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euniverse cannot be dealt with in one stroke and so a bit has to be broken off and treated
as if the rest did not matter.

Afriat, 1969

1 Introduction
We focus on the revealed preference conditions for consistency of a ĕnite data set with themaximization
of a weakly separable utility function. Our main contribution is twofold. First, we show that veriĕcation
of these revealed preference conditions is a difficult problem. In particular, the problem is np–complete,
which essentially means that it cannot be solved in polynomial time. As we will discuss below, this
actuallymotivates our second contribution. Speciĕcally, we show that the revealed preference conditions
can be veriĕed by means of elementary integer programming procedures, which are easily implemented
in practice. We demonstrate the versatility of this integer programming approach by showing that it
can also assess homothetic separability and weak separability of the indirect utility function. Finally, we
illustrate our approach by applying it to a Spanish panel data set. Here, we also consider extending our
integer programming approach to account for measurement error in the data.

Weak separability of the utility function is a frequently used assumption in theoretical and applied
demand analysis. A group of goods is said to be weakly separable if the marginal rate of substitution
between any two goods in the group is independent from the quantities consumed of any good outside
this group (Leontief, 1947; Sono, 1961). Weak separability has several convenient implications.1 First of
all, it allows for representing consumption in terms of two stage budgeting. is means that, in order to
determine the demanded quantities of the goods in the separable group, it suffices to know the prices of
the goods in this group and the total within–group expenditure. Further, weak separability is a crucial
condition for the construction of group price and quantity indices. Such aggregates can be useful, for
example, to compute group cost of living indices to be used inwelfare analysis. Finally, from an empirical
point of view, weak separability signiĕcantly reduces the number of parameters of the demand system
to be estimated in practical applications.2

Considering these advantages for both theoretical and empirical work, an important issue concerns
empirically testing the validity of the separability assumption (prior to effectively imposing it). In the
literature, there are two approaches to test for weak separability. One approach uses econometric tech-
niques to verify certain parameter restrictions given a speciĕc demand model. Although this approach
is fairly Ęexible in terms of the demand model that is used, it also poses a number of problems.

First, the separability restriction is oen tested using Wald or likelihood ratio test procedures which
require estimation of the full (unrestricted) demand model. Consequently, these tests may suffer from a
degrees of freedom problem in the sense that too many parameters must be estimated given the amount
of data.3 Next, if the hypothesis of weak separability is rejected, it is impossible to verify whether this

1See also Deaton and Muellbauer (1980) for a more thorough discussion.
2In this respect, it is important to point out the importance of employing a correct separability structure in empirical de-

mand modeling. On the one hand, using a too narrow structure (i.e. omitting goods that should be included in the separable
grouping) leads to an omitted variables problem, which consequently produces inconsistent parameter estimates in the esti-
mated demand model. On the other hand, including redundant goods in the separability structure may inĘate the variances
of the parameters, which may cause inefficient parameter estimates.

3e degrees of freedom problem could in theory be circumvented by instead using Lagrange multiplier tests. However,
similar to Wald tests, Lagrange multiplier tests require a consistent estimate of the covariance matrix. Although it is relatively
easy to obtain such estimates, these are oen biased in small samples, implying that the Lagrange multiplier test may suffer
from a small sample bias.
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implies a rejection of weak separability as such or, instead, a rejection of the speciĕc functional form
imposed on demand a priori. In other words, if the null hypothesis of weak separability is rejected, this
may well be due to the use of a wrong functional form rather than a non–separable utility structure
per se.4 Finally, most econometric tests for separability are based on separability of the indirect utility
function (i.e. separability in prices), which does not imply separability of the direct utility function (i.e.
separability in quantities).5

An alternative approach to test for weak separability is based on revealed preference theory. In
several seminal contributions to the literature, Afriat (1969), Varian (1983) and Diewert and Parkan
(1985) developed revealed preference conditions that characterize the collection of data sets that are
rationalizable by a (weakly) separable utility function.6 e revealed preference approach remedies dif-
ferent problems associated with the econometric approach. First, the revealed preference conditions can
meaningfully be applied to data sets with as few as two observations, which avoids the degrees of freedom
problem discussed above. Further, the revealed preference approach abstains from imposing a speciĕc
functional form on the utility functions. As such, the tests are insensitive to model misspeciĕcation.
Finally, the revealed preference approach does not require additional assumptions like homotheticity of
the subutility function or separability of the indirect utility function (although such additional assump-
tions can be imposed and tested; see below).

Unfortunately, the revealed preference conditions have the drawback that they take the form of a
set of nonlinear, quadratic inequalities, which are very hard to verify. In order to avoid this problem,
several heuristics have been proposed that provide separate sufficient and necessary conditions for data
consistency with weak separability (see Section 2 for an overview). e lack of an efficient algorithm to
verify the revealed preference conditions raises the question whether such an algorithm exists at all. In
this study, we show that the answer is no. In particular, we prove that the veriĕcation of the revealed
preference conditions for weak separability is an np–complete problem.7 is np–completeness result
implies that it is impossible to ĕnd a polynomial time algorithm that veriĕes whether a data set is con-
sistent with the maximization of a weakly separable utility function (unless one can prove p = np). is
indicates that we should better look for a widely applied and (for moderately sized problems) reason-
ably quick non–polynomial time algorithm to verify the revealed preference conditions. Given this, we
present an easy–to–implement (non–polynomial time) integer programming procedure to verify the
revealed preference conditions. Our approach exploits the equivalence of the generalized axiom of re-
vealed preference (garp) and a set of mixed integer inequalities. Such an integer programming approach
has proven very useful in the literature that applies revealed preference theory to collective consumption
models, which studies the behavior of multi-person households, and in the literature that investigates
the testable implications of general equilibrium models.8 We extend the insights from this literature to

4Imposing separability conditions on a particular functional form might lead to additional difficulties. In particular, Black-
orby, Primont, and Russell (1978) showed that testing for separability using several econometric speciĕcations based on local
approximations of the true model (i.e. Ęexible functional forms) is actually equivalent to testing a much stronger condition.
For example, it turns out impossible to test separability for the translog model without imposing the much more stringent
assumption of additive separability. Barnett and Choi (1989) conĕrmed this result by means of Monte Carlo simulations.

5A well known sufficient condition to obtain that direct and indirect separability coincide is that the subutility function is
homothetic. We refer to Blackorby and Russel (1994) for more discussion.

6e revealed preference conditions for weak separability have been used in many different types of applications. See,
for example, Swofford and Whitney (1987, 1988), Barnhart and Whitney (1988), Patterson (1991), Belongia and Chrystal
(1991), Choi and Sosin (1992), Swofford and Whitney (1994), Jones and Mazzi (1996), Cox (1997), Fisher and Fleissig (1997),
Rickertsen (1998), Spencer (2002), Fleissig andWhitney (2003, 2008), Swofford (2005), Serletis and Rangel-Ruiz (2005), Jones,
Dutkowsky, and Elger (2005), Jha and Longjam (2006), Blundell, Browning, and Crawford (2007), Hjertstrand (2007, 2009),
Elger, Jones, Edgerton, and Binner (2008), Elger and Jones (2008), and Drake and Fleissig (2008).

7We refer to Garey and Johnson (1979) for an introduction into the theory of np–completeness.
8See Cherchye, De Rock, and Vermeulen (2007, 2009, 2011), Cherchye, De Rock, Sabbe, and Vermeulen (2008), and Cher-
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the model of utility maximization with a weakly separable utility function.
From a theoretical point of view, the coremotivation for adopting an integer programming approach

is that this is a widely accepted and a well known approach to handle np–complete problems. Besides
this, we also have a number of other motivations. First of all, our approach can be applied to data sets
with any number of observations. Second, any mixed integer program can be solved in ĕnite time.
Hence, our approach implies the possibility to verify in ĕnite time the necessary and sufficient conditions
for a given data set to be consistent with maximization of a weakly separable utility function. A third
important argument pro our integer programming approach is that it provides a versatile framework
for analyzing testable implications of different model speciĕcations: we will show that our approach can
easily accommodate for homotheticity of the subutility functions, and that we can readily adjust our
integer programming procedure to test for separability of the indirect utility function. Finally, we show
how our approach can be used to design simple statistical tests for weak separability that account for
measurement error in the data.

We demonstrate the practical usefulness of our approach by applying it to data drawn from the En-
cuesta Continua de Presupestos Familiares (ECPF), a Spanish household survey. In this application we
ĕrst investigate the performance of our integer programming formulation. We do this by comparing it
to Varian’s three step procedure, which provides separate necessary and sufficient conditions for weak
separability (see below for more details). We also study the computational performance of the integer
programming formulation. Secondly, we compare the empirical ĕt of the four alternative model speciĕ-
cationsmentioned above: the standard utility maximizationmodel, themodel that additionally imposes
weak separability, the homothetic separability model, and the model that assumes a weakly separable
indirect utility function. Speciĕcally, following a recent proposal of Beatty and Crawford (2011), we
evaluate these different model speciĕcations in terms of their ‘predictive success’. In our ĕnal exercise,
we introduce two statistical tests that allow us to take the possibility of measurement error into account.

Section 2 introduces the revealed preference conditions for rationalizability under aweakly separable
utility function and presents our np–completeness result. Section 3 presents our integer programming
approach. Section 4 discusses our empirical application. Section 5 concludes.

2 Revealed preferences conditions
To set the stage, we brieĘy recapture the known revealed preference conditions for the standard utility
maximization model and for the model that additionally imposes weak separability on the utility func-
tion. ese results will be useful for our discussion in the following sections. In this section, we also
state our np–completeness result.

Standard utility maximization. Consider a ĕnite data set D = {pt;xt}t∈T, which consists of strictly
positive price vectors pt ∈ Rn

++ and nonnegative consumption bundles xt ∈ Rn
+ for consumption

observations t in a (ĕnite) set T. is data set D is said to be rationalizable if there exists a well–behaved
(i.e. increasing, continuous and concave) utility function u : Rn

+ → R such that, for all observations
t ∈ T,

xt ∈ argmax
x

u(x) s.t. ptx ≤ ptxt.

In other words, for each observation t it must be the case that the consumed bundle xt maximizes the
utility function u over the set of all affordable consumption bundles.

chye, Demuynck, and De Rock (2011b) for integer programming characterizations of household consumption models and
Cherchye, Demuynck, and De Rock (2011d) for integer programming characterizations of general equilibrium models.
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Next, consider the following concepts. edirect revealed preference relationRD over the set {xt}t∈T
is deĕned by xtRDxv if ptxt ≥ ptxv. In words, we have that xtRDxv if xt was chosen while xv was
also affordable. e indirect revealed preference relation R is the transitive closure of the relation RD;
xtRxv if there exist bundles xw,xr, . . . ,xm such that xtRDxw, xwRDxr, . . . ,xmRDxv. Finally, we say
that {pt,xt}t∈T satisĕes the Generalized Axiom of Revealed Preferences (garp) if for all xtRxv it is not
the case that pvxv > pvxt. In words, if xt is indirectly revealed preferred to xv, then it is not the case
that xv was more expensive than xt when xv was bought.

Using these concepts, we can state the following result, which is probably the single most important
theorem in revealed preference theory.

eorem 1. [Varian (1982), based on Afriat (1967)]
e following statements are equivalent:

(i) e data set D = {pt,xt}t∈T is rationalizable,

(ii) e data set D = {pt,xt}t∈T satisĕes garp,

(iii) ere exist strictly positive numbers λt and numbers Ut such that, for all t, v ∈ T,

Ut − Uv ≤ λvpv(xt − xv).

(iv) ere exist numbers ut such that for all t, v ∈ T

if uv ≥ ut, then ptxt ≤ ptxv,

if uv > ut, then ptxt < ptxv.

Condition (ii) states that garp is necessary and sufficient for rationalizability. Condition (iii) pro-
vides an equivalent characterization of utility maximization in terms of so–called Afriat inequalities.
Intuitively, these Afriat inequalities allow us to obtain an explicit construction of the utility levels and
the marginal utility of income associated with each observation t: they deĕne a utility level Ut and a
marginal utility of income λt (associated with the observed income ptxt) for each observed xt. Condi-
tion (iv) is a reformulation of garp in the way it is usually presented in the closely related nonparametric
production literature (see Varian (1984)); in this setting this formulation is known as the ‘strong axiom
of cost minimization’.9 e basic idea behind this condition is very simple: if the utility at observation
v exceeds the utility at observation t (i.e. uv ≥ (>)ut), then it is not the case that xt was more expensive
than xv when xt was bought (i.e. ptxt ≤ (<)ptxv). Otherwise, the rational individual would not be
utility maximizing at t, because (s)he could also afford the preferred bundle xv.

eorem1 provides threemethods to verify whether a data set is rationalizable. e ĕrstmethodwas
originally suggested by Varian (1982) and focuses on verifying the garp condition. e method consists
of three steps, which comply with the three steps in the deĕnition of garp. e ĕrst step constructs
the relation RD from the data set D = {pt,xt}t∈T. A second step computes the transitive closure of
R. Here, Varian suggests using Warshall (1962)’s algorithm, which provides an efficient procedure for
computing transitive closures. e third step veriĕes if pvxv ≤ pvxt whenever xtRxv. If this is the
case, the data set satisĕes garp and is, therefore, rationalizable. Due to its efficiency, this procedure
is very popular in applied work. e second and third method veriĕes the rationalizability conditions
by testing feasibility of either the Afriat inequalities in condition (iii) or the inequalities in condition

9is condition is related to the notion of semi–strict quasi–concavity, see Hjertstrand (2008).
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(iv). e Afriat inequalities are linear in the unknowns Ut and λt, which implies that their feasibility
can be veriĕed using elementary linear programming methods (see Afriat (1967) and Diewert (1973)
for discussions of this method). In a similar vein, feasibility of the inequalities in condition (iv) can be
checked by solving a linear programming problem (in the unknowns ut) applied to the contrapositive
statement of this condition.

Weak separability. To introduce the notion of weak separability, we ĕrst partition the set of goodsN =
{1, . . . , n} in two groups. Accordingly, we can split any given consumption bundle into two separate
bundles. e ĕrst bundle x contains all consumption quantities of the goods from the ĕrst group and
the second bundle y captures the remaining goods. We denote the full consumption bundle as (x,y).
Likewise, we can split any price vector into a price vector of all goods in the ĕrst group p and a vector of
prices for the goods in the second group q. Now, consider a data setD = {pt,qt;xt,yt}t∈T. We say that
this data set is rationalizable by a weakly separable utility function if there exists a well–behaved utility
function u and a well–behaved subutility function s such that, for all observations t ∈ T,

(xt,yt) ∈ argmax
x,y

u(x, s(y)) s.t. ptx+ qty ≤ ptxt + qtyt.

Varian (1983) provides the following characterization of behavior that is rationalizable by a weakly
separable utility function.

eorem 2. [Varian (1983)]
e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by a weakly separable utility function.

(ii) For all t ∈ T there exist nonnegative numbers St and strictly positive numbers δt such that, for all t,
v ∈ T,

St − Sv ≤ δvqv(yt − yv), (ii.1)
{pt, 1/δt;xt, St}t∈Tsatisĕes garp. (ii.2)

(iii) For all t ∈ T, there exist nonnegative numbers St and Ut and strictly positive numbers δt and λt such
that, for all t, v ∈ T,

St − Sv ≤ δvqv(yt − yv), (iii.1)

Ut − Uv ≤ λv
[
pv(xt − xv) +

1
δv
(St − Sv)

]
. (iii.2)

(iv) For all t ∈ T, there exist numbers St and ut and strictly positive numbers δt such that, for all t, v ∈ T,

St − Sv ≤ δvqv(yt − yv), (iv.1)

if uv ≥ ut, then ptxt +
1
δt
St ≤ ptxv +

1
δt
Sv, (iv.2)

if uv > ut, then ptxt +
1
δt
St < ptxv +

1
δt
Sv. (iv.3)
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In contrast to the conditions in eorem 1, the conditions in this theorem are not easily veriĕed.
e main problem is that, when checking (ii.2), the ‘prices’ 1/δt and the corresponding ‘quantities’ St,
which must satisfy condition (ii.1), are unobserved. is is also reĘected in condition (iii.2), which is a
set of quadratic inequalities.

e literature brings forward several methods to test the weak separability conditions. Probably the
best known alternative is Varian (1983)’s three step procedure. In the ĕrst step, this method tests garp
consistency of the data set D = {pt,qt;xt,yt}t∈T. If the data fail garp, they are not rationalizable and,
hence, we can reject weak separability.10 By contrast, if the data set satisĕes garp, the second step tests
whether the data set {qt,yt}t∈T satisĕes garp. is garp condition is equivalent to condition (ii.1). If
garp consistency is rejected in this second step then, again, the data set is not rationalizable by weak
separability. Finally, the third step veriĕes garp of a data set {pt, 1/δ∗t ;xt,V∗

t }t∈T for some speciĕc
values δ∗t and S∗t that satisfy condition (ii.1). If for this last step garp is not rejected, then we conclude
that the data are consistent with weak separability.

Unfortunately, Varian (1983)’s test is not an exact one. In particular, it is possible that a data set is
rationalizable by a weakly separable utility function while the algorithm does not reach this conclusion.
Simulation results indicate that this may actually occur quite frequently; see, for example, Barnett and
Choi (1989), Fleissig andWhitney (2003), Hjertstrand (2009) and our empirical application in Section 4.
e problem is that the third step of the procedure ĕxes the values of both δ∗t and V∗

t in an arbitrary
way. In this respect, however, certain values may be more probable than others. is idea provides
the intuition behind the linear program developed by Fleissig and Whitney (2003). In particular, these
authors determine the values of 1/δ∗t and V∗

t based on the theory of superlative index numbers (see
Diewert (1976, 1978)). A superlative index number provides an exact index number for some order
approximation of the underlying (in casu homogeneous) utility function s. However, this test is again
only sufficient but not necessary for weak separability to hold.

An alternative testing strategy is explored by Swofford and Whitney (1994), Elger and Jones (2008)
and Fleissig and Whitney (2008), who use nonlinear programming methods to solve (iii.1) and (iii.2)
simultaneously. is is done by reformulating the problem as a nonlinear minimization problem sub-
ject to a number of linear and nonlinear restrictions. e data set is then rationalizable if the global
optimal solution of this problem is equal to zero. Alas, nonlinear programming problems (with nonlin-
ear restrictions) become computationally burdensome even for moderate sized problems.11 A second
problem with such programming problems is that they do not always yield an optimal solution: most
algorithms search for local optima, which need not be globally optimal (unless some additional concav-
ity assumptions are true). Generally, ĕnding a global optimum requires a ĕne grid search over the set
of initial values. But even a very ĕne grid search cannot exclude that weak separability is rejected while
the assumption effectively holds. We refer to Hjertstrand (2009) for a Monte Carlo comparison of the
different test procedures cited in this paragraph.

An np–completeness result. Consider a data setD = {pt,qt;xt,yt}t∈T. For any such data set, we can
ask the question whether this data set is rationalizable by a weakly separable utility function (i.e. whether
it satisĕes the conditions ofeorem 2). Basically, this decision problem asks for testing rationalizability
by a weakly separable utility function for an arbitrary data set. e following theorem shows that this
problem is np–complete. e proof is given in Appendix A.

10If the data set fails to satisfy garp, then it is not rationalizable by any utility function, whether it is weakly separable or not.
11See Jones,McCloud, and Edgerton (2007) andHjertstrand (2009) formore discussion on this. As an example, an empirical

analyst handling a data set of 60 observations would have to solve an optimization problem with at least 3540 linear and 3540
nonlinear constraints to verify the conditions (iii.1) and (iii.2) in eorem 2.
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eorem 3. e question whether a given data set is rationalizable by a weakly separable utility function
is an np–complete problem.

is result considers the general casewithout any restriction on the number of goods or observations.
Of course, it does not rule out speciĕc instances for which veriĕcation of the rationalizability conditions
might be performed efficiently. Nevertheless, our result does indicate that it is highly improbable that the
problem of rationalizability by a weakly separable utility function can be solved by means of an efficient
algorithm (like, for example, linear programming).

Essentially, eorem 3 implies that one should not waste time trying to construct a polynomial time
algorithm that veriĕes the conditions in eorem 2 (unless one has taken up the ambitious task of show-
ing that p = np). In turn, this suggests considering easy–to–implement non–polynomial time algorithms
for tackling the testing problem. erefore, we next propose a widely used method called Mixed Integer
Programming (MIP).

3 e mixed integer program
MIP problems look like standard linear programming problems except that certain variables are re-
stricted to be integer valued (in our case either 0 or 1). e MIP formulation has a number of advan-
tages. First of all, a MIP always gives a result in ĕnite time and, moreover, every local solution of a MIP
is in fact a global solution. is last property directly addresses the issue of ĕnding a global optimum
which we argued is a problem for any of the nonlinear approaches discussed above. Second, as we will
show below, our MIP formulation is a joint test of the necessary and sufficient conditions. is means
that such a MIP test is theoretically unbiased, and therefore, will by deĕnition always outperform any
sequential procedure for implementing the weak rationalizability conditions from eorem 2. ird,
MIP problems are a frequently used and widely accepted approach to handle np–complete problems. As
such, there exist well performing soware programs to solve such problems. Finally, we demonstrate
the Ęexibility of our approach by deriving MIP conditions for two related rationalizability problems.
First, we consider the speciĕc case where the subutility function is homothetic. Next, we focus on the
case where separability is imposed on the indirect utility function, i.e. the case of weak separability in
prices. ese two cases are particularly interesting because they are widely used in econometric analyses
involving separability concepts (see also our discussion in the Introduction).

We proceed by translating conditions (iv.1)–(iv.3) to an integer programming setting. e basic idea is
to notice that conditions (iv.2)–(iv.3) are equivalent to the following set of conditions:

if uv ≥ ut, then δtptxt + St ≤ δtptxv + Sv,
if uv > ut, then δtptxt + St < δtptxv + Sv.

is equivalence follows frommultiplying both sides of the right hands side inequalities by δt (> 0).
As such, we see that the inequalities on both the right and le hand side become linear. We make use
of binary variables to capture the logical relation between the different inequalities. is leads to the
following mixed integer linear program.

CS.WS For all t, v ∈ T, there exist numbers St, ut ∈ [0, 1[, δt ∈]0, 1] and binary variables Xt,v ∈ {0, 1}
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such that, for all observations t and v ∈ T, 12

St − Sv ≤ δvqv(yt − yv), (cs.1)
ut − uv < Xt,v, (cs.2)

(Xt,v − 1) ≤ ut − uv, (cs.3)
δtpt(xt − xv) + (St − Sv) < Xt,vAt, (cs.4)

(Xt,v − 1)Av ≤ δvpv(xt − xv) + (St − Sv). (cs.5)

Here, we let At be some ĕxed and large number (larger than ptxt + 1). First of all, observe that the
restriction of St, ut and δt to the unit interval is harmless as it is possible to rescale these variables without
changing the revealed preference conditions (iv.1)–(iv.3). Condition (cs.1) reproduces condition (iv.1).
e interpretation behind the binary variables is that Xt,v should be equal to one if and only if ut ≥
uv. is requirement is formalized by conditions (cs.2) and (cs.3). Finally, conditions (cs.4) and (cs.5)
reformulate conditions (iv.2) and (iv.3) by making use of these binary variables. e following theorem
formalizes the equivalence between the above MIP conditions and the rationalizability conditions for
weak separability in eorem 2. e proof is given in Appendix B.

eorem 4. e data set D = {δtpt, 1;xt, St}t∈T satisĕes (iv.2)–(iv.3) if and only if conditions (cs.2)–
(cs.5) have a solution.

Homothetic and indirect weak separability. e above MIP formulation is very Ęexible in terms of
incorporating additional (separable) preference structure. We illustrate this by considering two special
cases. e ĕrst case requires that the subutility function s is homothetic. e second case requires
separability of the indirect utility function.

Adata setD = {pt,qt;xt,yt}t∈T is rationalizable by homothetic separability if there exist awell–behaved
utility function u and a well–behaved and homothetic subutility function s such that, for all observations
t ∈ T,

(xt,yt) ∈ argmax
x,y

u(x, s(y)) s.t. ptx+ qty ≤ ptxt + qtyt.

e following theorem characterizes data sets that are consistent with homothetic separability. e re-
sult directly follows from combining Varian (1983)’s rationalizability conditions for a homothetic utility
function with eorem 2.

eorem 5. e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by homothetic separability.

(ii) For all t ∈ T there exist nonnegative numbers Ut and strictly positive numbers St such that, for all
t, v ∈ T,

St − Sv ≤
Sv

qvyv
qv(yt − yv),{

pt,
qtyt
St

;xt,yt

}
t∈T

satisĕes garp.

12e strict inequalities in cs.2 and cs.4 are difficult to handle. erefore, in practice, we use a weak inequality and subtract
a very small but ĕxed number from the right hand side.
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(iii) For all t ∈ T, there exist nonnegative Ut and strictly positive numbers St and λt such that, for all
t, v ∈ T,

St − Sv ≤
Sv

qvyv
qv(yt − yv),

Ut − Uv ≤ λv
[
pv(xt − xv) +

qvyv
Sv

(St − Sv)
]
.

(iv) For all t ∈ T, there exist numbers ut and strictly positive numbers St such that, for all t, v ∈ T,

St − Sv ≤
Sv

qvyv
qv(yt − yv), (iv.1)

if uv ≥ ut, then ptxt +
qtyt
St

St ≤ ptxv +
qtyt
St

Sv, (iv.2)

if uv > ut, then ptxt +
qtyt
St

St < ptxv +
qtyt
St

Sv. (iv.3)

In other words, to impose homotheticity of the subutility function, we only need to add the ad-
ditional (linear) restriction that δt = St/qtyt to the earlier weak separability conditions. As such, by
substituting in theMIP problemCS.WS each occurrence of δt by St/qtyt (or by imposing the additional
restriction that δt = St/qtyt ), we obtain a MIP formulation of the necessary and sufficient conditions
for homothetic separability. In view of our following empirical application, it is also worth noting that
eorem 5 implies two necessary conditions for the data to be rationalized by homothetic separability.
More precisely, the whole dataset D = {pt,qt;xt,yt}t∈T needs to satisfy garp and, secondly, the data
{qt,yt}t∈T also needs to satisfy the homothetic axiom of revealed preference (harp); see Varian (1983)
for a detailed discussion of harp.

As a ĕnal result we state the revealed preference conditions for indirect weak separability. First of
all, let us normalize the prices pt and qt such that, for all t, ptxt + qtyt = 1. en, we say that the data
setD = {pt,qt;xt,yt}t∈T is rationalizable by indirect weak separability if there exist a well-behaved (i.e.
decreasing, convex and continuous) indirect utility function v and a well–behaved indirect subutility
function w such that, for all observations t ∈ T,

{pt,qt} ∈ argmin v(p,w(q)) s.t. pxt + qyt ≤ 1. (1)

e next theorem gives a characterization of data sets that are rationalizable in terms of an indirect
weakly separable utility function. e result is obtained by combining the result in eorem 2 with
Brown and Shannon (2000) ’s rationalizability conditions for an indirect utility function. See also Hjert-
strand and Swofford (2012) for a similar result.

eorem 6. e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by indirect weak separability.

(ii) For all t ∈ T there exist numbers Vt and Wt and strict positive numbers λt and δt such that, for all
t, v ∈ T,

Wt −Wv ≥ −δvyv(qt − qv), (v.1)

Vt − Vv ≥ −λv
(
xv(pt − pv) +

1
−δv

(Wt −Wv)

)
. (v.2)
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If we introduce the variables St = −Wt and Ut = −Vt, we can reformulate (v.1)-(v.2) as:

St − Sv ≤ δvyv(qt − qv), (v.1)

Ut − Uv ≤ λv
(
xv(pt − pv) +

1
δv
(St − Sv)

)
. (v.2)

Observe that the conditions in this theorem are formally equivalent to the conditions (iii.1)–(iii.2)
in eorem 2 with prices and quantities interchanged. us two necessary conditions for the data to be
rationalized by indirect separability are that the data sets {xt,yt;pt,qt}t∈T and {yt,qt}t∈T both satisfy
garp. Finally, from (v.1)–(v.2) and by a direct application of eorem 4, we can show that the rational-
izability conditions in eorem 6 are equivalent to the following set of MIP constraints:

CS.WSI ere exist numbers St, uv ∈ [0, 1[, δt ∈]0, 1] and binary variables Xt,v ∈ {0, 1} such that, for
all t, v ∈ T,

St − Sv ≤ δvyv(qt − qv), (csi.1)
ut − uv < Xt,v, (csi.2)

(Xt,v − 1) ≤ ut − uv, (csi.3)
δtxt(pt − pv) + (St − Sv) < Xt,vAt, (csi.4)

(Xt,v − 1)Av ≤ δvxv(pt − pv) + (St − Sv). (csi.5)

Again, At is a ĕxed number larger than ptxt + 1.

4 Empirical Application
We apply our integer programming tests to data drawn from the Encuesta Contunua de Presopuestos
Familieares (ECPF) Survey. e ECPF is a quarterly budget survey (1985–1997) that interviews about
3200 Spanish households on their consumption expenditures. For each household, the survey provides
consumption observations for a maximum of eight consecutive quarters. See Browning and Collado
(2001) and Crawford (2010) for a more detailed explanation of this data set. We exclude all households
with less than eight observations. In the end, this obtains a panel with 1585 households. e data set
covers consumption decisions for 15 (nondurable) goods: (i) food and non-alcoholic drinks at home,
(ii) alcohol, (iii) tobacco, (iv) energy at home, (v) services at home, (vi) nondurables at home, (vii)
nondurable medicines, (viii) medical services, (ix) transportation, (x) petrol, (xi) leisure, (xii) personal
services, (xiii) personal nondurables, (xiv) restaurant and bars and (xv) traveling holiday. We follow
Blundell, Browning, and Crawford (2007) and deĕne the separable group to include all goods except
food (i.e. the separable group contains all goods except (i), (ii) and (xiv)). is separability assumption
is frequently used in empirical analysis of consumption behavior.

4.1 Evaluating the integer programming method

To assess the performance of our integer programming method, we will compare it with Varian’s three
step procedure. Next, another main focus is on evaluating the computational speed of our integer pro-
gramming approach for substantially large data sets. To this end, we will consider a preference ho-
mogeneity assumption that parallels an assumption oen used in econometric demand analysis. is
will allow us to conduct our separability tests on data sets that bring together information on multiple
(similar) households.
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Comparison with Varian’s three step procedure. Our MIP formulation provides exact conditions for
rationalizability by a weakly separable utility function. To evaluate the practical usefulness of our MIP
procedure, it is interesting the associated test results with the ones generated by the frequently used three
step procedure of Varian (1983). As discussed in Section 2, the ĕrst two steps of Varian’s procedure imply
necessary conditions for rationalizability by a weakly separable utility function. e ĕrst step veriĕes
garp consistency of the data set D = {pt,qt;xt,yt}t∈T and the second step veriĕes garp consistency of
the data set {qt,yt}t∈T. Both steps are very easy to implement. Actually, if this two step procedure can
identify almost all non–rationalizable data sets (i.e. the test has a low type II error), then this may plead
for using this (efficiently implementable) procedure instead of our computationally more demanding
(necessary and sufficient) MIP procedure.

We ĕnd that 83% of our Spanish households (1323 out of 1585) meet the the two garp conditions
of Varian’s two step procedure. By contrast, only 54% of the households (853 out of 1585) satisfy our
MIP conditions. In other words, 64% of the households that are not rationalizable by a weakly separable
utility function still satisfy Varian’s necessary conditions. In our opinion, this difference between the two
test procedures is rather signiĕcant.

Let us now turn to Varian’s sufficient conditions for weak separability. ese conditions add one
step to the above two step procedure. Like before, it ĕrst veriĕes garp consistency of the data sets D =
{pt,qt;xt,yt}t∈T and {qt,yt}t∈T. Subsequently, it veriĕesgarp consistency of a data set {pt, 1/δ∗t ;xt, S∗t }t∈T
for some speciĕc values δ∗t and S∗t that satisfy condition (ii.1). If in this last step garp is not rejected, then
we conclude that the data set is rationalizable by a weakly separable utility function. We ĕnd that 40%
of all households (636 out of 1585) pass this three step test. us, when comparing to our test results for
the MIP conditions, 25% of all households that are effectively consistent with weak separability do not
satisfy Varian’s sufficient conditions. Once more, we ĕnd this difference quite big.

As a ĕnal exercise, we consider the ‘adjusted’ version of Varian’s sufficiency test that was introduced
by Fleissig and Whitney (2003). As discussed in Section 2, these authors use the theory of superlative
index numbers to deĕne the Afriat numbers in the last step of Varian’s three step procedure. We ĕnd that
50% of the households (794 out of 1584) satisfy the resulting sufficient conditions for weak separability.13
us, the difference with our MIP test results decreases quite substantially. However, we still have that
about 6% of the households that are consistent with weak separability do not pass this adjusted three
step test.

At a more general level, we believe that these exercises also demonstrate that our exact MIP condi-
tions for weak separability can be fruitfully applied to assess (and compare) the empirical performance
of tests for weak separability that are not exact but very efficiently implementable. For example, for our
data set we conclude that Varian’s procedures generate test results that are considerably different from
our MIP results, while Fleissig and Withney’s procedure delivers much more similar (and thus ‘better’)
results.

Computational speed. e above empirical application considers data sets with (only) 8 observations.
Not very surprisingly, for such small data sets the MIP method we propose comes to a test result very
rapidly. Here, it seems interesting to assess whether this ‘speediness’ also holds if we increase the size
of the data sets. As is well known, MIP problems might become increasingly hard to solve as the size
of the problem gets larger. To assess whether our MIP method also works well for substantially large
data sets, we assume identical preferences for all households with the same age of the male and female
household members. In practice, this means that we perform our separability tests on pooled data sets

13We applied the test using the chain–linked Fisher ideal quantity index. We performed robustness exercises using other
popular superlative index numbers but the results did not vary very much.
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Table 1: Computational speed
size of data set number of datasets pass rate (mean) time (in seconds) var time

8 152 84 0.023 0.00001
16 87 5 0.099 0.0002
24 49 1 0.256 0.001
32 38 0 0.559 0.009
40 48 0 1.125 0.021
48 22 0 1.911 0.067
56 22 0 3.223 0.098
64 14 0 5.206 0.144
72 7 0 7.74 1.256
80 9 0 12.042 1.835
88 6 0 15.319 1.223
96 5 0 21.644 5.367
104 1 0 39.267 N.A.
120 2 0 50.543 13.256

containing all households with equally aged household members. A similar homogeneity assumption is
frequently used in econometric demand analysis, i.e. demand estimation is oen conditioned on ages of
the household members as demographic factors.

As can be seen from Table 1, the size of our newly constructed data sets varies from 8 to 120 obser-
vations, with the average number of observations equal to 27.44. Clearly, this implies relatively big data
sets as compared to other data sets that have been considered in empirical revealed preference analysis.14

e third column of Table 1 reports the pass rates for the data sets of different sizes. However, our
main interest here is in the fourth column of the table, which gives the average computation time of our
algorithm for the different data set sizes that we consider.15 Generally, these results provide a fairly strong
case in favor of our MIP approach. For example, checking the revealed preference conditions for weak
separability takes (on average) less than a second for data sets with up to 32 observations. However, if
we keep increasing the number of observations, the computational time increases rapidly. Nevertheless,
even for the largest data sets with 120 observations we obtain an outcome in less than a minute (on
average), which —in our opinion— is still reasonably fast.

4.2 Comparing alternative behavioral models

In this section we consider the four models introduced in Sections 2 and 3: the standard utility max-
imization model, the model that additionally imposes weak separability, the homothetic separability
model, and the model that assumes a weakly separable indirect utility function. We will evaluate the
different models in terms of their pass rates, discriminatory power and predictive success.

Test results: pass rates and power. Table 2 reports the pass rates of the four revealed preference tests.
About 91% of the households (1445 out of 1585) satisfy the revealed preference conditions for the stan-

14See, for example, Cherchye, De Rock, Sabbe, and Vermeulen (2008) for a discussion on the typical size of data sets con-
sidered in empirical revealed preference analysis.

15We performed all our computations on a laptop computer with 2.4GHz clock speed and 4GB RAM with a standard con-
ĕguration. For solving the integer programming problem, we used the commercial solver CPLEX©.
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dard utilitymaximizationmodel (i.e. the conditions ineorem 1). By contrast, only 853 households (or
approximately 54%) satisfy the revealed preference conditions for rationalizability by weak separability
(as given by eorem 2). Remarkably, none (!) of the households satisfy the conditions for rationaliz-
ability by homothetic separability (see eorem 5).16 is already indicates that weak separability and,
to a much greater extent, homothetic separability are rather stringent assumptions. Finally, 1264 house-
holds (or approximately 80%) pass the rationalizability conditions for indirect weak separability (see
eorem 6), which is substantially more than for the other separability assumptions.

Our diverging results for weak separability and indirect weak separability can seem surprising to
some, as one may have expected these two assumptions to be about equally stringent. Still, our pass rate
results suggest that the latter assumption has a better empirical ĕt than the former one for our sample
of households. In a sense, this may be a useful result from the perspective of econometric applications,
which oen invoke indirect weak separability (see our discussion in the Introduction). Our results reveal
that observed behavior is largely consistent with such indirect separability.

Table 2: Pass rate and Power (in percentages)
model pass rate power

mean min 1st quartile median 3rd quartile max

general ut. max. 91.17 11.13 0.0 0.2 6.5 19.9 68.4
weak separability 53.82 47.82 4.3 31.3 48.5 64.1 98.9
homothetic separability 0 99.99 99.9 100 100 100 100
indirect separability 79.75 15.99 0.0 0.9 12.8 27.3 80.9

Importantly, to meaningfully compare the different models, one should not merely consider the cor-
responding pass rates. For example, as the weak separability model is nested within the standard utility
maximizationmodel, the formermodel will have a lower pass rate than the latter model by construction.
Indeed, Bronars (1987) and, more recently, Andreoni and Harbaugh (2008) and Beatty and Crawford
(2011) —rather convincingly— argue that revealed preference test results (indicating pass or fail of the
data for some behavioral condition) should be complemented with power measures to obtain a fair em-
pirical assessment of the rationalizability conditions under evaluation. Here, power is measured as the
probability of rejecting the revealed preference test given that the model does not hold. Favorable test
results (i.e. a high pass rate for some given data), which prima facie suggest a good empirical ĕt, have
little value if the test has little discriminatory power (i.e. the conditions are hard to reject for the data at
hand).

For all revealed preference tests under evaluation, we compute a power measure for every individual
household. is measure quantiĕes discriminatory power in terms of the probability to detect random
behavior, and is based on Bronars (1987). More precisely, we simulated 1000 random series of eight
consumption choices by drawing, for each of the eight observed household budgets, a random quantity
bundle from a uniform distribution on the given budget hyperplane for the corresponding prices and
total expenditure. e power measure is then calculated as one minus the proportion of these randomly
generated consumption series that are consistent with the rationalizability conditions under evaluation.
e distribution of this power measure for the different models is given in Table 2. We see that the

16To investigate the source of these violations we checked whether the households satisfy the necessary conditions for ho-
mothetic separability (see Section 3). When checking whether the second of these conditions hold (i.e. homotheticity of the
subutility function) we found that, indeed, none of the households passes the corresponding test. is means that the data
{qt,yt}t∈T cannot be rationalized by a homothetic utility function for any of the households, as required by homothetic sep-
arability.
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standard utility maximization model has a rather low power. On average only about 11% of all random
data sets violate the revealed preference conditions of eorem 1. By contrast, the power distribution
for the homothetic separability test is entirely centered around 1, with almost no spread. In other words,
nearly all random data sets fail this test, which conĕrms its stringency. Finally, the weak separability test
has reasonably high power while the power of the indirect weak separability test is fairly low.

is last ĕnding suggests that, from an empirical point of view, indirect separability is much less
stringent than weak separability. at is, while the indirect weak separability model was associated
with a higher pass rate for the sample at hand, it seems that this better ĕt may simply be due to a lower
discriminatory power rather than a better model per se. Our following exercise accounts for the possible
trade–off between pass rate and power.

Predictive success. eabove analysis compares the four behavioralmodels in terms of their pass rates
and discriminatory power. Beatty and Crawford (2011) recently suggested to combine these two (oen
inversely related) performance measures into a single metric. More speciĕcally, building further on an
original idea of Selten (1991), they suggest to assess the empirical performance of a model by a so–called
predictive success measure which, for a given household, is computed as the difference between the
pass rate (either 1 or 0) and 1 minus the power. By construction, this measure takes values between
-1 and 1. Negative values then suggest that the model under study is rather inadequate to describe the
household data at hand: the model provides a poor ĕt of the household behavior (pass rate is zero) even
though the model’s power is low (i.e. the model is difficult to reject empirically). Conversely, a high and
positive predictive success value points to a potentially useful model: it is able to explain the observed
consumption behavior (i.e. pass rate equals 1) while its power is high (i.e. the model would rapidly be
rejected in case of random behavior).

Table 3 presents some statistics of the predictive success measures associated with the four models
under study. We observe that the standard utility maximization model achieves the highest mean pre-
dictive success. However, the value of 0.023 is still very low. In general, the mean predictive success
values do not provide a strong empirical case in favor of one or the other model.

We obtain a more balanced picture when considering the quartile values. For the homothetic sep-
arability model, the predictive success measure is entirely centered around zero with (practically) no
spread. is result directly follows from the fact that this model has, for each household, a zero pass rate
combined with power (close to) unity. Next, the distributions of the predictive success measures are al-
most identical for the standard utility maximization model and the indirect weak separability model. In
other words, indirect separability seems to add little value (if any) over and above basic utilitymaximiza-
tion in terms of predictive success. Finally, the predictive success distribution of the weak separability
model seems to be bimodal: on the one hand, there are a lot of households with very negative predictive
success values for weak separability but, on the other hand, there are also a lot of households with large
and positive predictive success values. One interpretation is that the weak separability model performs
rather well empirically for one subgroup of households while it does a fairly poor job for other house-
holds. Given this, it can be useful to investigate which household characteristics determine the good
ĕt of the weak separability model. Because our empirical application is mainly meant to be illustrative,
we will not explore this route here, but we do see this as a potentially interesting avenue for follow–up
research.

A related point concerns the observation that the weak separability model dominates the indirect
weak separability model in terms of predictive success for the median, third quartile and maximum
values. is suggests that weak separability may effectively constitute an appropriate model to describe
the consumption behavior of most households in our sample. While it provides a worse ĕt than indirect
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separability at the overall sample level, for those households that do pass the weak separability test the
higher discriminatory power effectively makes this model more useful from an empirical point of view.
at is, for many households we obtain a predictive success value that is substantially above zero.

Table 3: Predictive success
model mean min 1st quartile median 3rd quartile max

general ut. max. 0.023 −1 0 0.035 0.177 0.649
weak separability 0.016 −0.957 −0.414 0.139 0.444 0.964
homothetic separability 0 −0.001 0 0 0 0
indirect separability −0.042 −1 0 0.024 0.207 0.757

4.3 Accounting for measurement error

Until now, we considered the basic revealed preference test ofweak separability. is is a ‘sharp’ test in the
sense that it does not take possible measurement error into account. It only tells us, for the data at hand,
whether the households are exact optimizers in terms of, for example, a weakly separable utility function.
However, since consumption data are oen measured with error, this exactness is not innocuous. ere
are two possible cases where the sharp test can produce the wrong answer. In the ĕrst case, the true data
are rationalizable but, due to the measurement error, the observed data are not, i.e. we have a so called
‘false negative’. In the second case, the true data are not rationalizable although the observed data are,
i.e. we have a ‘false positive’.

We complement our application with an analysis that develops a statistical test procedure to account
for these two situations. At this point, two remarks are in order. Firstly, although our focus here will
be on measurement error in the quantities, our analysis can easily be adapted to take into account mea-
surement error in the prices.17 Secondly, for brevity we will only consider tests for weak separability in
what follows. However, our following reasoning is also directly applicable to the models of homothetic
separability and indirect separability.

We consider the following optimization problem.

OP.WS

min
St,δt,Xt,v,F

F

s.t.
St − Sv ≤ δvqv(yt − yv) + δvF,
ut − uv < Xt,v,

(Xt,v − 1) ≤ ut − uv,
δtpt(xt − xv) + (St − Sv) < Xt,vAt + δtF,
(Xt,v − 1)Av ≤ δvpv(xt − xv) + (St − Sv) + δvF,
St ≥ 0,
δt > 0,
Xt,v ∈ {0, 1}.

17See for instance Crawford (2010) and Cherchye, Demuynck, and De Rock (2011a) for examples of revealed preference
tests that take into account measurement error in the prices.
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When comparing this problem with the earlier program CS.WS, we observe that the optimal solution
of OP.WS, say F∗, must be smaller than or equal to zero if and only if the data set is rationalizable by a
weakly separable utility function. In other words, the data set {pt,qt;xt,yt}t∈T satisĕes CS.WS if and
only if F∗ ≤ 0.

A false negative. Let (xt,yt) represent the observed quantities at observation t and assume that the
true quantities are given by (x∗

t ,y
∗
t ), where

x∗
t = xt + εt and,

y∗
t = yt + υt,

with εt and υt deĕning the unobserved measurement error.
If we have a false negative, then the true data set is rationalizable by aweakly separable utility function

(i.e. it satisĕes the conditions of CS.WS), while the observed data set is not because the quantities are
measured with error. is means that the optimal solution of OP.WS is larger than zero for the actual
data but, if we had used the true quantities, then this solution value would not have exceeded zero. As
such, if the true data set is rationalizable, we should have that F∗ is not too large. e following theorem
formalizes this intuition by giving an upper bound on the optimal value of OP.WS. e proof is given
in Appendix C.

eorem 7. Assume that {pt,qt,x
∗
t ,y

∗
t }t∈T satisĕes the constraints of CS.WS and let F∗ be the optimal

value of OP.WS for the observed data set {pt,qt,xt,yt}t∈T. en,

F∗ ≤ max

{
max
t,v

pt(εt − εv);max
t,v

qt(υt − υv)
}
.

is theorem motivates the following formulation of the null hypothesis that {pt,qt,x
∗
t ,y

∗
t }t∈T is

rationalizable by a weakly separable utility function:

H0 : F∗ ≤ max

{
max
t,v

pt(εv − εv);max
t,v

qt(υv − υv)
}
;

H1 : F∗ > max

{
max
t,v

pt(εv − εv);max
t,v

qt(υv − υv)
}
.

It is directly apparent that a test of this null hypothesis for false negatives will be a conservative one. A
similar qualiĕcation applies to the test for false positives which will be developed below. e distribution
of the errors εt and υt is unknown, so we resort to a simulation procedure in order to implement the
hypothesis test. is procedure takes the following steps:

1. Compute the optimal value of OP.WS.

2. Simulate errors εt and υt drawn from some predeĕned distribution and calculate the value
max {maxt,v pt(εv − εt);maxt,v qt(υv − υt)}. We have 5000 draws (per household).

3. Compute the percentage of these values that exceeds the optimal value of OP.WS computed in the
ĕrst step.

4. If this percentage is smaller than α, then we reject the hypothesis that the true data set is rational-
izable by a weakly separable utility function for a signiĕcance level of α.
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is test procedure is a variation of the one originally developed by Fleissig and Whitney (2008) and
Jones and Edgerton (2009).18 In order to apply it, two issues must be resolved. First of all, the optimal
value of OP.WS must be computed. is problem is nonlinear in the variable F and might therefore
be considered difficult. However, notice that if OP.WS has a feasible solution for a particular value of
F, then it also has a feasible solution for all values of F′ ≥ F. From this monotonicity condition, it
follows that we can solve the problem quite efficiently using a binary search algorithm.19 e second
issue concerns the distribution and structure of the errors εt and υt. We assume a multiplicative error
structure: εt = ηt xt and υt = ζ t yt where ηt and ζ t are diagonal matrices with the diagonals being i.i.d.
mean zero normally distributed variables with standard deviation σ. Although other error structures
are of course amenable, we choose the multiplicative one here because it more efficiently accounts for
differences in the scale of expenditure across goods and observations. In our application, we performed
the computations for different values of the standard deviation.

Table 4 presents the result of our procedure for the 732 households that fail the ‘sharp’ weak sep-
arability test. e entries in the table give the percentage of households for which we reject the null
hypothesis of rationalizability by a weakly separable utility function for various levels of α and σ. As an
example on how to interpret these numbers, take a standard deviation σ of 0.3% and a signiĕcance level
α of 0.05. en, we have that the null of rationalizability by weak separability is rejected for 3.97% of
all households (that violated the ‘sharp’ conditions CS.WS). In other words, almost 96% of the house-
holds are labelled as false negatives. Not surprisingly, Table 4 also reveals that the number of households
rejecting the null is decreasing drastically in the level of σ.

Table 4: percentage of households for which H0 is rejected at the given signiĕcance level
Signiĕcance level

Standard deviation σ α = 0.01 α = 0.05 α = 0.10

0.0025/100 95.50 96.73 97.14
0.005/100 91.25 93.72 94.39
0.01/100 81.14 84.84 86.75
0.05/100 42.08 49.44 53.01
0.10/100 23.63 30.06 32.51
0.15/100 13.39 19.54 21.44
0.20/100 6.83 11.07 13.80
0.25/100 3.82 6.83 8.06
0.30/100 2.32 3.97 5.46
0.35/100 1.63 2.60 3.69
0.40/100 0.83 2.32 2.60
0.45/100 0.83 1.50 2.32
0.50/100 0.55 0.96 1.50
0.55/100 0.42 0.83 0.96
0.60/100 0.27 0.42 0.96

18See also Varian (1985) and Epstein and Yatchew (1985) for procedures to account for measurement error in revealed
preference tests.

19A binary search algorithm departs with an infeasible lower bound, Fℓ, and a feasible upper bound, Fu, for the objective
function. For each step of the algorithm, the procedure evaluates whether the midpoint (Fu + Fℓ)/2 is feasible. If it is, then in
the next iteration the upper bound Fu is replaced by this midpoint. If the midpoint is not feasible, then the midpoint replaces
the lower bound Fℓ. At each iteration of the algorithm, the range [Fℓ, Fu], which contains the solution of the problem, is halved.
As such, the width of the interval decreases exponential in the number of iterations.
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A false positive. A false positive means that the true data set is actually not rationalizable by a weakly
separable utility function but, due to measurement error, we conclude that the observed data set is ra-
tionalizable. In this case, the optimal solution of OP.WS should be less than or equal to zero, while
this value would be larger than zero if the true data set were used. As such, if the true data set is not
rationalizable, we would expect that F∗ is not too far below zero. e following theorem formalizes this
intuition. Like before, the proof is given in Appendix C.

eorem 8. Assume that {pt,qt,x
∗
t ,y

∗
t }t∈T does not satisfy the constraints of CS.WS and let F∗ be the

optimal value of OP.WS for the observed data set {pt,qt,xt,yt}t∈T. en,

F∗ > min

{
min
t,v

pt(εv − εt);min
t,v

qt(υv − υt)
}
.

is result allows us to formulate the following null hypothesis based on the null that the true data
{pt,qt,x

∗
t ,y

∗
t }t∈T is not rationalizable by a weakly separable utility function.

H0 : F∗ > min

{
min
t,v

pt(εt − εv);min
t,v

qt(υv − υt)
}
;

H1 : F∗ ≤ min

{
min
t,v

pt(εt − εv);min
t,v

qt(υv − υt)
}
.

us, one rejects the null of no rationalizability for large negative values of F∗. Analogous to above, we
use a simulation based procedure to implement the corresponding hypothesis test.

1. Compute the optimal value of OP.WS.

2. Simulate errors εt and υt drawn from some predeĕned distribution and calculate the value
min {mint,v pt(εt − εv);mint,v qt(υv − υt)}. We have 5000 draws (per household).

3. Compute the percentage of these values that are below the optimal value of OP.WS computed in
the ĕrst step.

4. If this percentage is smaller than α, then we reject the hypothesis that the true data set is not
rationalizable for a signiĕcance level of α.

Table 5 presents the results of the procedure for the 853 households that satisfy the sharp rationaliz-
ability test. Its interpretation is similar to the results from Table 4. As an example, let us again consider
a standard deviation σ of 0.3%, and a signiĕcance level α of 0.05. We then reject the null hypothesis
of non–rationalizability for 63.1% of the households for which the observed data did satisfy the sharp
test. In other words, about 37% of the households can be labeled as false positives. Again as one can
expect, we conclude that the number of household rejecting the null decreases if the standard deviation
increases.

Finally, comparing the test results in Tables 4 and 5 may suggest that we should care much more
about false negatives than about false positives, if we believe measurement error is an issue for the data
at hand. However, drawing such a conclusion is misleading for several reasons. First of all, in order to
compare the two tests, we should control for the power of the different tests. is power will generally
depend on the nature of the data that are involved. For compactness, we choose not to explore this
power issue further in this paper. Second, the test results in the two tables pertain to distinct subsets of
observations, with possibly different characteristics. Finally, we observe that both tests are conservative
by construction. As such, for a given signiĕcance level, they only identify lower bounds on the numbers
of false positives and negatives. is also means that the true probability values (under the null) of the
test statistics are unknown, which makes the test results not comparable.
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Table 5: percentage of households for which H0 is rejected at the given signiĕcance level
Signiĕcance level

Standard deviation σ α = 0.01 α = 0.05 α = 0.10

0.0025/100 98.21 98.94 99.07
0.005/100 97.54 98.23 98.23
0.01/100 94.36 96.00 96.83
0.05/100 80.61 83.42 84.62
0.10/100 72.73 75.79 76.61
0.15/100 67.33 70.03 71.91
0.20/100 64.28 66.40 68.39
0.25/100 62.99 64.52 65.56
0.30/100 61.82 63.10 64.03
0.35/100 60.29 62.28 63.10
0.40/100 58.88 61.46 62.40
0.45/100 57.81 60.29 61.69
0.50/100 56.64 59.34 60.63
0.55/100 54.76 58.06 59.58
0.60/100 54.16 57.35 58.75

5 Conclusion
We considered the revealed preference conditions for weak separability. From a theoretical perspective,
we found that verifying these conditions is a difficult (= np–complete) problem. Given this, we intro-
duced an integer programming approach to test data consistency with the conditions. We illustrated
the versatility of this approach by deriving formally similar integer programming tests for the cases of
homothetic separability and indirect weak separability.

Further, we showed the empirical viability of our integer programming approach by providing an
application to Spanish household consumption data. In this application, we focused on separability
between food expenditures and other expenditures (on nondurables). An interesting observation was
that indirect weak separability was associated with a higher pass rate than weak separability for the
sample of households at hand. However, we also found that the weak separability test had substantially
more discriminatory power than the indirect separability test. As a result, the weak separability model
was associated with a rather favorable predictive success measure (indicating a high degree of empirical
usefulness) for most households considered. Finally, we presented two statistical tests that account for
measurement error in the data.

We see multiple avenues for further research. First of all, at the theoretical level, we have concen-
trated on the three most commonly used types of separability, which have been established and imple-
mented in the literature for a long time: weak separability, homothetic separability and indirect weak
separability. More recently, Blundell and Robin (2000) introduced the notion of latent separability, a
generalization of weak separability that provides an attractive empirical and theoretical framework for
investigating the grouping of goods and prices. Crawford (2004) has derived the revealed preference
conditions for latent separability. As in the weak separability case, the latent separability conditions are
nonlinear (quadratic) and thus hard to verify. We believe it would be interesting to explore whether
and to what extent the integer programming approach set out in the current paper may help to derive
necessary and/or sufficient testable (integer programming) formulations of Crawford’s conditions for
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latent separability.
Next, at themethodological level, we focused our discussion by only considering revealed preference

tests for alternative separability speciĕcations. If observed behavior is consistent with a particular spec-
iĕcation (i.e. can be rationalized), then a natural next question pertains to recovering/identifying the
structural features of the model under consideration. For example, in the present context such recovery
can focus on identifying group (price/quantity) indices that are consistent with a separable representa-
tion of the utility structure. Because the revealed preference approach does not require a prior speciĕ-
cation for the utility functions, it addresses recovery questions by ‘letting the data speak for themselves’
(i.e. it only uses the information that is directly revealed by the data). See, for example, Afriat (1967) and
Varian (1982) for detailed discussions of revealed preference recoverability. ese authors consider the
standard utility maximization model. By using the integer programming formulations developed in the
current paper, one can address similar recovery questions under alternative separability assumptions.20
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Appendix A: proof ofeorem 3
Proof. In order to show that the problem of rationalizability by a weakly separable utility function is in
the class np, we need to reduce a known np-complete problem to this decision problem. For this we use
the problem of Monotone 3SAT (M3SAT).
M3SAT
INSTANCE: A set of binary variables b1, . . . , bt and a set of clauses C1, . . . ,Cr. Each clause Cℓ, ℓ =
1, . . . , r, contains three literals l1,ℓ, l2,ℓ and l3,ℓ and each literal either equals a variable or its negation.
e condition monotone refers to the fact that for every clause all literals within this clause are either
negated or unnegated.
QUESTION: Does there exist an assignment to the variables b1, . . . , bt (either 1 or 0) such that each
clause contains at least one literal with the values equal to 1?

Now, consider an instance of M3SAT. We ĕrst construct the set of observations T and the sets of goods
T and S.:

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we construct two observations t(k, ℓ) and
v(k, ℓ). ese observations are gathered in the set T′.

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we create two goods g(t, k, ℓ) and g(v, k, ℓ).

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we create two goods h(t, k, ℓ) and h(v, k, ℓ).

For two literals l and l′, we say that they are opposites if l corresponds to a variable bi and l′ corre-
sponds to (1 − bi) or l corresponds to (1 − bi) and l′ corresponds to bi (i.e. l ≡ (1 − l′)). We consider
some special subsets of the set of goods.

• Gt = {g(t, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• Gv = {g(v, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• O(t, k, ℓ) =
{
g(v, k′, ℓ′)

∣∣∣∣ the k-th literal in clause ℓ and the k′th literal
in clause ℓ′ are opposites

}
.

• Ht = {h(t, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• Hv = {h(v, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.
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Table 6: Prices and quantities for instance of weak separability

observation g(t, k, ℓ) Gt − {g(t, k, ℓ)} Gv −O(t, k, ℓ) O(t, k, ℓ)

t(k, ℓ) p|1 1|2 1|2 1|1− 1
p

observation h(t, k, ℓ) Ht − {h(t, k, ℓ)} h(v, k, ℓ) Hv − {h(v, k, ℓ)}

t(k, ℓ) z|2 1|3 1|1− 1
y

1|2

observation g(v, k, ℓ) Gt Gv − {g(v, k, ℓ)}
v(k, ℓ) p|1 1|2 1|2

observation h(t, k⊕ 2, ℓ) Ht − {h(t, k⊕ 2, ℓ)} h(v, k, ℓ) Hv − {h(v, k, ℓ)}
v(k, ℓ) 1|1 1|3 y|1 1|2

e goods in the separable group (bundle y) are the goods g(t, k, ℓ) and g(v, k, ℓ). For k and l ∈ N
denote by k⊕ l the number (k+ l) mod 3. e remaining goods are the goods for the non–separable
group (bundle x). e prices and quantities for each observation and good are summarized in the fol-
lowing tables for all k = 1, 2, 3 and ℓ = 1, . . . , r (prices are before the separator ‘|’, quantities aer).

Here, the numbers p, z and y are given by:

p = 14+ 35r, z = 16+ 42r, y = 11+ 29r,

with r the number of clauses.
We have to show that M3SAT has a solution if and only if the data set constructed above is weakly

separable rationalizable. First let us assume that the data set is weakly separable rationalizable. Let
St(k,ℓ) and Sv(k,ℓ) and Ut(k,ℓ),Uv(k,ℓ) be the Afriat numbers for the observations t(k, ℓ) and v(k, ℓ) that
correspond to this rationalization. e idea is to set the value of the variables in such away as to guarantee
that the kth literal in the ℓth clause is equal to one whenever St(k,ℓ) ≥ Sv(k,ℓ). We need to verify that this
is possible and that this leads to a solution of M3SAT. e following facts will be helpful.

Fact 1. For all k, k′ = 1, 2, 3 and ℓ, ℓ′ = 1, . . . , r, if the kth literal in the ℓth clause and the k′th literal in
the ℓ′th are opposites, then Sv(k,ℓ) > St(k′,ℓ′).

Proof. We have that:

St(k′,ℓ′) − Sv(k,ℓ) ≤ δv(k,ℓ)qv(k,l)

[
yt(k′,ℓ′) − yv(k,ℓ)

]
= δv(k,ℓ)

[
−1− 1+ (−2+ 1− 1/p)

∣∣O(t, k′, ℓ′) ∩ (Gv − {g(v, k, ℓ)})
∣∣]

< 0

Fact 2. For all ℓ, ℓ′ = 1, . . . , r and k, k′ = 1, 2, 3 if the kth literal in the ℓth clause and the k′th literal in
the ℓ′th clause are opposites then it is not the case that both St(k,ℓ) ≥ Sv(k,ℓ) and St(k′,ℓ′) ≥ Sv(k′,ℓ′).
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Proof. If, on the contrary, St(k,ℓ) ≥ Sv(k,ℓ) and St(k′,ℓ′) ≥ Sv(k′,ℓ′), we would have that (by fact 1):

St(k,ℓ) ≥ Sv(k,ℓ) > St(k′,ℓ′) ≥ Sv(k′,ℓ′) > St(k,ℓ),

a contradiction.

Facts 1 and 2 show that above construction above can be performed (i.e. it is never the case that two
opposite literals have the value of one). e following fact demonstrates that it provides a solution to
M3SAT.

Fact 3. For all ℓ = 1, . . . , r, there is at least one value k = 1, 2, 3 such that St(k,ℓ) ≥ Sv(k,ℓ).

Proof. Let us ĕrst show that for all k = 1, 2, 3 and ℓ = 1, . . . , r, Ut(k,ℓ) > Uv(k⊕1,ℓ). Indeed,

Uv(k⊕1,ℓ) − Ut(k,ℓ) ≤ λt(k,ℓ)pt(k,ℓ)
[
xv(k⊕1,ℓ) − xt(k,ℓ)

]
+ λt(k,ℓ)qt(k,ℓ)

[
yv(k⊕1,ℓ) − yt(k,ℓ)

]
= λt(k,ℓ)

[
p− 1+ (2− 1+ 1/p) |O(t, k, ℓ) ∩ (Gv − {g(v, k, ℓ})|
−z+ (2− 1+ 1/y) + (1− 2)

]
≤ λt(k,ℓ) [p− 1+ 6r− z+ 2− 1]

= λt(k,ℓ) [(14+ 35r) + 6r− (16+ 42r)] < 0

Now, consider the identity

0 =
[
Uv(k⊕1,ℓ) − Ut(k,ℓ)

]
+

[
Uv(k⊕2,ℓ) − Ut(k⊕1,ℓ)

]
+

[
Uv(k⊕3,ℓ) − Ut(k⊕2,ℓ)

]
+

[
Ut(k,ℓ) − Uv(k,ℓ)

]
+
[
Ut(k⊕1,ℓ) − Uv(k⊕1,ℓ)

]
+
[
Ut(k⊕2,ℓ) − Uv(k⊕2,ℓ)

]
e ĕrst three terms on the right hand side are negative, hence,

0 <
[
Ut(k,ℓ) − Uv(k,ℓ)

]
+

[
Ut(k⊕1,ℓ) − Uv(k⊕1,ℓ)

]
+

[
Ut(k⊕2,ℓ) − Uv(k⊕2,ℓ)

]
≤
λv(1,ℓ)
δv(1,ℓ)

[
St(1,ℓ) − Sv(1,ℓ)

]
+

λv(2,ℓ)
δv(k⊕1,ℓ)

[
St(2,ℓ) − Sv(2,ℓ)

]
+

λv(3,ℓ)
δv(3,ℓ)

[
St(3,ℓ) − Sv(3,ℓ)

]
As such at least for one k = 1, 2, 3 it must be that St(k,ℓ) > Sv(k,ℓ).

Now, consider a ‘yes’ instance of M3SAT. We need to construct Afriat numbers S and δ for each
observation that satisfy the the conditions for rationalizability by weak separability (see eorem 2). Let
us start by constructing a binary relation ≻. For k, k′ = 1, 2, 3 and ℓ, ℓ′ = 1, . . . , r if the k-th literal in
the ℓth clause and the k′th literal in the ℓ′th clause are opposites, we set v(k, ℓ) ≻ t(k′, ℓ′). Further, for
all k = 1, 2, 3 and ℓ = 1, . . . , r if the kth literal in the ℓth clause has the value 1, we set t(k, ℓ) ≻ v(k, ℓ).
ese are the only comparisons in≻. Observe that≻ has no cycles and any path in≻ contains no more
than 4 observations.

Let M1 be the set of ≻-maximal elements of T′:

M1 = {a ∈ T| ̸ ∃b ∈ T′, b ≻ a}.

For all observations a in M1, we set Sa = 4. Let M2 be the set of ≻-maximal elements in T′ −M1. For
all a ∈ M2, set Sa = 3. Next, letM3 be the set of≻-maximal elements in T′− (M1 ∪M2) and set Sa = 2
for all a ∈ M3. Finally let M4 be the set of ≻-maximal element in T′ − (M1 ∪M2 ∪M3) and set for all
a ∈ M4, Sa = 1. It is easy to see that M1 ∪M2 ∪M3 ∪M4 = T, hence all observations are allocated a
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value. Observe that when the kth literal in the ℓth clause equals one, then St(k,ℓ) > Sv(k,ℓ). Finally, for all

k = 1, 2, 3 and ℓ = 1, . . . , r, set δt(k,ℓ) = 1 and set δv(k,ℓ) =
1

3+ 7r
, where r is the number of clauses.

We need to proof two things. First we need to verify that all Afriat inequalities hold for every two
observations in the set

{
t(k, ℓ), v(k, ℓ), t(k′, ℓ′), v(k′, ℓ′)

}
k,k′=1,2,3;ℓ,ℓ′=1,...,r (i.e. condition (ii.1) of e-

orem 2). Second, we need to show that the data set {pw, 1/δw,xw, Sw}w∈T′ satisĕes garp (condition
(ii.2)). For the ĕrst, it is a straightforward but cumbersome exercise to verify every possible combina-
tion of states. As suchwe refer to the appendix C.Now, let us verify the second claim. Consider the direct
revealed preference relation RD for the data set {pw, 1/δw;xw, Sw}w∈T′ . We have following results.

Fact 4. For all k = 1, 2, 3 and ℓ = 1, . . . , r, we have that the observation t(k, ℓ) is directly revealed
preferred to the observation v(k⊕ 1, ℓ) (i.e. (t(k, ℓ), v(k⊕ 1, ℓ)) ∈ RD).

Proof. We have that:

pt(k,ℓ)
[
xt(k,ℓ) − xv(k⊕1,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕1,ℓ)

]
= z+ (1− 1/y− 2) + (2− 1) +

[
St(k,ℓ) − Sv(k⊕1,ℓ)

]
≥ z− 2− 3 = 16+ 42r− 5 > 0

Fact 5. For all k = 1, 2, 3 and ℓ = 1, . . . , r, (v(k, ℓ), t(k, ℓ)) ∈ RD if and only if Sv(k,ℓ) ≥ St(k,ℓ) (which
implies that the kth literal in the ℓth clause is equal to zero).

Proof. We have that,

pv(k,ℓ)(xv(k,ℓ) − xt(k,ℓ)) +
1

δv(k,ℓ)
[
Sv(k,ℓ) − St(k,ℓ)

]
=

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k,ℓ)

]
.

is is positive or negative depending on the sign of Sv(k,ℓ) − St(k,ℓ).

Fact 6. e relation RD contains no comparisons except for the cases mentioned by Facts 4 and 5.

Proof. See appendix E.

Now, assume a violation of garp. Above Facts show that this implies the following cycle for some
ℓ = 1, . . . , r:

(t(1, ℓ), v(2, ℓ)), (v(2, ℓ), t(2, ℓ)), (t(2, ℓ), v(3, ℓ))
(v(3, ℓ), t(3, ℓ)), (t(3, ℓ), v(1, ℓ)), (v(1, ℓ), t(1, ℓ)).

Fact 5 shows that in this case Sv(1,ℓ) ≥ St(1,ℓ), Sv(2,ℓ) ≥ St(2,ℓ) and Sv(3,ℓ) ≥ St(3,ℓ). is can only be
the case if all literals in the clause ℓ are zero, a contradiction.
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Appendix B: proof ofeorem 4
Proof. Assume that the data set D = {δtpt, 1;xt, St}t∈T satisĕes (iv.1)–(iv.3). It is always possible to
rescale the values ut such that, for all t ∈ T, ut < 1. For all t, v ∈ T, deĕne Xt,v = 1 if and only if ut ≥ uv
(i.e. Xt,v = 0 if ut < uv) . We must show that conditions (cs.2)-(cs.5) hold. By deĕnition, conditions
(cs.2) and (cs.3) are always satisĕed. Let δtptxt + St ≥ δtptxv + Sv. en form the contraposition of
(iv.3)we obtain that uv > ut can not occur. As such, ut ≥ uv and thus Xt,v = 1. is demonstrates
that condition (cs.4) holds. Next, assume that Xt,v = 1, which is equivalent to ut ≥ uv. From condition
(iv.2), we then obtain that δvpvxv + Sv ≤ δvpvxt + St. is shows that (cs.5) is also satisĕed.

For the reverse, assume that (cs.2)-(cs.5) has a solution. We need to show thatD satisĕes (iv.2)-(iv.3).
If δtptxt + St ≥ δtptxv + Sv, we have, from (cs.4), that Xt,v = 1. Condition (cs.3) then requires that
ut ≥ uv. is demonstrates condition (iv.3). Next, if ut ≥ uv, then Xt,v = 1 (from (cs.2)) and using
condition (cs.5) we see that δvpvxv + Sv ≤ δvpvxt + St. As such, condition (iv.2) is also satisĕed.

Appendix C: proof ofeorems 7 and 8
Proof of eorem 7. Assume that {pt,qt;x

∗
t ,y

∗
t }t∈T satisĕes the conditions in CS.WS. en there

exist numbers St and ut, strict positive numbers δt and binary numbers Xt,v such that:

St − Sv ≤ δvqv(y
∗
t − y∗

v ),

ut − uv < Xt,v,

(Xt,v − 1) ≤ ut − uv,
δtpt(x

∗
t − x∗

v) + (St − Sv) < Xt,vAt,

(Xt,v − 1)Av ≤ δvpv(x
∗
t − x∗

v) + (St − Sv).

en, given that x∗
t = xt + εt and y∗

t = yt + υt, we obtain that:

St − Sv ≤ δvqv(yt − yv) + δvqv(υt − υv),
ut − uv < Xt,v,

(Xt,v − 1) ≤ ut − uv,
δtpt(xt − xv) + (St − Sv) < Xt,vAt + δtpt(εv − εt),
(Xt,v − 1)Av ≤ δvpv(xt − xv) + (St − Sv) + δvpv(εt − εv).

From this, we see that max {maxt,v pv(εt − εv);maxt,v qv(υt − υv)} is a feasible solution for OP.WS,
from which the theorem follows.

Proof ofeorem8. Assume that {pt,qt;xt,yt}t∈T satisĕes the conditions inCS.WS.en there exist
numbers St and ut, strict positive numbers δt and binary numbers Xt,v such that the optimal solution F
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of OP.WS satisĕes:

St − Sv ≤ δvqv(yt − yv) + δvF,
ut − uv < Xt,v,

(Xt,v − 1) ≤ ut − uv,
δtpt(xt − xv) + (St − Sv) < Xt,vAt + δtF,
(Xt,v − 1)Av ≤ δvpv(xt − xv) + (St − Sv) + δvF.

is implies that for all t and v:

F ≥ St − Sv
δv

− qv(yt − yv),

F ≥ pt(xt − xv) +
St − Sv

δt
− Xt,vAt,

F ≥ (Xt,v − 1)Av − pv(xt − xv)−
St − Sv
δv

.

As the data set {ptqt,x
∗
t ,y

∗
t }t∈T is not rationalizable, a similar reasoning as above shows that theremust

be a t and v such that at least one of the following inequalities holds

St − Sv
δv

− qv(yt − yv) > qv(υt − υv),

pt(xt − xv) +
St − Sv

δt
− Xt,vAt > pt(εv − εv),

(Xt,v − 1)Av − pv(xt − xv)−
St − Sv
δv

> pv(εt − εv).

erefore, we can conclude that at least

F > min

{
min
t,v

qv(υt − υv);min
t,v

pv(εt − εv))
}
.

Appendix D: supplement to Appendix A
Case 1: (t(k, ℓ), t(k′, ℓ′))

δt(k,ℓ)qt(k,ℓ)

[
yt(k′,ℓ′) − yt(k,ℓ)

]
=

p+ (1− 2) + (1− 2− 1/p)
∣∣G −O(t, k, ℓ) ∩ O(t, k′, ℓ′)

∣∣
+(2− 1+ 1/p)

∣∣O(t, k, ℓ) ∩
(
Gv −O(t, k′, ℓ′)

)∣∣
≥ p− 1− 6r = 14+ 35r− 6r > 3 ≥ St(k′,ℓ′) − St(k,ℓ)

Case 2: (v(k, ℓ), v(k′, ℓ′))

δv(k,ℓ)qv(k,ℓ)

[
yv(k′,ℓ′) − yv(k,ℓ)

]
= δv(k,ℓ) [p+ (1− 2)]

=
14+ 35r− 1

3+ 7r
> 3 ≥ Sv(k′,ℓ′) − Sv(k,ℓ)
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Case 3: (t(k, ℓ), v(k′, ℓ′))

δt(k,ℓ)qt(k,ℓ)

[
yv(k′,ℓ′) − yt(k,ℓ)

]
=

p+ (1/p)
∣∣O(t, k, l) ∩ {g(v, k′, ℓ′)}

∣∣
+(1− 2)

∣∣(Gv −O(t, k, ℓ)) ∩ {g(v, k′, ℓ′}
∣∣

+(2− 1+ 1/p)
∣∣O(t, k, l) ∩

(
Gv − {g(v, k′, ℓ′)}

)∣∣
≥ p− 1 = 14+ 35r− 1 > 3 ≥ Sv(k′,ℓ′) − St(k,ℓ)

Case 4: (v(k, ℓ), t(k′, ℓ′)) and the kth literal in the ℓth clause and the k′th literal in the ℓ′th clause have
opposite signature. First of all, observe that −1 ≥ St(k′,ℓ′) − Sv(k,ℓ).

en:

δv(k,ℓ)qv(k,ℓ)

[
yt(k′,ℓ′) − yv(k′,ℓ′)

]
= δv(k,ℓ)

[
p(1− 1/p− 1) + (1− 2)
+(1− 2− 1/p)

∣∣(Gv − {g(v, k, ℓ)}) ∩ O(t, k′, ℓ′)
∣∣ ]

≥ −1− 1− 6r
3+ 7r

> −1 ≥ St(k′,ℓ′) − Sv(k,ℓ)

Case 5: (v(k, ℓ), t(k′, ℓ′)) and the kth literal in the ℓth clause and the k′th literal in the ℓ′th clause do not
have opposite signature.

δv(k,ℓ)qv(k,ℓ)

[
yt(k′,ℓ′) − yv(k′,ℓ′)

]
= δv(k,ℓ)

[
p+ (1− 2)
+(1− 1/p− 2)

∣∣(Gv − {g(v, k, ℓ)}) ∩ O(t, k′, ℓ′)
∣∣ ]

≥ p− 1− 6r
3+ 7r

=
13+ 29r
3+ 7r

> 3 ≥ St(k′,ℓ′) − Sv(k,ℓ)

Appendix E: supplement to Appendix A
Case 1: (t(k, ℓ), t(k′, ℓ′))

pt(k,ℓ)

[
xt(k,ℓ) − xt(k′,ℓ′)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − St(k′,ℓ′)

]
= −z+ (3− 2) +

[
St(k,ℓ) − St(k′,ℓ′)

]
≤ −16− 42r+ 1+ 3 < 0

Case 2: (t(k, ℓ), v(k′, ℓ′)) with ℓ ̸= ℓ′.

pt(k,ℓ)

[
xt(k,ℓ) − xv(k′,ℓ′)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k′,ℓ′)

]
= −z+ (3− 1) + (1− 1/y− 2) + (2− 1) +

[
St(k,ℓ) − Sv(k′,ℓ′)

]
≤ −16− 42r+ 2+ 1+ 3 < 0
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Case 3: (t(k, ℓ), v(k, ℓ))

pt(k,ℓ)
[
xt(k,ℓ) − xv(k,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k,ℓ)

]
= −z+ (3− 1) + (1− 1/y− 1) +

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k,ℓ)

]
≤ −16− 42r+ 2+ 3 < 0

Case 4: (t(k, ℓ), v(k⊕ 2, ℓ))

pt(k,ℓ)
[
xt(k,ℓ) − xv(k⊕2,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕2,ℓ)

]
= −z+ (3− 1) + (1− 1/y− 2) + 1+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕2,ℓ)

]
≤ −16− 42r+ 2+ 1+ 3 < 0

Case 5: (v(k, ℓ), v(k′, ℓ′))

pv(k,ℓ)

[
xv(k,ℓ) − xv(k′,ℓ′)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − Sv(k′,ℓ′)

]
= −y+ (2− 1)

1
δv(k,ℓ)

[
Sv(k,ℓ) − Sv(k′,ℓ′)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0

Case 6: (v(k, ℓ), t(k′, ℓ′)) with ℓ ̸= ℓ′.

pv(k,ℓ)

[
xv(k,ℓ) − xt(k′,ℓ′)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k′,ℓ′)

]
= (1− 3) + (3− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k′,ℓ′)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0

Case 7: (v(k, ℓ), t(k⊕ 1, ℓ))

pv(k,ℓ)
[
xv(k,ℓ) − xt(k⊕1,ℓ)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕1,ℓ)

]
= (1− 3) + (3− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕1,ℓ)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0
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Case 8: (v(k, ℓ), t(k⊕ 2, ℓ))

pv(k,ℓ)
[
xv(k,ℓ) − xt(k⊕2,ℓ)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕2,ℓ)

]
= (1− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕2,ℓ)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0
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