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Abstract The response of an optically injected quantum dot semiconductor laser
is studied both experimentally and theoretically. Specifically, the locking bound-
aries are investigated, revealing features more commonly associated with Class
A lasers rather than conventional Class B semiconductor lasers (SLs). Further,
various dynamical regimes are observed including excitability and multistability.
Of particular interest is the observation of a phase-locked bistability. We deter-
mine the stability diagram analytically using appropriate rate equations for
quantum dot lasers. In particular, the saddle-node (SN) and Hopf bifurcations
forming the locking boundaries are examined and are shown to reproduce
the observed experimental stability features. The generation of the phase-locked
bistability is also explained via a combination of these bifurcations.
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Introduction

Semiconductor lasers (SLs) have become the optical source of choice in many
applications due to their high efficiency, simplicity of modulation, and small size.
However, in some applications where it is necessary for the intensity noise level to
remain low, they suffer from intensity fluctuations that are enhanced by their
inherent relaxation oscillations (ROs). The phenomenon of ROs is familiar in the
laser physics community. When a laser is perturbed from its steady-state operation,
it does not immediately return to its original position. Instead, the relaxation to the
steady state typically occurs in one of two ways known as Class A and Class B
behavior. In a Class A laser, the laser approaches the equilibrium exponentially
like an overdamped oscillator while in a Class B laser it slowly oscillates back to
its stable steady-state like an underdamped oscillator, and these are the afore-
mentioned ROs. Class A lasers include Ar, He–Ne, and dye lasers while Class B
lasers include most of the lasers used today such as CO2; solid state and SLs.
When subject to optical injection, Class A and Class B lasers exhibit quite different
stability properties. Class B lasers admit a rich number of sustained pulsating
intensity regimes which have been studied systematically over the last decade for
semiconductor and solid-state lasers (see [24] for a recent review). Class A lasers,
free of ROs, are much more stable [20]. Recent efforts to suppress the RO-induced
instabilities in conventional SLs have concentrated on increasing the photon
lifetime above the carrier lifetime. This can be achieved by increasing either the
cavity length or the cavity finesse. The first technique has been successfully
applied with a several-meter-long cavity in SLs [3]. The second alternative is
technically easier and has been explored using half of a vertical cavity surface
emitting laser ð12� VCSELÞ in a short external cavity [4, 5].

The development of the QD laser was a concerted effort to combine the best
features of SLs (solid state, electrically injectable, small size) with some of the
best features of atomic lasers (narrow gain bandwidths, zero linewidth enhance-
ment factor). In this work we consider both experimentally and theoretically the
optical injection of a single-mode [distributed feedback (DFB)] QD laser. QD
lasers experiencing optical feedback have demonstrated excellent stability prop-
erties [21] and so one might also expect enhanced stability properties for an
optically injected QD laser. It is known from previous studies that QD lasers
exhibit a certain number of properties that make them attractive for application [6].
A particularly attractive property is an unusually high damping of the ROs [18] in
comparison to their bulk and quantum well (QW) counterparts. This high damping
has been cited as the principal reason for the increased stability of such devices
subject to optical feedback [21], optical injection [8, 10, 14], and mutual coupling
[12, 15] configurations. We determine here an experimental stability diagram with
the injection strength and the detuning as control parameters and note that it is
considerably different from that of a conventional QW laser. In particular,
the injected QD laser exhibits stability for arbitrary values of the injection rate
provided the detuning is sufficiently low. A region of bistability between two
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coexisting fixed points is also possible. While these features were noted in [8],
in this work we examine the result in greater depth and the observations are
substantiated analytically by studying rate equations appropriate for a QD laser.

Experimental Details

The experiment was carried out on several DFB InAs devices of similar con-
struction to those described in detail in [19]. The devices have a 5-QD-layer
structure grown by solid-source molecular beam epitaxy (MBE) and consist of 2.4
InAs monolayers topped with 5 nm GaInAs, stacked in a 200 nm thick optical
cavity. A 35 nm GaAs spacer is used between the QD layers and optical con-
finement is provided by Al0:85Ga0:15As cladding layers. The single-mode ridge
waveguide lasers were approximately 2 lm long. The master laser was a com-
mercial external cavity tunable device with linewidth \100 kHz: It was tunable in
steps of 0.1 pm and its output was guided in a polarization maintaining fiber and
coupled into the slave waveguide using a lensed fiber via polarization controllers.
To prevent undesired feedback, an optical isolator with an isolation greater than
40 dB was used at the output side of the slave. The slave laser was biased at 1.5
times threshold and its output was measured using a number of different diagnostic
tools: an optical spectrum analyser; a 12 GHz photodiode, amplified and con-
nected to an electrical spectrum analyzer; and a real-time oscilloscope of 6 GHz
bandwidth and a sampling rate of 40 giga-samples per second.

There are three control parameters available experimentally, namely the master
power (giving the injection rate) C; the slave injection current J; and the detuning
D; defined as the angular frequency difference between the master and slave lasers.
Figure 1.1 shows the evolution of the power spectrum of the slave DFB laser as
the detuning is varied at a fixed relatively low injection strength. Both the power of
the master and the slave injection current were fixed and the detuning was sys-
tematically varied by changing the wavelength of the master laser. At each value
of the master wavelength an RF spectrum was recorded and Fig. 1.1 shows a false
color plot of the spectra over a wide range of detuning. Clear from this figure are
the regions of beating between the master and slave lasers far from zero detuning
and a stable locked region in the center. A noteworthy feature is the large area of
stable locked operation found for each injection strength tested. In particular, in
stark contrast to optically injected QW lasers, stable phase-locked operation was
found at zero detuning for each injection strength considered with the QD lasers.

In [10] the optical injection properties of a multimode QD laser were reported.
There it was shown that for low to moderate injection strengths, fast dynamics can be
observed close to the locking boundary for negative detuning. In the case of a single-
mode QD laser dynamical regimes appear close to the locking boundaries for both
positive and negative detunings as shown in Fig. 1.1. The nature of these regions
depends on the injection strength. We define the injection strength to be the ratio of
the intensity of the light injected into the lasing cavity to the intensity of the light in
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the cavity when free running. The lowest injection strength in this work was 0.004.
For negative detuning and injection strengths up to 0.02, intensity pulses such as
those in Fig. 1.2 were observed and for positive detuning and injection strengths up
to 0.01, intensity pulses such as those in Fig. 1.3 were observed. These were very rare
and apparently randomly spaced initially with a broad power spectrum. As the
magnitude of the detuning was increased, they became more frequent, eventually
becoming a periodic train of pulses much like a distorted sine curve with the fast/slow
characteristic motion of the pulses with a sharply peaked power spectrum. At this
point the slave had become unlocked. The shape of the pulses differs depending on
the sign of the detuning since there is a nonzero a-factor. For the case of negatively
detuned pulses, the intensity drops before rising above the phase-locked intensity and
then returns to the steady-state value. For the positively detuned side the intensity
increases, then drops below the steady-state value, and eventually again recovers to
the steady-state value. These are excitable pulses resulting from 2p phase rotations of
the slave electric field as shown in [14]. In [23] complicated multipulse excitability
in optically injected QW lasers was predicted and has since been observed in [16].
In contrast to this, for single-mode quantum dot lasers, only single pulse excitability
is observed. This has been explained as also resulting from the high RO damping in
these devices in [16]. These excitable pulses arise close to the saddle-node (SN)
bifurcation similar to the phase slips observed in the Adler model [1]. The logic is as
follows. At very low absolute values of the detuning, the stable and unstable points
are sufficiently separated to avoid any noise-induced pulsations (that is the noise is
not sufficient to push the laser away from the stable point and beyond the unstable
threshold point) and as a result quiet regions of locking are observed. As the
magnitude of the detuning is increased, the stable and unstable fixed points become
progressively closer until eventually noise is sufficient to push the system past the
unstable point resulting in a 2p rotation of the electric field and a consequent intensity
pulsation. As the magnitude of the detuning is increased even further the pulses occur
more and more frequently until eventually the two fixed points collide and annihilate
each other leaving a ghost at which point the system’s time series becomes a periodic
train (modulo noise) with the characteristic shape of the pulses. The dynamical
behavior close to the boundaries in the microwave mask shown in Fig. 1.1 consisted
of such pulses. In [15] a similar phenomenon was observed in a delayed mutually

Fig. 1.1 Experimental
microwave mask showing
fast dynamics near both
the positive and negative
detuning unlocking
boundaries
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coupled configuration of quantum dot lasers. In this case, due to the delayed mutual
coupling, a pulse train is observed rather than individual pulses. As the injection
strength is increased the dynamical behavior changes significantly and similar to the
multimode case [10], various different dynamical regimes may be observed. The first
change is the disappearance of the excitable pulses near the positive detuning
unlocking boundary. These are replaced by a noise-induced switching between a
stable point and a limit cycle (with a higher average power) as shown in Fig. 1.4. For
the same injection power, the slave laser is still undergoing excitable pulsing close to
the negatively detuned unlocking boundary, clearly showing again the asymmetry in
the dynamical bifurcations in the optically injected laser system due to the nonzero a-
factor. If the injection strength is increased further, this switching is replaced by
chaotic behavior (Fig. 1.5) and eventually the SN bifurcation disappears and instead
locking is via a Hopf bifurcation which results in the slave laser moving directly from
unlocked to locked behavior as shown in Fig. 1.6. The proximity of the chaotic
behavior to the disappearance of the SN and the appearance of the Hopf suggests
strongly that this chaos has an organizing center in a codimension-2- fold-Hopf point
at their intersection. The Hopf bifurcation first appears for injection strengths of
0.016. This is higher than that for conventional semiconductor lasers under optical
injection but is consistent with measurements of the RO damping rate for quantum-
dot-based devices reported in, for example, [17, 21].

At the injection strength where the positively detuned locking boundary
changes to a Hopf bifurcation, excitable pulsations are still observed near the
negatively detuned boundary. Increasing the injection strength still further the
negatively detuned excitable pulses also disappear and are replaced with a
bistability between a stable point and a limit cycle (of lower average power) as
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Fig. 1.2 Experimentally obtained intensity pulses for the case of negative detuning
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shown in Fig. 1.7. This limit cycle undergoes a period doubling bifurcation and
the switching is then between this period doubled cycle and the stable point as
shown in Fig. 1.8. Finally, there is a region where two phase-locked solutions
of different intensities coexist. This is the dynamical behavior of most interest
for this work. Figure 1.9 shows an example of a noise-induced switching
between the two locked states. The transition between the two steady states is
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Fig. 1.3 Experimentally obtained intensity pulses for the case of positive detuning in an
optically injected QD laser
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Fig. 1.4 Time trace of switch from stable state to higher average power limit cycle behavior for
the case of positive detuning in an optically injected QD laser
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sharp and the relaxation includes only one spiked oscillation. It suggests that
the decay of the relaxation dynamics occurs at the same time scale as that of
the RO frequency in contrast to the typical Class B laser and thus we speak of
the Class A limit. This behavior is not possible for a weakly damped QW laser
except very close to threshold. At this injection strength the locking boundary
for negative detuning is also a Hopf bifurcation. However, the SN bifurcation
has not disappeared but instead lies inside the locking region where it creates
the second locked solution.
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Fig. 1.5 Time trace of chaotic attractor for the case of positive detuning in an optically injected
QD laser

Fig. 1.6 Experimentally obtained power spectra for an optically injected QD DFB laser at a
higher injection strength than that in Fig. 1.1. At this injection strength the laser moves directly
from unlocked to locked on the positive detuning boundary (lower master wavelength) with no
fast dynamical regime. This absence of noise-induced dynamics indicates that the locking is via a
Hopf bifurcation rather than via an SN bifurcation
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The results of the experimental mapping of the observed dynamics are shown in
Fig. 1.10. The black lines mark the SN bifurcations and the red lines mark the
Hopf bifurcations. Between the two black lines in the upper left of the figure a
phase-locked bistability was observed. A zoom of the low injection strength region
is shown in Fig. 1.11 with the various dynamical regimes observed labeled.

There are a number of fundamental differences between the mappings in
Figs. 1.10 and 1.11 and the injection dynamics reported in [22] for the conventional
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Fig. 1.7 Time trace of switch from stable state to lower average power limit cycle behavior for
the case of negative detuning in an optically injected QD laser
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Fig. 1.8 Time trace of switch from stable state to period two limit cycle behavior for the case of
negative detuning in an optically injected QD laser
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QW laser and reviewed in detail in [24]. Instead, we note a similarity between the
stability diagram in Fig. 1.10 and that of a Class A laser [20]. The Hopf bifurcation
line differs from that which occurs for an injected QW laser and, in particular, it does
not cross the zero detuning line allowing stable phase-locked behavior at zero
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Fig. 1.9 Time trace of switch between two distinct stable phase locked states in an optically
injected QD laser

Fig. 1.10 Experimental stability diagram. The injection strength is defined as the power of the
light injected into the cavity divided by the power in the cavity when free running. The circles
and rectangles show the experimental points while the lines are added as a guide. The solid black
lines (through the rectangles) are SN bifurcations. The solid red lines (through the ellipses) are
Hopf bifurcations. Between the two black lines at the top left of the figure a phase-locked
bistability is observed

1 Optically Injected Single-Mode Quantum Dot Lasers 9



detuning for arbitrary injection strengths. Furthermore, as already stated, except very
close to the laser threshold [13], the coexistence of two stable locking states is not
possible for a QW laser. Also, the extent of the locking via an SN bifurcation for
positive detuning is greatly increased as one would expect for a more highly damped
slave laser. These observations suggest a significant impact from the nonlinear
capture dynamics in QD lasers provided by the Pauli blocking factor. More precisely,
QD lasers may exhibit both Class A and Class B dynamics depending on the carrier
capture parameters as was shown in [7] by analyzing a three-variable rate equation
model. Below, we consider these equations, adapted to include optical injection and
examine the limit that leads to the highest damping of the ROs.

Modeling

We now turn our attention to a rate equation model of the optically injected
quantum dot laser. We study the behavior of the system in different limits and show
that the experimentally relevant case reproduces the experimental results very well.
The first step is a 4-dimensional model of an optically injected quantum dot laser.

Fig. 1.11 A zoom of the low injection region of the experimental stability diagram. As before,
the lines are added as guides. The solid black lines (through the rectangles) correspond to SN
bifurcations and the solid red (through the ellipses) to Hopf bifurcations. The dashed green lines
(through the stars) are the dynamical boundaries: between these and the black lines various
different dynamical regimes were observed. The blue dotted line (through the x’s) marks a period
doubling line. The dynamical regions are labeled as 1 through 4. 1 Excitable pulses. 2 Switching
between phase-locked behavior and a limit-cycle. 3 Switching between phase-locked behavior
and a chaotic attractor. 4 Period doubling. Note that the period doubling can be both inside and
outside the locking region. The same is true for the chaotic region although only that portion
inside the locking region is shown
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QD Laser Equations

Our rate equations for a QD laser subject to an injected signal consist of three
equations for the complex electric field E; the occupation probability in a dot q;
and the carrier density n in the wetting layers, scaled by the 2D QD density per
layer. The free-running (no injection) case was studied in [7]. These are augmented
with a term for the injected field and are given by

E0 ¼ 1
2
ð1þ iaÞ �1þ gð2q� 1Þ½ �E þ C expðiDtÞ; ð1:1Þ

q0 ¼ g Bnð1� qÞ � q� ð2q� 1ÞjEj2
h i

; ð1:2Þ

n0 ¼ g J � n� 2Bnð1� qÞ½ �: ð1:3Þ

Prime means differentiation with respect to T � t=sph where t is time and sph is the
photon lifetime ð¼2 ps for this work). C is the injection rate: it is proportional to
the injection strength divided by the laser round-trip time (to give the correct
units). The factor 2 in Eq. 1.3 accounts for the spin degeneracy in the quantum dot
energy levels. J is the pump current per dot and a is the linewidth enhancement
factor. The fixed parameters B and g are ratios of basic timescales and are defined
as B � ss�1

cap and g � sphs�1 where s and scap denote the carrier recombination and
capture times, respectively. Typical values are s ¼ 1 ns and scap ¼ 10 ps which
imply B ¼ 102 and g ¼ 2� 10�3: The nonlinear interaction between the wetting
layer and the dots is provided by the Pauli blocking factor 1� q which leads to a
significant difference between QD and QW equations. As in [10], we shall con-
sider a value of g close to one for which a good agreement between theory and
experiments is observed.

Reduction to QW Laser Equations

If we consider the limit B!1 and keep all other parameters fixed, we obtain
the conventional rate equations for an injected QW laser. This can be seen by
introducing the new variable

N ¼ Bn ð1:4Þ

into Eqs. 1.1–1.3. The equations for E; q; and N are then given by

E0 ¼ 1
2
ð1þ iaÞ �1þ gð2q� 1Þ½ �E þ C expðiDtÞ; ð1:5Þ

q0 ¼ g Nð1� qÞ � q� ð2q� 1ÞjEj2
h i

; ð1:6Þ
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N 0 ¼ gB J � B�1N � 2Nð1� qÞ
� �

: ð1:7Þ

From Eqs. 1.6 and 1.7, we note that N is faster than q because B� 1 is multi-
plying the right-hand side of Eq. 1.7. This suggests the elimination of N by a
quasi-steady-state approximation. Specifically, we determine N from Eq. 1.7 with
N 0 ¼ 0 and obtain

N ¼ J

2ð1� qÞ ð1:8Þ

as B!1: Substituting (1.8) into Eq. 1.6, the equations for E and q become

E0 ¼ 1
2
ð1þ iaÞ �1þ gð2q� 1Þ½ �E þ C expðiDtÞ; ð1:9Þ

q0 ¼ g
J

2
� q� ð2q� 1ÞjEj2

� �
: ð1:10Þ

Defining

D ¼ �1þ gð2q� 1Þ
2

; ð1:11Þ

Eqs. 1.9 and 1.10 take the form

E0 ¼ ð1þ iaÞDE þ C expðiDtÞ; ð1:12Þ

D0 ¼ g P� D� ð1þ 2DÞjEj2
h i

; ð1:13Þ

where

Fig. 1.12 Stability diagram
in the large B limit. Steady-
state locking occurs in the
central region delimited by
the left SN bifurcation line
and by the Hopf
(H) bifurcation line
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P � g

2
ðJ � 1� g�1Þ ð1:14Þ

is defined as the pump parameter above threshold ðJth ¼ 1þ g�1Þ: Equations 1.12
and 1.13 are the rate equations for an optically injected QW laser [9]. A typical
stability diagram is shown in Fig. 1.12.

The values of the fixed parameters a; g and g are the same for all our bifurcation
studies. They are given by

a ¼ 1:2; g ¼ 2� 10�3; and g ¼ 1:02: ð1:15Þ

We consider J ¼ 1:5 Jth ¼ 2:97 which implies from (1.14) that P ¼ 0:51:
In Fig. 1.12, the Hopf bifurcation line emerges from a fold-Hopf bifurcation point
located on the right SN bifurcation line. As the injection rate progressively
increases, the Hopf line moves slightly to the left before folding back to the right.
If a is larger, the Hopf line crosses the zero detuning axis before folding back.
A detailed investigation of the stability diagram in Fig. 1.12 can be found in [24].

Steady States and Stability Analysis

We next determine the basic steady-state solutions. We make the substitution
E ¼ R expðiðDT þ /ÞÞ in Eqs. 1.1–1.3 and look for solutions satisfying R0 ¼ /0 ¼
q0 ¼ n0 ¼ 0: Using D as the bifurcation parameter, the solution in parametric form
(where n is the parameter) is given by

q ¼ 1� J � n

2Bn
; ð1:16Þ

Fig. 1.13 Bifurcation
diagram of the steady-state
solutions. The values of the
fixed parameters are those
in (1.15) plus B ¼ 102 and
C ¼ 0:02: The broken line is
the approximation given by
(1.34) and (1.35) found in the
limit e ¼ g� 1! 0 and
Be ¼ Oð1Þ:
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R2 ¼ 1
2 ðBþ 1Þn� J½ � BnðJ � n� 2Þ þ J � n½ � � 0; ð1:17Þ

D ¼ Fa	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2R�2 � F2

p
with ðC2R�2 � F2� 0Þ ð1:18Þ

where

F � 1
2
�1þ g 1� J � n

Bn

� �� �
: ð1:19Þ

Note that the condition 0
 q
 1 restricts the values of n to the interval

J

2Bþ 1

 n
 J: ð1:20Þ

The steady-state solution for R is shown in Fig. 1.13. It exhibits an S-shape for
negative detuning.

In the case of the solitary laser ðC ¼ 0Þ; the linear stability properties of the
steady states depend on an effective capture rate Be � Bðg� 1Þ [7]. Because B is
large and e � g� 1 is small, we need to specify how these quantities are related.
The most interesting case that does not lead to the conventional QW laser rate
equations is based on the limit

B ¼ Oðe�1Þ as e! 0: ð1:21Þ

After introducing g ¼ 1þ e into Eq. 1.1, the expression in brackets becomes
�2þ 2qþ eð2q� 1Þ½ � and motivates the introduction of u where

q ¼ 1þ eu ð1:22Þ

to balance all terms. The expression in brackets is then proportional to e and
motivates the new time

s � eT ð1:23Þ

to balance the left- and right-hand sides of Eq. 1.1. In terms of u and s; Eqs. 1.1–
1.3 become

E0 ¼ 1
2
ð1þ iaÞ 1þ 2uð1þ eÞ½ �E þ c expðidsÞ; ð1:24Þ

u0 ¼ e�2g �Benu� 1� eu� ð1þ 2ueÞjEj2
h i

; ð1:25Þ

n0 ¼ e�1g J � nþ 2Benu½ � ð1:26Þ

where prime now means differentiation with respect to s: The new control
parameters are the scaled injection strength c and the scaled detuning d: They are
defined by
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c � e�1C and d � e�1D: ð1:27Þ

Adiabatic Elimination

Since e�2 � e�1 as e! 0; Eqs. 1.25 and 1.26 suggest that u is faster than n:
Consequently, we eliminate u by a quasi-steady-state approximation. From
Eq. 1.25 with u0 ¼ 0; we obtain

u ¼ � 1þ E2

Ben
ð1:28Þ

as e! 0: Substituting (1.28) into Eqs. 1.24 and 1.26, the equations for E and n
become

E0 ¼ 1
2

1� 2ð1þ jEj2Þ
Ben

 !
ð1þ iaÞE þ c expðidsÞ; ð1:29Þ

n0 ¼ e�1g J � n� 2ð1þ jEj2Þ
h i

: ð1:30Þ

Introducing the decomposition E ¼ R exp i dsþ /ð Þð Þ into Eqs. 1.29 and 1.30 leads
to the following three equations for R;/; and n

R0 ¼ 1
2

1� 2ð1þ R2Þ
Ben

� �
Rþ c cosð/Þ; ð1:31Þ

/0 ¼ �dþ 1
2

1� 2ð1þ R2Þ
Ben

� �
a� c

R
sinð/Þ; ð1:32Þ

n0 ¼ e�1g J � n� 2ð1þ R2Þ
� �

: ð1:33Þ

Steady States

The steady-state solutions can be determined analytically in the parametric form
n ¼ nðR2Þ and c ¼ cðR2Þ: We find

n ¼ J � 2ð1þ R2Þ; ð1:34Þ

c2 ¼ F2 þ ð�dþ FaÞ2
h i

R2 ð1:35Þ

where
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F � 1
2

1� 2ð1þ R2Þ
BeðJ � 2ð1þ R2ÞÞ

� �
: ð1:36Þ

The branch of steady states is shown in Fig. 1.14 by a broken line. The condition
n [ 0 implies, using (1.34), that R2\ðJ � 2Þ=2: Under this condition, we note
from (1.28) that q\1 as must be the case.

Linear Stability

We next examine the stability of the steady states. From the linearized equations,
we determine the following characteristic equation for the growth rate k

k3 þ a1k
2 þ a2kþ a3 ¼ 0 ð1:37Þ

where the coefficients are all expressed as functions of the steady-state intensity
R2: They are given by

a1 ¼ �G� F þ e�1g; ð1:38Þ

Fig. 1.14 Two bifurcation diagrams. The figure on the left is a bifurcation diagram of the
bistability between stable steady and periodic solutions. The branch of steady-state solutions is
given by Eqs. 1.34–1.36 (broken line). The extrema of the stable periodic solutions have been
obtained by integrating Eqs. 1.31–1.33. The bistability between steady states is possible due to
the Hopf bifurcation H1 that stabilizes the lower branch of steady states. The values of the
parameters are those in (1.15) plus B ¼ 102; J ¼ 1:5 Jth ¼ 4:5 and C ¼ 0:02: The location of the
Hopf and SN bifurcation points is in agreement with the predictions of the linearized theory
(Fig. 1.15a). The figure on the right shows the full phase-locked bistability. The extrema of R are
shown as functions of the detuning D: The complete S-shaped branch of steady states is shown by
a broken line. The values of the parameters are those in (1.15) plus B ¼ 0:7� 102; J ¼ 1:5 Jth ¼
5:14 and C ¼ 0:025
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a2 ¼GF þ Haðd� FaÞ þ ðd� FaÞ2

� e�1gðGþ FÞ þ e�1g4R2K;
ð1:39Þ

a3 ¼e�1g GF þ Haðd� FaÞ þ ðd� FaÞ2
h i

e�1g4R2K aðd� FaÞ � F½ �:
ð1:40Þ

The functions G ¼ GðR2Þ; H ¼ HðR2Þ; and K ¼ KðR2Þ are defined by

G � 1
2

1� 2ð1þ 3R2Þ
BeðJ � 2ð1þ R2ÞÞ

� �
; ð1:41Þ

H � 2R2

BeðJ � 2ð1þ R2ÞÞ ; ð1:42Þ

K � 1þ R2

BeðJ � 2ð1þ R2ÞÞ2
: ð1:43Þ

The Routh–Hurtwitz stability conditions for a stable steady-state require that [11]

a1a2 � a3 [ 0; a1 [ 0 and a3 [ 0: ð1:44Þ

Fig. 1.15 Stability diagrams
for the case e ¼ g� 1! 0
and Be ¼ Oð1Þ: a B ¼ 102

and J ¼ 1:5 Jth ¼ 4:5;

b B ¼ 0:7� 102 and J ¼
1:5 Jth ¼ 5:14: All remaining
parameters are given in
(1.15). The square in Fig.
(b) indicates the point where
H1 and SN1 admit the same
value of D: Above this point,
full bistability between steady
states is possible. The laser
threshold of the solitary laser
is determined from Jth ¼ 1þ
g�1 þ ðgþ 1Þ=ðBeÞ [7]
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A change of stability occurs through either an SN bifurcation or a Hopf bifurca-
tion. The SN bifurcation point is characterized by a zero eigenvalue and satisfies
the condition

a3 ¼ 0: ð1:45Þ

A Hopf bifurcation point is characterized by a pair of purely imaginary eigen-
values and satisfies the conditions

a1a2 � a3 ¼ 0 ð1:46Þ

and

a2 [ 0: ð1:47Þ

Both Eqs. 1.45 and 1.46 can be solved analytically because they are quadratic
expressions in the detuning d: Specifically, we first determine d as a function of R2

from either Eqs. 1.45 or 1.46. We then obtain c as a function of d by using the
steady-state Eq. 1.35. Two stability diagrams exhibiting the SN and Hopf bifur-
cation lines are shown in Fig. 1.15 for two different values of B: For clarity, only
the Hopf bifurcation points from a stable steady state are shown ða1a2 � a3 ¼
0; a1 [ 0; and a3 [ 0Þ:

Comparing Fig. 1.15 with the stability diagram of the conventional QW
laser (Fig. 1.12), we note two distinct differences. First, a Hopf bifurcation line
emerges from the SN bifurcation line at a positive detuning and moves
immediately to the right. Second, an additional Hopf bifurcation emerges from
the SN bifurcation line at a negative detuning. This second Hopf bifurcation
allows the coexistence of either two stable steady states (bistability) or the
coexistence of one stable steady state and one pulsating time-periodic regime.
These predictions from the linearized theory are verified by direct simulations
of Eqs. 1.31–1.33 (see Fig. 1.14).

The stability diagram in Fig. 1.15 is qualitatively similar to the experimental
map. Both the experimental and analytical stability diagrams predict stable locking
for a larger domain of detuning compared to a QW laser. Moreover, there are no
Hopf bifurcations at low injection strengths as previously demonstrated experi-
mentally in [14]. At higher injection strengths and for a sufficiently large positive
detuning, steady-state locking occurs through a Hopf bifurcation ðH2 in Fig. 1.14)
and not through an SN bifurcation. For negative detunings, there is a domain
of bistability between two locked states. As previously stated, this bistability
phenomenon is possible because of a Hopf bifurcation that stabilizes the lower
intensity branch ðH1 in Fig. 1.14).

Because the Hopf bifurcation lines do not cross the D ¼ 0 axis as is the case for
QW lasers [9], the injected QD laser exhibits greater stability properties. We
should, however, emphasize that this results from the fact that g� 1� 1 and
ðg� 1ÞB ¼ Oð1Þ: Other ranges of values of the parameters g� 1 and B are pos-
sible because of the large diversity of QD structures that are currently designed.

18 B. Kelleher et al.



The stability diagram shown in Fig. 1.15 bears striking similarities with that of
an optically injected Class A laser with a nonzero linewidth enhancement factor.
We consider this system in the next section.

Class A Laser

Mayol et al investigated the equations for an optically injected Class A laser with a
nonzero linewidth enhancement factor a in [20]. These equations are given by

E0 ¼ A

1þ jEj2
� 1

 !
ð1þ iaÞE þ C expðiDtÞ ð1:48Þ

where A is the normalized pump parameter (laser threshold is A ¼ 1Þ and a is the
linewidth enhancement factor. The control parameters are the injection rate C and
the detuning D: Introducing E ¼ R expðiðDt þ /ÞÞ into (1.48), we obtain

R0 ¼ A

1þ R2
� 1

� �
Rþ C cos /ð Þ; ð1:49Þ

/0 ¼ �Dþ A

1þ R2
� 1

� �
a� C

R
sin /ð Þ: ð1:50Þ

The steady-state intensity R2 ¼ R2ðCÞ satisfies

C2 ¼ R2 A

1þ R2
� 1

� �2

þ �Dþ A

1þ R2
� 1

� �
a

� �2
( )

: ð1:51Þ

From the linearized equations, we then obtain the characteristic equation for the
growth rate k

k2 þ b1kþ b2 ¼ 0 ð1:52Þ

where

b1 ¼ 2 1� A

ð1þ R2Þ2

 !
; ð1:53Þ

b2 ¼
A

1þ R2
� 1

� �
Að1� R2Þ
ð1þ R2Þ2

� 1

" #
þ D� A

1þ R2
� 1

� �
a

� �2

þ 2AR2a

ð1þ R2Þ2
D� A

1þ R2
� 1

� �
a

� �
:

ð1:54Þ
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The condition for an SN stability boundary is b2 ¼ 0 which is a quadratic

equation for D� A
1þR2 � 1
	 


a: By gradually changing R2 from zero, we first

determine D from this quadratic equation and then evaluate C using Eq. 1.51 (see
Fig. 1.16). The conditions for a Hopf bifurcation are b1 ¼ 0 and b2 [ 0: From
1.53, we find that b1 ¼ 0 if

R2 ¼ R2
H ¼

ffiffiffi
A
p
� 1 ð1:55Þ

with
ffiffiffi
A
p
� 1 and from (1.54) we find

b2ðR2
HÞ ¼ D� R2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p	 

Dþ R2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p	 

: ð1:56Þ

We conclude that b2ðR2
HÞ[ 0 if either D\� R2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

or D [ R2
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

: The
Hopf bifurcation lines are obtained by substituting (1.55) into Eq. 1.51 and satisfy

C2 ¼ ð
ffiffiffi
A
p
� 1Þ ð1þ a2Þð

ffiffiffi
A
p
� 1Þ2 � 2Dð

ffiffiffi
A
p
� 1Þa2 þ D2

n o
: ð1:57Þ

The critical points D ¼ 	R2
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

correspond to double zero eigenvalues and
are indicated by dots in Fig. 1.16.

This stability diagram bears a striking resemblance to those in Fig. 1.15 and to
the experimentally obtained diagram in Fig. 1.10. This highlights again the large
RO damping associated with quantum dot lasers. However, this similarity is
restricted to the stability diagram and does not extend to some features such as the
presence of chaos. Since the optically injected Class A laser is a 2-dimensional
system it does not admit deterministic chaos while we saw that chaotic attractors
do feature in the optically injected QD laser in Fig. 1.5. Thus, the optically
injected QD laser occupies a sort of middle ground between weakly damped QW
lasers and Class A lasers.

Fig. 1.16 Stability diagram
for an optically injected class
A laser with a ¼ A ¼ 1:2:
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Conclusions

In conclusion, we have performed an experimental and theoretical study of an
optically injected single-mode QD laser. Various dynamical regimes were
observed experimentally. Among these were excitability for both positive and
negative detuning and a number of bistabilities including most strikingly, a phase-
locked bistability over a relatively large area. An experimental stability diagram
was obtained and was shown to differ significantly from that of an optically
injected QW laser. In particular, the Hopf bifurcation typically induced by ROs is
absent from a large region of the stability diagram. Furthermore, the phase-locked
bistability is not possible with weakly damped QW devices except close to
threshold. A rate equation model of the system was considered and reproduced
both the bistability and the qualitative features of the stability diagram. Finally, the
stability diagram was shown to strongly resemble that of an optically injected
Class A laser with a nonzero a-factor, further underlining the importance of the
strong RO damping in QD lasers.
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