
sampled lifting scheme by a redundant alternative. Thdtrean be seen as a lifted and non-equispaced
version of Burt-Adelson’s Laplacian pyramid [2]. Liftedqagynids have been proposed in earlier work
[10] as well, in a different context, however, and with di#fat design objectives. As the transform is
redundant, the inverse transform is not unique. We propaseanstruction with an additional smooth-
ing, thereby generalizing results for equispaced data3®, As the pyramid filter operations in this
paper are non-stationary, due to the non-equispaced nafttlie observations, special attention is paid
to the grid-adaptive design of these sparse filter matrgatssfying perfect reconstruction, and leading
to smooth reconstructions.

The paper is organized as follows. Section 2 summarizesrtheipe ideas of the lifting scheme,
whose tools will be adopted in the subsequent sections.uttthér sections describe original contribu-
tions of this paper. Section 3 replaces interpolation byathing as one of the basic techniques used in
a lifting scheme. Multiscale smoothing should be more robusumerical errors and it should lead to
smoother reconstructions. The section explains that @ jioration of smoothing into lifting requires
the transform to become overcomplete, which leads to a nosgaced version of a Laplacian pyramid.
The remainder of the section is devoted to design propeitiekiding perfect reconstruction and van-
ishing moments, and their translation into design conadgioSection 4 illustrates the new multiscale
decompositions with an experiment on denoising, followgditsummary and discussion of the main
results in Section 5. Section 6 briefly describes the Mattimplementation that comes with this paper.

2 The lifting scheme

2.1 Lifting steps

A wavelet decomposition is implemented as a sequence of fiieks, each having a high pass and
low pass output. The low pass output serves as input of thefittex bank. The repeated low pass
filtering has a telescoping effect, creating a contribigianhdifferent scaleg. The lifting scheme is an
implementation of a filter bank. All filter banks used in claaswavelet theory on equidistant point sets
can be decomposed into a sequence of lifting steps [6]. Tliftieg steps operate between two subsets
of the input data, as illustrated in Figure 1. In this sectiwa focus on a filter bank that operates at scale
j. That implies that we suppose that its input comes from thiputwof a previous filter bank at scale
j + 1, while one of its output branches is further processed byter filank at coarser scaje- 1. In a
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Figure 1. General lifting scheme and its inverse. The dot&den the split stage and the actual lifting
steps represent the possibility of having a longer sequiracejust two steps.

lifting implementation, the input of the filter bank is péidned intoevenandodd indexed subsets. That
is, if 7 is the set of indices into the data vectgy then lifting starts by splitting it intQ/; = e U o, with

e No = (. This expression does not impose a strict even-odd alttrdrtitioning. Other splits are
possible, and sometimes also recommended, for instanige dliservations are at irregular time points
[20, 21]. The actual lifting operations start after the tsphd appear in two kinds, depending on the
direction they work. Dual lifting operates from the evenwiite odd branch, and can be interpreted
as a prediction of the odd indexed values, based in the evidms difference between observed value
and neighbor based prediction is typically small, and asts wavelet or detail coefficient at the current
scale. Primal lifting operates on the odd branch, and cantbgreted as updating the even values before
proceeding to the next, coarse scale. The update can beseaati-aliasing in signal processing terms,
as numerical stabilization, or as variance reduction, shiog in statistical terms.

A general lifting scheme consists of a sequence of mostiyrating dual and primal lifting steps.
As an illustration of the formalism, the remainder of thigtgen elaborates the case of a single dual
step followed by a single primal step. Denote By the dual (prediction) lifting operation at scaje
Itis an;, x nj. matrix, wheren;, = |o| andn;. = |e| are the cardinalities of ando respectively.
Similarly, then; . x n;, matrix U; stands for the primal (update) lifting operation. Then, fitevard
lifting transform is

w; = Sjy10—Pj 811 1)
8j = 8jt1,e+ U w; @)

The inverse of the operation follows immediately by invensof the expressions above.

Sjt+1e = 85— Uj-w; 3)

Sjtlo = Wi +Pj-sjtie )

2.2 Underlying basis transform

In order to associate basis functions with this transfore define a functiorf;1(t) = ®;11(t) - 8541,
where®;_(t) is a vector ofprimal basis functions, i.e®;1(t) = [...¢j+1%(t) ... ]. The objective is

to find an expression that defines the set of basis functigns(t). This will be the two-scale equation,
which for our setup takes the form of Expression 8. Two-seglgations can be seen as the central tool
in wavelet theory.



Furthermore, the coefficients ; are thought to be inner products £f; (¢) with a dual basi§>j+1,
i.e.,
_&T
sj+1 =iy fi+1(t),
this expression being a slight abuse of notation (inspiseiistdiscrete analogue), denoting the vector of

inner products. .. (3114, f) .. .J7.
One step of a (lifted) filter bank transforms this decompasiinto another one

fira(t) = @;(t) - 85 + V;(t) - wy,

with B B
s;=®F - fia(t), w; =97 - fi(), (5)
The functions in¥;(¢) are named primal or synthesis wavelets, as they are usedreponstruction of

a signal. Likewise, the functions ¥ir; are dual or analysis wavelets, as they are used to decompose
function into a (primal) lifting basis.

2.3 Dual basis equations

Plugging in (5) into (1) leads to the dual wavelet equatioFise functionf; () can be omitted, since
the expression would hold fany f;1(¢). Taking the transpose finally brings us to

Vj=®ji10— Pjrie P (6)
The two-scale equation follows similarly from (2)
(I);r = q)?-f—l,e + Uj ' \Ilf

Taking transpose and plugging in (6) leads to

;=@ (I —PTUT) + @4y, UT (7)

2.4 Subdivision and primal basis, design of dual lifting stps

The primal basis functions follow from a different analysiamely subdivision. We start from the
observation thap; ;. = ®; - §, + ¥; - 0 with §;, the Kronecker-delta at inde¥ i.e.,d,; = 0 fori # k
andém =1.

Feeding the inverse step with the inpusts= J, andw; = 0 leads tos; ;. = 0, ands;j; 1, =
P; - &k, which allows to writep; x, = @11 - 0 + P11, - P; - d;. We can repeat the same argument
for all k, i.e., we can feed the inverse step withk= [... Jy .. .], to arrive at the two-scale equation (also
known as refinement equation)

Dj=Pjt1e+ Pjr10 Py 8)
If the input isw; = I = [...d;...] ands; = 0, then we arrive at the wavelet equation wavelet
equation
\I/j = —q)j+17er + (I)j+170 . (I — PJU]) (9)

Solving the two-scale and wavelet equations reveals theryidg synthesis basis, and thus the
properties of any reconstruction in such basis. An impontamerical solver is the actual subdivision
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scheme. It consists of iterated application of the twoeseguation in order to further refine the outcome
at scalej + 1 in terms of basis functions at increasingly finer scales. t Thawe write ®; or ¥; as
linear combinations ob;, 1, then®,, and so on, by repeated application of (8) on its own output, an
with incrementing index. The hope is that the scaling functioss “converge” to infinitely narrow
Dirac impulses, so that the sequence of coefficients in ti@aticombination reflect the properties of the
original basis function®; or ¥;.

It should be noted that the refinement for wavelet function® j involve the wavelet equation only
once, followed by an infinite refinement through the two-saaduation. The wavelet equation writes
wavelet functions as a simple linear combination of scafingctions, and thus it has no fundamental
impact onindividual limiting properties of the functions, in particular on theimoothness. The ensemble
of wavelet equations at each scale affectsjtig properties of the basis, such as its numerical stability
(see Section 2.5).

Besides on the smoothness of the primal basis, the duabliftiep has an immediate impact on the

sparsity of the transform. While smoothness of subdivissomard to analyze, the sparsity is fairly easy
to control. The dual lifting is a prediction that can be desig such that certain types of smooth functions
are predicted exactly, leading to all zero detail coeffitseThese smooth functions are mostly polyno-
mials: the number of dual vanishing moments is the largesgars for which [ \fff(t)tﬁ—ldt =0.
It corresponds to the degree of polynomials with detail tciehts zero. All functions that can be ap-
proximated well by piecewise polynomials then decompose Wwavelet coefficients that are close to
zero, except at the locations of jumps. The constructiom@frediction is often based on interpolation
in the evens, for reasons of continuity that become cleaestién 3.

This construction naturally involves the location of thesida points. The irregularity of the obser-
vations is thus taken into account [19]. This has the bereditthe basis functions will be grid-adaptive.
On the other hand, the two-scale equation will be grid-adepand so it will be different at each scale.
This complicates the convergence analysis of the subdivistheme. The multitude of possible refine-
ments and arbitrary grids leaves little hope for generalltegbout smoothness of subdivision. Notable
exceptions include subdivision by cubic polynomial integtion [4].

2.5 Design of primal lifting steps, primal moments
Wavelet basis functions are linear combinations of scdlingtions, such that their integrals and possibly
also their higher moments are zero. Define the moments ofiimalpscaling and wavelet basis functions
as
MP = / T ol ()rdt
J e d
o) = / RO
J oo Y )

then we can integrate the two-scale- and wavelet equations.
Integrating (8) leads to

®) _ pg@) T @
M = MY, +P; - MY, (10)
Integrating (9) leads to
oY = —ul- M, + 1 -UTPT) - MP) (11)



Using the former expression to eliminaztéj(f'flye from the latter, we can write

0 My, ~ 0 24"
This can be seen as the second step in a lifting scheme whsisstdip is (10). The first step transforms
even fine scaling coefficients into coarse scaling coeffisjeso this step is an update. The second
step defines the details, so this step is prediction. We thus hnadjoint (or conjugate) update-first
lifting scheme with prediction operatd)ij and update operatd’’, while the original lifting schema is
a prediction-first one.

Design of the update lifting step follows often from impagianishing moments in the primal basis,

ie., O§p) = 0. The resulting expressioMﬁ)Lo = U] - M}p) can be seen as a set of equations in

unknownsU; (for givenP;, whose design determinEM](p)). Primal vanishing moments contribute
to numerical stability. For instance, if the basis functidmve no zero integral (i.e., one vanishing
moment), then the zero function can be decomposed in a viahtkiay and the decomposition converges
in quadratic norm (in.,) [13]. Without zero integrals, the basis functions canreotéalled real wavelets.
Such basis is known as a hierarchical basis. Nonlinear psotg (such as thresholding) in a hierarchical
basis is beneficial, but only in function spaces such as gulsglaces that impose more smoothness thar
Lo [16]. Higher order primal vanishing moments are less ctueiad may be replaced by other criteria
that promote anti-aliasing, numerical stabilization, sthing and variance reduction.

While the update step is necessary to impose zero integmadshence numerical stability ih,, it
may also — inevitably — introduce other forms of numericaitability. In particular, if the grid of data
points is very irregular, showing large gaps adjacent tdlsgags, then noisy fluctuations on small gaps
may be blown up in an interpolating prediction that is eveddaacross a large gap. In matrix terms, the
prediction operation coefficients are unbounded. Thersgdilinctions that come out of the subdivision
have heavy side lobes, which almost overlap with similaetolm adjacent scaling functions. The two
adjacent scaling basis functions are far from orthogonalupdate step that creates zero integral wavelet
functions out of these, cannot undo the obliqueness of this.bRossible remedies consist of avoiding
as much as possible strongly inhomogeneous grids for iipg prediction. This can be done by
relaxing the strict even-odd split into a more careful piaming [20] or by constructing the interpolating
prediction on a different subset of the evens if the closemtgto a given odd are too close to each other
[21]. Such remedies are limited in the sense that they cadeatly take care of all possible sample
configurations.

3 Smoothing prediction

3.1 Kernel and local polynomial smoothing prediction

In order to bound the prediction coefficients, interpolatian be replaced by smoothing in the prediction.
This paper investigates the use of kernel smoothing anch&xtes as basic operations in the prediction
step. The prediction coefficients; ;. , at scalej in the expression

Wik = Sj4+1,2k+1 — Z Pjke8j11,2¢5
¢



are filled in bij7k7g = Pj,k(thrl,QZJrl; tj—i—l,e)a where
t—ti11 2k
K ( hj+1 )

27 t—tjt1.0i )’
S K (g

hjt1

Pji(titjr1e) =

(12)

whereK (t) is a kernel (a positive function);; is a scale dependent bandwidth, gnd ; is theith
component of the grid vectar ;. Kernel prediction coefficients constitute a convex corabon of the
adjacent observations, i.e., the coefficients are postiesum up to one. Such prediction is numerically
stable.

Kernel prediction is a special case of local polynomial préoh [9], which takes the fornk; =
[.. PI(tjs106+15tj+1,) --.]7 where Pj(t;t;11 ) is a row matrix of length equal to that @f .,

J
depending on variableand defined by

. @ T @ )
Pi(t;tjpre) = TW () (Tj+1,e Wj+1,e(t)Tj+1,e)
@ T
Titie Wite®) ) - (13)

In this definition, we us&@ (™ () = [1t ... t"~ 1], with &2 € {1,2,...} the order of the predictior;; — 1
being the polynomial degree. The case- 1 corresponds to kernel prediction. Other notations adoptec
in (13) include the vectot?, which stands for pointwise exponentiation of a vedtorThis allows to
define the matrist'"), , = [1#;41, ... ¢2;1 ] Finally, Wy, (1) is a diagonal matrix of weights with

elements(W,1.¢0)i(t) = K (%;Tk) Expression (13) takes the form of a locally weighted least
squares polynomial. The expression is locally weightechan gense that the weights depend on the
value oft through the kernel function. Centering and orthogondtimalead to numerically more stable
expressions than (13). It should be noted that general f[masgthomial prediction is not convex. It is,
however, possible to replace the weighted least squanesifarin (13) by other constructions within the
kernel, see Section 3.7.

Kernel and local polynomial predictions have an importarswback. They are not continuous,

meaning that

lim  Pj(uitjiie)  Sjtie 7 Sj4+1,2k
u—lj41,2k

The continuity condition is essential for smooth subdasisiwhich explains the popularity of interpola-
tion in subdivision schemes. An example of subdivision sitioothing prediction is simulated in Figure
2.

In order to overcome the discontinuity upon subdivisiom, ¢éwen indexed input has to undergo the
same smoothing operation. As a consequence, the predie®to be evaluated on both odds and evens
before being fed to all the fine scale coefficients. The dbtaihch of the lifting scheme in Figure 3 thus
contains all fine scale indices, while the coarse scale hr&aeps only the even indices from the fine
scale set.

The scheme can be translated into the following algorithstéps. Given the observationy; =
f(t;) + &, initialize the lifted smoothing transform as

Jr = {1,...,n} (index set)
Sie = Y
ik = 1k
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Figure 2: Subdivision stepd ( 2 — 3 — oo) with smoothing prediction. We start with a single nonzero
scaling coefficient (and all wavelet coefficients are zef)e refinement thus leads to a scaling basis
function. But as the predictions (in grey, broken lines) mo¢ interpolating, they are not close to the

immediate even neighbors, leading to a fractal like lingitfanction. In each step, the boxes represent
the values in the even locations, the grey shaded circlessymnd to the predicted values in the odds.
In the next step of the refinement, boxes and circles togéearme boxes (evens).
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Figure 3: Lifted smoothing and an inverse transform. Thesiise transform is not unique, because
the decomposition is redundant. The symbdl2) and (1 2) stand for subsampling and upsampling
respectively and are defined in the text. They emphasize agehaf dimension in the signal being

filtered. In practical implementations, upsampling andssufpling are integrated into the adjacent filter
or copy operation.



The initialization is identical to that of the classicalitically downsampled lifting scheme. Nexterate:

e Split becomesCopy. All values are declared odds and half of them are copiedtiaeven set.
In the flow chart, this is represented as a full copy followgdatsubsamplind| 2) on the even
branch. Formally, we have

Ti=e = {2hk € Ty}
o = Jjt1-

The contrast with critically downsampled lifting lies inetldefinition of the odds, which is =
Ti+1\T;-

The number of detail coefficients at each scale is approeipaivice the number in a critically
downsampled (fast) wavelet decomposition. Hence, theestrinsform is overcomplete by a
factor 2. This redundancy is smaller than thg(n) factor in a nondecimated translation-invariant
wavelet transform. The overcompleteness is the price tin@itate smoothness of reconstruction
and numerical stability.

e Predict the odds by the evens.
wj = 8j41 — Py (T2)s)41.

The symbol(1 2) stands for upsampling. Strictly speaking, this is addingpgédetween the
elements ok, ., o that the result has the same lengtla a5. The prediction matri; is then
a square matrix. In practice, the size expansion fsgm . to s;; is of course incorporated into
the prediction.

° Identlfy Sj = Sjtle-

As the transform is overcomplete, its inverse is not uniguie most straightforward reconstruction,
depicted in Figure 2, simply inverts the predictiondy,.; = w; + P; - (1 2)s;. This already delivers
all fine scale coefficients on the odd branch. The inversesfoam determines the building blocks of
the reconstructions. These building blocks do no longesstitoe a basis, but a frame. As will be
illustrated in Section 3.3, finding the frame functions m®eds in exactly the same way as with the
critically decimated lifting scheme explained in Sectian I2 using the correct matrices, all tools in
critically decimated lifting can be copied for the overcdetp version as well.

3.2 Kernel smoothing prediction with pre-smoothing

Given that the reconstruction uses the even branch for gdiqtion only, exactly the same reconstruction
still holds if the even branch is prefiltered before beingduee prediction in the forward phase. Smooth-
ing before subsampling reduces the aliasing, numericdljasing effects of simple subsampling. The
resulting forward scheme is depicted in Figure 4, and cpords to the following algorithm.

e Copy the full input on both even and odd branch . That is,

e = Jjn

o = €.
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Figure 4: Lifted smoothing with pre-filtering on the evendhisican also be seen as a nonequidistant
Laplacian pyramid. The inverse transform is not unique. dptton H = 0, corresponding to the
scheme in Figure 3, is still one of the solutions that leadeidget reconstruction, independent frdin

For the sake of readability, the diagram hides the deperdefihe filters on the scalg

Out

e Pre-smooththe scaling coefficientshenkeep the evens, i.e., subsample. This subsampling re
places the split in the version without pre-smoothing. Treegmoothing or pre-filtering takes the
form

sj= (L 2)H; - 8541
e Predict, as before, but now the prediction is constructed on a sets$moothed values.

The variant with pre-smoothing can also be seen as a noristguitisample version of Burt and
Adelson’s Laplacian pyramid [2]. In the literature on thiggmidal scheme, the operatidh 2)ﬁj is
often termededuce while the operatio®; (1 2) is known asexpand

Since the inverse transform of Figure 3 can still be usedepaddently from the design of the pre-
smoothelﬁj, that pre-smoother can easily be made non-linear or datptiad.

The inverse transform is, however, not unique, and in a mereegl form an additional filtel;
may operate in the reconstruction from details to scalirgffaments. Those details were found by the
expression

w; = (I — P](T 2)(¢ 2)ﬁj) Sj+1- (14)

On the other hand, simple inversion of the prediction in ysialleads tos; 1 = w; + P;(1 2)s;.
This expression provides the argument for the simple ieviEensform in Figure 3, but it also imposes a
condition onH;; in Figure 4. Indeed, in the scheme of Figure 4 the reconsbniét | is

Sjir1 = (I+P;(12)( 2)H;) w; +P;(1 2)s;
= (w; +P;(12)s;) +P;(12)(| 2)Hjw;.

Imposing thats;,; = s;j41, and filling in the simple inversion into the first half of trexpression, we
find that, for anys; 1, P;(T 2)(] 2)H;w; = 0, wherew; results from (14). This implies the perfect
reconstruction condition

P, (1 2)(4 2)H; (T-P;(+ 2)(1 2)H;) = 0. (15)

Assuming that the matri®; (1 2) has full rank, multiplication on the left with its left invee and on the
right with P; (71 2), leads to

(L 2H;P;(12) = (L 2H;P;(12)) (L 2H;P5(12)).
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The optionH; = ﬁj has been proposed and elaborated in [8]. The ogfipa= 0 is a trivial solution.
For any optionsH; and H; with full rank reduce matrices, the condition above can be read as matrix
(J Q)ﬁij(T 2) having eigenvalue 1, with geometrical multiplicity equalits size. This implies the
condition that B

(L 2)H;P;(12) =1 (16)
For a full rankedH;; to exist in the synthesis, the presmoothing and predictidhe analysis thus needs
to be biorthogonal.

3.3 Design of biorthogonal filtersP;, I; and H;

The discussion in Section (3.2) has lead to two express{@s$,and (16), foperfect reconstruction

in case the synthesis uses a presmootfting In absence of pre-smoothing at the synthesis, perfect
reconstruction is guaranteed by the lifting scheme itsBli. additional condition is necessary in that
case.

Nevertheless, it makes sense to impose (16), evEn i 0, or at least a weaker form of that con-
dition. Expression (16) can be interpreted as condition:ﬁyo given a choice oP;. Before motivating
the use of (16) with arguments other than perfect recortgrumvolving a filterH;, it is necessary to
elaborate on the prediction operal®y. The prediction operator is the only one that plays a roldé t
subdivision scheme. It thus determines #meoothness of the subdivision limitand related to that,
the class of functions that can be produced by subdivisien, the functions that can be represented
with all detail coefficients zero. For good smoothness prige it is important that all constant and
linear functions are among that class [5]. Kernel smootliags not reproduce linear functions, local
linear polynomials do. This condition can be understooc#evis. A scheme aiming at smooth recon-
structions on a given grid should be able to reproduce thdf ge., the identical observationg = t.
Otherwise the structure éfwill be reflected in the reconstruction gf This paper thus suggests to use
local linear polynomials, rather than kernel smoothing.

Since the decomposition is overcomplete, it is not guaeghthat function thatan be represented
with all details zeros, actualljasall its details zero in a decomposition. The value of the itteta a
decomposition depend on all operations used in that decsitigrg includingﬁj, which plays no role in
the analysis of the subdivision scheme. Imposing (16) icsefit to guarantee that all functions that can
be produced by subdivision have zero details in a deconposiindeed, given arbitrary;, lets;; =
P;(12)s;, thens;,; can be represented with zero detail coefficients at gcaléose detail coefficients
follow from (14). Plugging in (16) into (14) yields a zero ey for any s;. As elaborated in Section
3.5, the expression can be weakened by imposing the zeribsdatéy for polynomials, such that the
polynomials produces by the subdivision correspond to daishing moments in the decomposition.

The pre-filter in the reconstructioiif;, can be used to provide the synthesis vgtimal vanishing
moments That is, if the decomposition has lead to detailed coefiisia; at successive scalgsthen
the synthesis reconstructs a function

J—1
frt)=@p(t) s+ > V(t) wy,
j=L

where -
o\ = /_Oo vl (vt = o,
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for a designer’s choice gf. Define the scaling moments

® _ [T g7
M;" _/_OO D (t)tPdt.

The vaIuesM](p) follow from the subdivision scheme, hence from the choicE ofThe wavelet equation
can be found by plugging in the identity matdxnto the reconstruction diagram, which leads to

Wi(t) = (1) - T = @551 (1) - (1= P;(+ 2)() 2)H;).

Imposing zero moment§§p) = 0 then leads to the primal moment equations

M}i)lT(I ~P;(12)(L 2)H;) = 0. (17)

This equation can be used to deslghin function of the prediction operatdt;. Afterwards, the perfect
reconstruction condition (15) can be used to find corresmwdperationsﬁj. Condition (15) can also
be used to translate (17) into a condition f{b;. Indeed, the combination of (15) and (17) implies
immediately that

M® (1—p B
D (1-Pi(12)(L 1) = 0. (18)
This equation can be interpreted as follows. ObviOLﬁWhas an effect on the wavelet coefficients, but
not on the wavelet basis functions. If (18) is satisfied, ttencoefficientav; are such that at each scale
J .

/ W (#)aw;dt = 0, (19)

—00

independent from which synthesis is being used. glubal primal momentondition ensures — thanks
to the overcompleteness of the transform and whatever priragelet function will follow from the
reconstruction — that the decomposition into detail fumcsi

Afi(t) = wjptix(t),
P

satisfies/*_ A f;(¢)t? = 0, even if [°7_tPW,;(¢)dt # 0.

The global primal moment condition (19) of the decompositi® inherited from local primal mo-
ments at the reconstruction phase through the perfects&cation condition (15) in way similar to how
(16) is the translation of the perfect reconstruction todbéeomposition stage only. Expressions (19) and
(16) can be used to design the decomposibeforethe synthesis (instead of vice versa). Even if the
synthesis does not construct basis functions with vargshioments, imposing the global vanishing
moment condition provides numerical stability of the tifans.

This paper thus proposes to first investigate the subdividicoughP; and then to complete the
design of the analysis throuﬁj, independent from the synthesis. The synthesis follow$énthird
step of the design. In the analysis, the degrees of freedfirylehe constraints of vanishing moments
and perfect reconstruction, can be used to maximize thesigpaf the decomposition. This is the topic
of the next section.
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3.4 Solving the design equations for the decomposition

Sparsity of the decomposition is promoted by a good choigeesfiction operator and by sparse matrices
H;.
Given the prediction operatdt;, the matrixH; is designed to satisfy the conditions (16) and (18).
This may proceed in three steps:

1. Find a sparse solutioﬁjJ for (16). Sparsity inﬁjJ is imposed row by row: for each rowof
Hj 1, itis checked which rowg in theith column ofP; contain nonzeros. A solution with as few
nonzeros as possible around colugrin row i of H; ; is then tried until a zero residual is obtained.

2. Find a sparse soluticﬁj,o for the homogeneous version of (16), i.e., for the condition

(4 2)H;P;(12) = 0.
The techniques for obtaining sparsity are the same as inrtestiep of the algorithm.

3. Find a matrixX such thal; = H;, + XH;, satisfies (18). Writing

T
A = MY P12

B = M (1-P;(+2)( 2;,)

O = (\L 2)Hj,07
Expression (18) reduces thX O = B, which can be solved in two stages

(a) FirstsolveVO = B for U. Given thath(p) is non-sparse and has a limited number of rows,
matrix U will not be sparse. As a matter of fact, the set of equatiomgpisally redundant.

(b) Find a sparse solution for the underdetermined equatisin= U'.

Details about the algorithm can be found in the Matfimplementation accompanying this paper.
More information follows in Section 6.

3.5 Shared invariance instead of biorthogonality

The biorthogonality condition (16) is quite restrictive hi$ condition is sufficient, but not necessary,
to guarantee that all functions produced by subdivisionda@mposed in the overcomplete transform
with all details coefficients zero. It should be noted thas tondition is not fulfilled in absence of a
prefilter, i.e., ifﬁj = I. In the context of subdivision with smoothing predictiohe tprice to pay for
this biorthogonality is, however, high. Indeed, the prefilhas to anticipate for the smoothing by doing
the opposite thing, that is, blowing up highly frequent tiattons. Such operation introduces undesired
oscillations, leading to numerical instabilities. Alsohen the prediction is interpolating and the point
set is irregular, biorthogonal prefiltering may suffer framboundedness.

As an alternative, zero details coefficients can be imposgyl for those functions for which the
subdivision has been designed to reproduce. In partictilarJocal polynomial prediction scheme is
intended to preserve polynomials up to degiiee 1. That is, given the subsampled observational grid
tisn if sji1s =10, withp = 0,1,...,7 — 1, then (1 ~P,(t2)(l 2)).5]»+1 — 0. For such input, we
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Figure 5: Lifted smoothing with pre-filtering at the decorajion and update step in both decomposition
and reconstruction.

impose that(I —~P;(12)(1 2)H )sJH = 0. Denoting byT(Jrl = [1tj41.. t?;ﬂ (wheret!, , is the
vector with eIements’)Jrl ;) this is realized if

H;T, =T, (20)

That is,Tg.’jr)1 must be invariant undeﬁj. Condition (20) replaces the biorthogonality conditior(16).
A straightforward construction of a sparse solution for) @llows by realizing thaP ; satisfies a similar
invariance expression, namely
Pi(12)(4 2TV, = T,

The prefilter can thus be constructed from the same familhagptediction, for instance, local poly-
nomial prediction may be preceded by local polynomial pefihg of the same polynomial degree,
with possibly different bandwidths. When prefilter and pcédn share invariance properties, the detail
coefficients are offsets between observations and valasiive gone through two similar smoothing
operations. Such double smoothing also appears in othdiestuor instance in the context of bias re-
duction [11] or robust nonparametric regression [12]. Tiygraach through a shared invariance property
is essentially different from the biorthogonality approaahich imposes prefilters that are, in a certain
sense, the inverse of the prediction, so that both opesatianihilate each other, rather than sharing any
property.

A prefilter constructed from the same family as the predictivay not satisfy the global moment
condition in (18). Letﬁ] 1 be such a solution. As in Section 3. 4 this solution is cmemécbyﬁj =

HJ 1+ XHJ 0, whereHJ o satisfies the homogeneous equaﬂiﬂmT /1 = 0. The null space defined by
this expression is much larger than that in Section 3.4wallg sparser solutions.

Prefilters sharing invariance properties with the predictare thus faster in construction, with a
sparser and numerically more stable result than biorthalgomfilters. The price to pay is that there is
no nontrivial biorthogonal prefilter possible in the redonstion. Such a prefilter can be replaced by
an update step, as indicated in Figure 5. This update stepea®esigned for local primal vanishing
moments, improving on the global primal vanishing momenta prefilter in the analysis.

Remark

It can be observed that even without a perfect global vamisihnoment, a prefilter has a stabi-
lizing effect. A simple, straightforward prefiltering calylfor instance, be a Haar prefiltey, =
Sj4+1.26—1 + Sj+1,2k, Or an observational grid dependent version of it (known asalanced Haar)
Sk = (Aj+1,2k713j+1,2k71 +Aj+1,2k3j+1,2k)/Aj,k7 WhereAM = (tJ"kJrl — 2tj,k +tj,k:fl)/2- The ex-
planation for the relatively good performance of such a #wspheme is that numerical stability follows

14



from asymptotical global primal vanishing moments in anyaswe. This can be the Lebesgue measure,
but also the empirical design measure [7]. Haar prefiltensalgreserve lines on arbitrary observational
grids, leading to a decomposition with more nonzeros thaesstated by the subdivision scheme.
Remark

If the reconstruction is designed to be independent frompttadilter, this prefilter can be made
nonlinear or data-adaptive at no price.

3.6 Choosing the bandwidth and other transform parameters

The multiscale local polynomial transform presented ia fi@per depends on four parameters: the degree
of the local polynomial, the kernel function, the bandwidtheach scale and the number of primal
vanishing moments. The first three of these parametersheigdetermine the limiting function of the
subdivision process, hence the smoothness of the primizl foastion.

The degree of the local polynomial directly defines the nundfedual vanishing moments. That
number equals the degree plus one. Vanishing moments tdrgrsparsity of the representation.

Unlike in kernel or local polynomial smoothing methods, #eFnel bandwidth is not in the first
place a smoothing parameter, but rather one of the threenetess fixing the limiting function of the
subdivision process. The bandwidth has an important irgeapon w.r.t. the scale in the multiresolution
decomposition. As the interobservational distances aegutar, there is no unique scale following
from the observations themselves, as would be the case msaichl wavelet analysis on equidistant
data. The bandwidth takes the role of scale at each levelocksted to the role of the bandwidth is
the property that the number of observations involved inpitegliction filter may be time- or location-
varying. This property compensates for possible diffeesnin sample rates along the observational
axis. Itis reasonable to impose that the average numberseiraditions involved in the prediction filters
remains approximately the same across the consecutivs thuéng the transform. The bandwidths, i.e.,
the scale of the filtering, should thus be inversely proposl to the split or subsampling rate. In case
of even-odd splitting, where roughly half of the observasiare omitted at each stage, the bandwidth
atscalej = L,...,J — 1 can thus be taken to bg = 2L=ip;, whereL is the coarsest scale (often
set to beL = 0) andJ is the resolution level of the observations. The latter &xua= log,(N) in
classical wavelet analysis. It is an interesting topic oftfer research to investigate if schemes with
wider bandwidths at fine scales for additional smoothingtemeeficial. If the bandwidth behaves as
hj = ¢ 7hp, with 1 < ¢ < 2, then the result after subdivision is smoother and stillfite support.

Next to the evolution of the bandwidth across scales is tlwécehof the finest scale bandwidth. Its
value should not be too large as it is the only opportunity rtalgze fine scale effects. On the other
hand, precautions should be taken when bandwidths are soralbared to the local sampling rate.
Indeed, small bandwidths cover only a limited neighborignts. The number of neighbors may then
be insufficient to comply with the number of vanishing monsantposed by the design of the transform.
Secondly, those predicting points may happen to be all, arlyall, on the same side of the predicted
value. For local constant regression, i.e., kernel estimathis poses no real problem, as the prediction
is always convex. For local linear or higher order regrassibe effect is large prediction coefficients,
resulting in numerically unstable decompositions, esplgcif the prediction is followed by an update
step for primal vanishing moments.

The software developed for this framework is equipped witbuwdine that allows “flexible” band-
widths so that narrow bandwidths can be extended in a wayndepé on the local observational grid:
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if the global bandwidth for the current scale includes tow éljacent points for stable prediction, com-
plying with the design conditions, then the algorithm shascfor more neighbors left and right from the
current band.

3.7 Convex prediction coefficients

Although instabilities have already been reduced usingoshirng instead of interpolation and using flex-
ible bandwidths, further improvement is necessary by irmgpsonvex prediction coefficients. Convex
coefficients follow automatically in the cases of lineaenpblating prediction and constant local least
squares prediction. In general local least squares piedj@nd given a flexible bandwidth, as discussed
above in Section 3.6, we impose that all prediction coefiitsi@re positive. Since the first dual vanishing
moment requires them to sum up to one, the positivity comlitmplies convexity. Local polynomial
regression using least squares with the positivity comditeads to a non-convex combinatorial opti-
mization problem, namely, fin@ that minimizes

Wjt1,e(O)(Y = Tjr10)ll
for 3 satisfying the conditions (far € e)

oTV(MB) _
0Y; -

The predictionP;(t;tj1,.) = T(ﬁ)(t)ﬁ replaces (13). The software written for this paper finds a
local optimum for this problem. As the neighborhoods for pihediction of a given point are local, the
complexity of the optimization problems remains under calnt

4 llustrations and simulations

4.1 The frame functions

As the proposed signal decomposition is redundant, thelibgilblocks do not constitute a basis, but
rather a frame. Figure 6 compares scaling functions frondisigion with interpolating polynomial
predictions and scaling functions from subdivision witbhdbpolynomial smoothing as prediction step.
For the interpolating subdivision, cubic polynomials wesed. The resulting scaling function is smooth,
corresponding to theoretical results [4], but, dependimghe grid of sample locations, the function may
show heavy side lobes. This is due to the fact that every giediinvolves two neighbors on the left and
two on the right. Such an approach does not weight the impoetaf the neighbors according to their
distance. Using kernel (local constant) smoothing as ptiedi is insufficient to capture the structure of
the grid. Indeed, as local constants cannot reproduce tiwidn y(¢) = ¢, it can be expected that the
locationst; have an effect on the decomposition.

4.2 The analysis or decomposition

The frame functions are determined by the reconstructiod, thus by the refinement or subdivision
scheme. As the proposed representation is overcompletdettomposition into this frame is not unique.
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A

Figure 6: Scaling functions for (respectively) cubic ip@ation prediction, local constant (kernel)
smoothing prediction and local linear smoothing predittio

e

Figure 7: Test signal and noisy sample. Sample size-is2067.

In particular, the prefilter step is subject of design. Asdssed in Sections 3.3 and 3.5, biorthogonal
design on irregular grids is time consuming and restrictleading to decompositions that are non-
sparse, unstable, or both. Hoewever, for prefilters witleshavariance properties as well, the current
implementation of the design methods in Sections 3.4 ands3¥t always successful in combining
the properties (mostly dual vanishing moments) with spargkstable preservation of the global primal
vanishing moments. Since an update step has already bgawsprbas an alternative for a biorthogonal
pair of prefilters and prediction, this update step can atsaded to overcome the inconveniences of
prefilter that violates the global primal moment condition.

4.3 A denoising example

The following illustrations and simulations were perforan the test signal

sin(9t)

4

- 4(0.62 — 1)2/(0.62 — 0.4)?

T =9 s - yT=(-06272/07—062))
8(1 — /1 — (0.85 —1)2/(0.85 — 0.7)2)
2 +9(t — 0.85)

for ¢t € [0, 1] with transition points0.3; 0.4; 0.62; 0.7; 0.85. The signal is sampled at = 2067
locationst; which were generated as (ordered) independent realizatibnniform random variables on
[0, 1]. Additive normal (Gaussian) noigeis added to this sample, to obserye= f + ¢ in a signal-to-
noise ratio oSNR = 20log,, (|| f||/lle]|) = 10dB.

Although the observational grid is statistically uniforfigure 2 in [21] illustrates that the irregular-
ities pose a challenge in finding a stable and smooth recmtigtn: a reconstruction from a transform
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Figure 8: Denoising the observations from Figure 7. (a) Ydimear interpolating prediction and two-
taps update. (b) Using cubic interpolating prediction and-taps update. (c) Using local constant
smoothing prediction, no update, no prefilters. (d) Usirgaldinear smoothing prediction, no update,
no prefilters. (e) Using local linear smoothing predictibmg-taps update, linear smoothing prefilter. (f)
Using convex local linear smoothing prediction, two-tapslate, linear smoothing prefilter.

that ignores the irregularities is stable but wiggly, whalgrid-adaptive critically sampled decomposi-
tion is unstable. Figure 8 compares the noise reductioncitimof several options in a nonequispaced
Laplacian pyramid scheme. All methods thus adopted therfactedundancy of the pyramid, includ-
ing the interpolating prediction schemes, were such reaiey is not strictly necessary. The choice
for redundant interpolating prediction is motivated byrrieiss of comparison, as reconstruction from
overcomplete schemes may result in additional smoothinige Kernel used in the local polynomial
smoothing is the cosine function, i.€5(t) = (w/4)cos(nt/2) for —1 < t < 1. Experiments (not
displayed in the figures) suggest that prefilters in an imletpng scheme have relatively little impact.
The linear interpolating prediction with two-taps updafe~@ure 8(a), which the nonequispaced
extension of the Cohen-Daubechies-Feauveau (CDF) wawelét 2 primal and 2 dual vanishing mo-
ments, performs quite well in the sense of numerical stgbithe estimation is fairly unbiased. Nev-
ertheless, smoothness of this decomposition is limitedt asly reproduces straight lines. Trying to
increase the smoothness, using cubic interpolating giedjove arrive at 8(b). This decomposition is
no longer an extension of a member of the CDF family. The tésidmoother indeed, but peaks are
less sharply reconstructed, and above all, the reconstnushows unpleasant blobs, due to numerical
instabilities. These blobs may be more serious in otheingstthan the one shown in the figure. Figures
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Figure 9: Boxplot of the difference in output SNR betweemnenriocal linear smoothing prediction with
presmoothing and linear interpolating prediction, bothhuods with two-taps update. The population of
differences has a positive mean, indicating that locabliremoothing is superior to linear interpolation
as prediction method.

(c) and (d) compare local constant and local linear premtisti The local constant one clearly struggles
with the irregularity of the point set. Both schemes showraakkable and unacceptable vertical shift,
due to the lack of local primal moments, i.e., building bleckith zero integral. This is remedied by
adding an update step in Figures (e) and (f). Both Figuresiatsoduce a local linear presmoothing.
The difference between (e) and (f) is that in (f) the smoajloperations are constraint to have convex
coefficients, which leads to a smoother and more stablety@gth sharper reconstructions of the peaks.

Figure 9 summarizes the result of a simulation study of a fedchdimes 2067 noisy observations
from the signal in Figure 7 (again wittNR = 10dB). The boxplot represents the observed pairwise
differences in output signal-to-noise ratios of the two traiable routines in the previous discussion,
namely convex local linear smoothing prediction with presthing on one hand and linear interpolating
prediction on the other hand, both methods equipped withoatéps update for local primal vanishing
moments. These methods correspond, respectively, to shésalisplayed in Figures 8(f) and (a). The
mean output SNR values até.45dB for the linear interpolating prediction method a2130dB for the
convex local linear smoothing prediction with presmooghin

5 Concluding discussion

This paper has introduced the idea of multiscale smoottinglugging in well-known statistical meth-
ods of kernel smoothing and local polynomial smoothing etdting scheme. The decomposition can
be applied to irregularly observed data, with a sample sieanacessarily dyadic (a power of two). As
explained in the paper, when smoothing replaces intelipalas basic lifting step, a slight redundancy
in the transform is necessary to deal with problems of diicoity. This overcompleteness is of factor
2, which is far below the redundancy factor in a classicatdecimated wavelet transform. The scheme
can be seen as a nonequispaced version of a Laplacian pyrdimédpaper discusses an extension of
the prefiltered analysis and reconstruction in such a schémeeby illustrating that some options in
the regular sample case proposed in [8] become problenmatieiirregular sample case. Some of the
benefits from such prefiltering are better realized by antexhdil update step, leaving more degrees of
freedom to the design of fast prefilters. Moreover, updatpsstllow for the construction of building
blocks with zero integrals, i.e., without intercept or DGrgmnent.

Using smoothing as basic operation in the subdivision onegfient process behind a wavelet trans-
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form offers several advantages and perspectives. Compairggrpolation as basic design tool, smooth-
ing allows easier control on the numerical condition of teBnement process. No interpolation beyond
simple polylines performs with good numerical conditionioegular grids. Next to interpolation in a
lifting scheme, wavelets on irregular point sets could &saconstructed by elaboration from existing
two-scale equations in such general settings. Examplésd@d-splines [5]. As far as experiments
allowed to conclude, these constructions equally suffanfnumerical problems on irregular point sets.
The reason could be called a “mixture of scales”, meaningithegular point sets typically show an
intermittent density of observations, which conflicts witle basic idea of a multiscale analysis, where
each level is characterized by its scale of operations.

Smoothing as basic operation suffers less from interniilensities of observations, but it requires
redundancy for the sake of smooth reconstructions. It cbaldonjectured that the combination of
smooth and stable basis functions in a critically downsachplavelet transform on a regular dyadic grid
is an exceptional coincidence. Orthogonal (thus stable}tcoctions on irregular data structures exist,
such as on graphical data [17], but these do not consider@hpissmoothness on these graphs. The
combination of smoothness and stability seems to requigecompleteness.

Using smoothing as basic operation in subdivision has an@tivantage compared to interpolating
refinement. The output of the smoothing operation can be insadefinable measure of local smooth-
ness. In particular, as local linear polynomial smoothifignes to estimate the local derivative of the
underlying noise-free function, a parallel multiscale lgsia for the derivatives can be constructed for
using in estimation and hypothesis testing.

The methodology of this paper can also be used for the dedigaptacian pyramid schemes for
the construction of multiscale versions of a wide varietgafa analysis technigues, including nonlinear
methods, or methods adapted for non-Gaussian data and so on.

6 Accompanying software

The methods described in this paper have been implementdatiab™™ routines that are available as
part of a software package called ThreshLab. ThreshLabedownloaded from http://homepages.ulb.ae;
After installation, type | | ust rat eRWFr2GHt PUorhel p i1l ustrat eRAWM_2GHt PUfor getting
started with multiscale local polynomial lifting.
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