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INTRODUCTION 

 

This paper contributes to analyze the stabilizing / destabilizing role of interbank 

network relations. It focuses on network relations generated by the effect of risk 

management practices, and the level of risk made admissible for each financial agent 

and for the banking industry. We consider a theoretical setting in which identical 

risk-averse financial agents can adapt their own level of risk, return, and level of 

activity to their environment. These adaptations are motivated by the depressing or 

stimulating influence of the level of activity, risk, and return of their business 

partners which we assimilate to other banks. From the view point of a given financial 

agent, increases in activity, risk, and return of the business partners can give out 

opposite messages. First, they may promise an increase of its own activity induced by 

the relations with these more active partners. Second, they may signal increased 

fragility in these same partners. The first message stimulates the level of activity in 

the bank that observes them, while the second tends to depress this level of activity. 

When the same messages are associated with the development of risk management 

practices and securitization, the depressive effects of increased activity, risk, and 

return in the environment tend to vanish and the positive influences dominate. In the 

case of securitization, these positive influences are further fueled by the additional 

financial activity generated by trading in structured products and derivatives.  

 

In this paper we analyze the dynamics of the banking industry associated with the 

stimulating effect of securitization practices, according to the extent and the form of 

the interbank network relations. We do not analyze the choice of securitization which 

is assumed to be an efficient way to manage the credit risk of each bank individually; 

we focus on its consequences for individual and systemic risk. We address the 

following issues: what sort of dynamics are associated with such interbank influences 

when all banks are basically the same, have the same risk aversion and the same 

fundamentals except but are inserted in different interbank relations? Are the external 

effects on the individual and systemic risk transitory or permanent, and under what 

conditions? Are these effects on the banking system homogeneous and under what 

conditions? What might happen if the effects of credit risk transfer are not 

homogeneous across the banking system?   

 

Credit risk transfer devices developed rapidly prior to the events of 2007-2008. They 

matched protection and return within the financial system, and apparently dissipated 

the risk across numerous institutions and portfolios, rendering individual risks safe 

for their originators. However, the subprime crisis has revealed that misjudgments 

about the effect of securitization encouraged banks to increase their exposure and did 

not provide the necessary protection (Morrison, 2005; Dodd, 2007; Muromachi, 

2007; Shao and Yeager, 2007; Rey, 2008; Eichengreen, 2008; Mah-Hui Lim, 2008; 

Gerardi, Lehnert, Sitslund and Willen, 2008, Minton, Slutz and Williamson, 2009). 

Since this crisis, much attention has been devoted to understanding how contagion 

among banks operates. Attempts have been made to understand how interbank 

network connections can generate the conditions of a financial crisis, i.e. increases of 

financial activity, risk, and return to disproportionate levels given the fundamentals 

of the economy.   

 

The model proposed in this paper contributes to this research. It builds on classical 
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behavioral assumptions and examines the capacity of interbank networks to generate 

individual and systemic financial fragility. Our results support the view that the 

influence generated by the levels of activity, risk, and return of a financial agent’s 

partners can generate stationary equilibria that are different from the homogeneous 

equilibrium obtained without links among banks. We find also that when network 

relations are moderate, the stimulating effects of a given shock on activity, risk, and 

return are transitory; in the presence of strong network relations these effects are 

permanent. The model predicts also that, when an increase in the level of risk of 

partner-banks is perceived in the same way by all the banks within a strong network 

of relations, small inequalities in the initial distribution of the risk among banks can 

generate large disparities in the final level of risk for those banks, even if all the 

components of the industry are similar. In this case, the long run dynamics of each 

bank is determined by the average level of risk of its partners and not by its own 

initial level of risk. Some properties of the banking network can generate localized 

conditions for a financial crisis, without increasing the risk for other parts of the 

financial industry.   

 

The paper is organized as follows. Section 1 provides an overview of the recent 

literature devoted to interbank relations. It underlines the links between hedging and 

risk management practices generated by the banks. Section 2 presents the model and 

the results of our analysis. Last section comments on these results and the conclusion 

of the paper. 

 

1. THE LITERATURE AND THE PROBLEM 

 

Physicists and biologists would define networks as specific forms of the organization 

of life or matter that can be represented by mathematical graphs, reduced to edges 

and vertices, or to a collection of interconnected components. Economists have only 

recently developed methodologies adapted to this form of organization of the 

industry and of the market. One of the major problems was to conciliate the structural 

form and the meso-analytical content of network analysis with the micro-founded 

framework used in economic theory. However, a bridging has been achieved 

between strategic and network analysis approaches which reconciles - at least partly - 

the analytical tools of graph theory with traditional microeconomics methods (see 

e.g. Bala and Goyal, 2000; Jackson, 2005; Goyal, 2007). In addition, the renewed 

attention to network theory in the 1990s gave birth to new strands of studies in 

several fields, including social sciences, finance and economic analysis (see e.g. 

Dorogovtsev and Mendes, 2003; Gallegati and Kirman, 2004).  

 

From this perspective, financial and banking issues, along with the Internet and the 

World Wide Web, are particularly suited to network analysis. In standard financial 

theory, the usual assumption is to consider that correlation matrixes of stock returns 

or prices are dominated by positive components. Network analysis can be very useful 

to validate (or not) the market models thereby elaborated. Bonanno et al. (2004) 

suggest using the minimal spanning trees method to confirm or falsify these models 

in different time periods.   

 

The banking industry offers other potentialities for applications of network analysis. 

Financial intermediation and the bank industry historically were organized as an 
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interconnected system of decentralized posts technically associated by compensatory 

devices. Banks and other financial agents have worked continuously to maintain and 

develop the structure of this network which they considered a shared input to the 

production of their financial services. For centuries, financial innovations did not 

challenge the traditional organization of the banking industry as a technical and 

informative network. The network externalities accessible to each bank from the 

banking industry are generic components of financial intermediation activity. When 

many banks evolve in the same economic area or compete to provide the same 

financial services, they tend to conciliate competition in price and other antagonistic 

attitudes, with cooperative actions able to develop efficient interconnections and to 

manage their common interest. Joint management of the interbank market (Bos, 

Elsinger, Summer and Thurner, 2004; Soramäki, Bech, Arnold, Glass and Beyeler, 

2010) and the foreign exchange market are representative examples of this tendency 

of banks to manage the network architecture of their activity in collaboration.   

 

Since the Asian financial crisis, theoretical and empirical works have focused mainly 

on the capacity of banking networks to propagate systemic risk. Allen and Gale 

(2000), Freixas, Parigi and Rochet (2000), Thurner, Hanel and Pichler (2003), and 

Babus (2007) compare different network topologies and their respective capacities to 

diffuse systemic risk. Risk management practices devoted to controlling the level of 

systemic risk in the economy have been the motivation for the creation and 

maintenance of medium term links between banks. Vivier Lirimont (2006) studies 

the capacity of banks to use their network structure to manage the liquidity risk. 

However, the actions that increase their protection against financial risk can also 

simultaneously increase their risk, and the instability of the whole economy. Leitner 

(2006) considers situations where, within a network structure, liquid banks are forced 

to bail out illiquid banks. In this case, “a network in which agents are closely 

interlinked may be optimal both because of and despite the potential for contagion”. 

Boissay (2006) presents the conditions of financial contagion as the consequence of 

the development of credit chains between banks and/or firms. In this case, the 

structure of the network seems also to matter. Pröpper, van Lelyveld, and Heijmans 

(2008) analyze the impact of the removal of a node on the properties of a banking 

network. They use European data to show that the removal of a small number of 

crucial nodes in a network structure strongly modifies the structure of the network 

and increases the risk of illiquidity crises. 

  

Analyses of the consequences of the development of credit risk transfer start from 

before the 2007-2008 meltdown and develop with it. Wagner and Marsh (2006, p. 

173) find that “the incentive to transfer credit risk transfer is aligned with the 

regulatory objective of improving stability” while Chiesa (2008, but written in 2004) 

uses contract theory to provide a more balanced appreciation. Credit risk transfer 

“enhances loan monitoring and expands financial intermediation” but also 

potentially generates the risk of financial fragility: “the extent of credit enhancement 

needs to be precisely delimited. Above that exact level, monitoring incentives are 

undermined (loan quality deteriorates) and wealth is transferred from the bank’s 

financiers to the bank” (Chiesa, 2008, p. 464). Other premonitory views point to the 

destabilizing nature of securitization and its potential negative effects on welfare 

(Morrison, 2005). Nicoló and Pelizon (2005/2008) address how credit derivatives 

affect the design of the contracts that buyers use to signal their type. Allen and 



JULIEN BARRE, ALAIN RAYBAUT AND DOMINIQUE TORRE 

79 

Carletti (2006) find that when banks hedge this risk in an interbank market, credit risk 

transfer is detrimental to welfare and can generate contagion. In the context of the 

2007-2008 financial crisis, credit risk transfer is generally perceived as destabilizing 

(Duport, 2008, Heyde and Neyer, 2010). Hakenes and Schnabel (2010) find that with 

imperfect information on credit risk, credit risk transfer decreases welfare due to the 

excessive number of unprofitable loans. In a recent paper, Nijskens and Wagner 

(2011) try to reconcile the pros and cons of credit risk transfer through observation of 

the  of the banks. Before the crisis, banks increased their protection via 

securitization which reduced the risk for the banks. In the same time, they also 

increased their  , a sign that the market integrated the systemic risk which their 

increased correlation then generated.   

 

Securitization and credit risk transfer devices create new links between banks and 

other financial intermediaries. “Securitization increases the dimensionality, and thus 

the complexity of the financial network. Nodes grow in size and interconnections 

between them multiply” (Haldane, 2009, p. 7). When the 2007-2008 crisis appeared, 

the most urgent challenge was to understand how securitization and the new links it 

had created modified exposure of the system to systemic crisis. Allen and Carletti’s 

(2006) seminal work distinguishes between good links created by securitization 

among banks and insurance, and bad links that connect banks. Allen, Babus and 

Carletti (2009) then analyze the role of securitization in the network propagation of 

financial risk. Credit derivative products diversify portfolios (and reduce the risk of 

bankruptcy) but introduce due diligence costs for participation in additional projects 

selected by other banks. A trade-off between these costs and benefits determines the 

optimal level of interaction for each bank. Babus and Carletti assume also that 

financial institutions use short term deposits to finance long term assets. This 

transformation involves the possibility of interim signals about the possibility of 

lenders defaulting. In this case, and for intermediate levels of bankrupcy costs, 

clustered networks more frequently lead to liquidations than unclustered ones. One of 

the most interesting papers on the network relations associated with securitization is 

Shin (2009) which proposes an accounting model for the banking system that 

captures the “interlocking claims and obligations” in relation to one “unleveraged 

sector” aggregating the balance sheets of the other financial agents, household 

investors and an “end-user” who is the ultimate borrower (Shin, 2009, p. 314). The 

model analyzes the link between the leverage of the financial intermediary sector, the 

profile of leverage of the individual banks, and the proportion of funding obtained 

outside the financial intermediary sector. Shin’s interpretation of the subprime crisis 

is that the “greater risk-taking capacity of the shadow banking system leads to an 

increased demand for new assets to fill the expanding balance sheets and an increase 

in leverage… However, once they have exhausted all the good borrowers, they need 

to scour for other borrowers - even subprime ones. The seeds of the subsequent 

downturn in the credit cycle are thus sown” (Shin, 2009, p. 310).   

 

Nier et al. (2007), following Eboli (2007), suggest applying the physics of flow 

networks to analyze default dynamics of interbank links. Nier and co-authors identify 

external assets as the source of shocks and consider that depositors are the final 

bearers of the losses. They use a simulation model to analyze their effect on the 

financial stability of diverse structures of connections among banks. They find that 

the effect of the degree of connectivity is non-monotonic: small increases of 
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connectivity tend to accelerate the contagion effect but when connectivity improves 

more, the good effects begin to dominate and reduce the contagion. They explore the 

role of concentration and asymmetry in the banking system on the risk of systemic 

instability. Battiston, Delli Gatti, Gallegati, Greenwald and Stiglitz (2007) depict the 

dynamics of the production networks associated with the “supplier-customer 

relationships involving extension of trade-credit” and test the comparative robustness 

of diverse network structures against the domino effect (diffusion of bankruptcies) 

among the industry. In a more recent paper (Battiston et al., 2009), they propose a 

model that integrates both the good and bad effects of networks connections. The 

good effect is that a complete network tends to improve the efficiency of the 

diversification mechanism. The bad effect is that all increases in the number of 

counterparts increase the default risk of each component in the system: all things 

being equal, individual and systemic risks also increase with the number of links in 

the network. With a feed-back effect that Battiston and colleagues assimilate to the 

financial accelerator, they find that a complete network more easily generates a 

systemic crisis than an incomplete one.  

 

Empirical works have observed the form of the banking network around the world, 

and particularly the bad links that are able to generate contagion. They usually 

consider networks as a collection of moving market interactions and also as more 

permanent links determined by bilateral stable relationships. They use an adapted 

descriptive methodology borrowed from physics and biology to evaluate the 

properties of the links, the nodes, and the network. Müller (2006) simulates the 

potentialities of contagion in the Swiss interbank market using new data on bilateral 

bank exposure and credit lines and finds that the possibilities are substantial. Hattori 

and Suda (2007) and the Bank of Japan employ network analysis to investigate 

cross-border bank exposure. It is interesting that since 2010, IMF publications and 

internal documentation have been using network methodology to test the systemic 

linkages among banks and financial institutions. Bech, Chapman and Garratt (2008, 

2010) consider the positions of Canadian banks within the Large Value Transfer 

System. They rank the banks belonging to this network to provide an empirical 

measure of which banks are likely to hold the most liquidity at any given time. 

Following the 2007-2008 meltdown, these works provide new tools to identify the 

weaknesses in world financial relations and to prevent a future crisis. Espinosa-Vega 

and Solé (2010) use network analysis to propose a simulation algorithm to locate the 

channels of risk transfer in the system. The IMF (2010) Monetary and Capital 

Markets Department has elaborated a staff paper adopting a network based 

methodology defined in 2009 by the BIS and the Financial Stability Board, which 

identifies the jurisdictions with systemically important financial sectors. This 

document uses four measures of centrality previously proposed by von Peter (2007) 

and Kubelec and Sá (2010), to capture the interconnectedness of financial 

jurisdictions and the resulting risks that financial crisis will be propagated. All these 

papers conclude that financial networks - which are supposed to optimize protection 

against risk - can serve also to propagate financial instability.   

 

The model that we present and analyze in this paper is micro-founded following the 

main works reviewed in this section. Each financial agent maximizes, at each 

moment, a utility function whose properties are usual in banking and financial 

economics. The connections among banks are given and denote the partnership 
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relations between agents. The form taken by credit risk transfer is given by the type 

of influence that an increase in the risk to a given bank exerts on the level of utility of 

its partners (formally, its neighbors). As a counterpart to these simplifications, the 

model analyzes the dynamics of the banking industry, according to the importance 

and the weight of the banking interconnections.  

  

2. THE MODEL 

 

The first subsection discusses the interconnected decisions of n  individual banks in 

the banking industry using credit risk transfer. We explore the dynamics of the 

banking industry in different circumstances related to the weight and the form of the 

network connections between banks.  

 

2.1. THE GENERAL FRAMEWORK 

 

Let us consider a set of n  banks i  with 1i … n   . We suppose that all banks 

have the same payoff function ( )i i
W y y  where the first argument iy  is the 

individual level of risk associated with the bank’s investment choices and the second 

argument 
iy  is the level of systemic risk computed by the bank

1
. We assume that 

W is continuous, two times derivable in its two arguments, and satisfies for all 
iy  

the following properties: (0 ) 0
i

W y  , lim ( ) 0
i

i i
y

W y y


  , 0
0

yi

i

W

y



 

, 
2

2 0
i

W

y




 . These assumptions mean simply that each bank has to take a strictly 

positive but finite level of risk to obtain a positive payoff. In addition, due notably to 

regulation policy and to capital requirements, W  is concave in iy .  

 

The level of systemic risk iy  is computed by each bank i  as an average of its 

neighbors on the interaction graph. In formula:  

 

1

1

1

n

ij ji

ji

g yy
k 



                               (1) 

 

where ik  is the connectivity of bank i  (its number of neighbors) with 

i ijj i
k g


  and g  is the adjacency matrix of the interaction graph ( 1ijg   

if i  and j  are neighbors, 0ijg   otherwise). We use the convention 1iig  , 

assuming that each bank considers its own risk as one index component - among 

others - of the level of risk of the system. The definition of y  captures the fact that 

each bank is embedded in a financial system characterized by the development of a 

                                                 
1 If 

i  is the return of the bank i, this return is a differentiable and concave relation ( )i ih y   

between return and risk; then the payoff function W  can be written as 

( ) ( ( ) )i i ii i
W y W h y yy y     . 
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network of management and dispersion of risk by the way of securitization devices, 

frequently considered as having a positive effect on the capacity of each element in 

the system to tolerate a given level of activity and risk.  

We suppose that at any given time t , each bank i  adapts its control variable iy  

according to the gradient dynamics  

 

1

1
( )ii i

y

W yy y


                                   (2) 

 

where 
1 i

W
yW 
  , and 

y  is a characteristic time for the adjustment of the 

variables iy  by the banks. For any given value of its second argument iy , the payoff 

function ( )i i
W y y  has a unique maximum ( )i iy y . Accordingly, if the terms 

iy  were considered as exogenous and fixed by each bank, this dynamics would tend 

to ( )i i
y y . That is, if the coupling induced by the variables 

iy ’s is discarded, 

each bank independently chooses the same level of risk, the unique maximum 

( )i i
y y    ( )y y . It is easy to check that in this benchmark case, this equilibrium 

is linearly stable for the dynamics (2).  

 

More interesting in our issue is the coupling where each bank computes the global 

level of risk 
iy  as an average over its neighbors on the interaction graph, since 

coupling and interactions may induce distortions in risk appreciation and instability. 

The rest of the paper investigates the existence and stability properties of 

homogeneous equilibriums with coupling.  

 

2.2. HOMOGENEOUS EQUILIBRIUMS WITH COUPLING 

 

We define a homogeneous equilibrium as a stationary solution of Eqs. (2) such that 

each bank chooses the same risk level. This reads 
1 ny … y y   , where y

 is 

solution of  

 

1 ( ) 0W y y                               (3) 

 

since in this case 
i

yy
 , according to Eq. (1). Equivalently, Eq. (3) may be 

written as a fixed point of the continuous function y   

 

( )y y y                                    (4) 

 

Without coupling, a bank is not at all influenced by its neighbors and y  is a 

constant function. In this case, given that we assume that W  is the same for all 

banks, y
 is also the same for all banks. Then, in this case, the levels of activity, 

risk, and return of partner-banks or neighbors have no effect on the decisions of bank 
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i . With coupling, a bank is influenced by its neighbors. If this influence is 

sufficiently weak, the derivative of y  remains smaller than 1  and the unique fixed 

point property still holds. This implies that there is a unique homogeneous 

equilibrium, similar to the equilibrium of the system without coupling: the 

perturbations of this equilibrium generated by external influences are only transitory. 

If the neighbors’ influence is sufficiently strong, the derivative of y  may become 

larger than 1 , and several homogeneous equilibriums may exist. If this same 

influence of the actions of banks on their neighbors is moderate, this stimulation is 

not permanent, that is, the initial equilibrium is stable.  

 

2.3. LINEAR STABILITY OF HOMOGENEOUS EQUILIBRIUMS WITH COUPLING 

 

Let us now consider the linear stability properties of such a homogeneous stationary 

solution y
. We linearize the dynamics around this equilibrium and study the 

evolution of a perturbation iv :  

11 12
1

ij

i i j

j i

g
Wv W vv

k
  




                          

(5) 

 

where all partial derivatives are taken at the point ( )y y  . Using the notations  

 

11 12W W                                           (6) 

 

we rewrite in vectoral form the equation for the iv ’s:  

 

v Iv Bv                                                 (7) 

 

where I  is the n n  identity matrix, and 
1( )n

ij i jB b    is the graph 

connectivity matrix normalized to 1  line by line: ( 1)ij ij ib g k   . We now 

need to study the eigenvalues and eigenvectors of the matrix I B  . We first 

consider a complete graph configuration in which each agent is connected to all 

others; then we discuss the case of an arbitrary connection graph.  

 

2.3.1. THE COMPLETE GRAPH 

 

Proposition 1: Consider a complete interaction graph, and let 
1 ny … y y    

be a homogeneous stationary solution of Eqs. (2). This solution is linearly unstable if 

and only if 0   .  

 

Proof of Proposition 1: If each agent is connected to all others, we simply have 

1ijb n  . In this case, the eigenvalues of B  are 1  (multiplicity 1 ), and 0  

(multiplicity 1n ). The eigenvalues of the matrix I B   are then    

(multiplicity1) and   (multiplicity 1n ), and the corresponding eigenvectors are 
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those for the matrix B . Thus, a homogeneous stationary solution is linearly unstable 

if and only if 0   . 

   

Note that since y
 is a maximum of W  at fixed y y , then 0  . Thus,   

has a stabilizing effect and the potential destabilizing element comes from   which 

contains the coupling between the agents.  

 

The most unstable eigenvector is the vector 1w  corresponding to the eighenvalue of 

highest modulus  

 

1

1

1

w

 
 

  
 
 

                                           (8) 

 
all other eigenvectors being stable. Consequently, starting close to an unstable 

homogeneous solution, we can expect a collective dynamics of all agents in the same 

direction.  

 

The intuition behind this result is the following. In this complete graph configuration, 

all agents correctly compute the same and actual levels of systemic risk 
i

yy   

where 1

1

n

jni j
yy


  . But at the same time, the generalization of credit risk 

transfer technologies may induce agents to tolerate higher levels of risk.  

 

2.3.2. An arbitrary graph 

 
We consider an arbitrary bank interaction graph. The result of the previous paragraph 

essentially extends to this case.  

 

Proposition 2: Consider an arbitrary interaction graph, assume 0  , and let 

1 ny … y y    be a homogeneous stationary solution of Eqs. (2). This solution 

is linearly unstable if and only if 0   .  

 

Proof of Proposition 2: B  is a stochastic matrix (all its entries are non-negative, 

and each of its rows sums to 1). Thus, 1w  is an eigenvector of B , associated with 

eigenvalue 1 , and we know that all other eigenvalues of B  have modulus at 

most 1  (for a reference, see for instance Serre, 2002). Thus, the eigenvalue of 

I B   with the largest real part is again   , and 0    is again a 

necessary and sufficient condition for linear instability in this case. 

 

In this case, the most unstable eigenvector is still 1w . However, other eigenvectors, 

corresponding to different evolutions for different agents, may also be unstable. For 

instance, this result is obtained if the graph possesses strongly connected clusters of 
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agents, with loose connections between clusters. This configuration is depicted in 

Figs. 1 and 2 below. In this case, different forms of instability can be observed for the 

components of the network. The eigenvector associated with the second eigenvalue 

(red points) defines identical dynamics for agents 2  to 5  and 7  to 10 . Due to 

their position on the graph, agents 1  and 6  display a different path.  

 

FIGURE 1. AN EXAMPLE OF A GRAPH WITH TWO WELL CONNECTED CLUSTERS, 

LOOSELY CONNECTED ONE WITH THE OTHER.  

 

 

 
 

 

FIGURE 2. THE FIRST EIGENVECTOR OF THE CONNECTIVITY MATRIX B  OF THE 

GRAPH ON THE LEFT (STARS), CORRESPONDING TO EIGENVALUE 
1 1 

AND THE SECOND EIGENVECTOR (CIRCLES), CORRESPONDING TO 

EIGENVALUE 
2 0 942    
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We can illustrate these analytical properties with an example.  

 

2.4. AN EXAMPLE  

 

The utility function is specified as follows: 

 

(9) 

 

where 0   is a parameter which encapsulates the coupling between agents. The 

function tanh  encapsulates the influence of the environment of a bank, captured by 

iy  the average level risk, on his individual decisions. This function is increasing in

iy , thus a bank is likely to take higher risks when its neighbors over the interaction 

graph make the same type of decision. However, the shape of the function implies 

that this influence is bounded. The coupling strength   is a parameter measuring 

the weight given by the individual agents to this collective mechanism, in their 

decision process.   

 

For 0   there is no coupling and the dynamics is simply given by:  

 

1 ( ) 2(1 )i ii
W y yy                                                        (10) 

 

In this case the homogenous stationary solution 1y   is asymptotically stable.  

 

      

For 0   there is coupling and the dynamics is given by:  

 

1 ( ) 2(1 ) tanh[ ( 1)] 1i i ii i
W y y y i ny y                           (11) 

 

 

In this case a homogenous stationary solution 
iy

 verifies 2
2 [ ( 1)]i

i tanh y
y  
 .  
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FIGURE 3. STABILITY OF THE HOMOGENOUS STATIONARY SOLUTION 1y   

WITHOUT COUPLING AND 30n    

 

 

 

 

 

FIGURE 4. EXISTENCE OF HOMOGENEOUS STATIONARY SOLUTIONS y
 FOR   

WITH COMPLETE GRAPH 
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As shown in Fig. 4 below, for small values of the coupling strength the unique 

homogenous solution is still 1y  . For larger values of the parameter  , 

multiple homogenous solutions with 2
3

2y   exist. Using the notations defined 

in section 2.3 we have 
11 2 tanh[ ( 1)] 0

i
W y 


      

 
and 

2

12 sech[ ( 1)] 0i i
W y y  

     . Then the stability criterion of these 

solutions, 0    depends nonlinearly on  .  

 

FIGURE 5. STABILITY OF HOMOGENEOUS SOLUTIONS FOR   WITH COMPLETE 

GRAPH 

 

 
 

 

 

 

The initial homogeneous solution 1y   becomes unstable for 2  . Then, with 

a complete graph configuration and larger values of the coupling strength, the n  

levels of risk of the n  banks eventually converge to a low homogeneous solution, 

2
3

1Ly   or to a high one, 1 2Hy  . The low solution is obtained with 

( 0) 1y t   , that is, when the average initial distribution of risks is small enough. 

Conversely, the high equilibrium is reached when the average initial distribution of 

risks is large, that is, for ( 0) 1y t   . Fig. 4 and Fig. 5 show that the convergence 
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process toward the low or high solutions falls roughly into two phases: in the first 

phase, the different levels of risk tend to converge to a level of risk slightly lower or 

higher than the initial homogeneous solution. In this phase, the tendency of each bank 

to find its equilibrium level of risk is only moderately influenced by the level of risk 

of the other banks. In the second phase, a ‘systemic’ dynamics moves all the levels of 

risk, which are fairly equal, to a low or a high homogeneous equilibrium. In this 

second phase, coupling interacts strongly with the forces generated by the internal 

characteristics of each bank.  

 

FIGURE 6. CONVERGENCE TO LOW (LEFT-HAND SIDE) AND HIGH (RIGHT-HAND 

SIDE) HOMOGENEOUS SOLUTIONS; COMPLETE GRAPH 30n   AND 

2 31      
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Heterogeneous choices can be obtained with arbitrary incomplete connection graphs 

and sufficient coupling strength. From this standpoint, we can consider the 

connection topology described on Fig.1. Fig. 1 depicts two fully connected clusters 

of 2
n  agents with only one connection between clusters. Then, with 30n   

connectivity is shaped as follows: 

 

FIGURE 7. CONNECTIVITY ik  WITH 30n    
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For small values of coupling strength, ( 0 2  ), the initial homogeneous 

solution 1y   remains stable. While the parameter remains smaller than a 

critical value 2 31   , in this example the levels of risk converge to the high 

homogeneous solution 1 2Hy  .  

For larger values of the parameter, ( 2 32   ), heterogeneous choices, low and 

high, can be obtained for a large range of initial conditions, according to the location 

of the banks in the network.  

 

 

FIGURE 8. HETEROGENEITY WITH INCOMPLETE GRAPH; 30n  , 2 32     

THE RIGHT HAND SIDE FIGURE DISPLAYS THE DYNAMICS AND THE 

RIGHT HAND SIDE THE LEVELS OF RISK AT THE STATIONARY STATE. 
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Fig. 8 shows that the banks located in the first cluster choose a low level of risk. We 

have for 1 14i    86Ly    and 92Ly    for 15i  . In the second 

cluster, the banks take higher risks. For 16i  , 1 96Ly    and for 

17 30i   , 1 97Hy   . Note from Fig. 8 that in this case also, we can 

distinguish two phases in the convergence process to the heterogeneous equilibrium. 

In the first phase, the risks tend to converge in each cluster toward average values 

close to the initial equilibrium. In the second phase, each cluster has an independent 

dynamics of convergence toward a low or high equilibrium.   

 

Note also that, as a consequence of this heterogeneous equilibrium, the level of 

aggregate risk may decrease compared to the homogeneous case. In the following 

example we obtain a significantly lower systemic risk with higher coupling in the 

heterogeneous case than in the homogeneous case with lower levels of coupling.  

 

FIGURE 9. SYSTEMIC RISK WITH INCOMPLETE GRAPH; 30n  . RED: 

HOMOGENEOUS CASE 2 31   ;  

BLUE: HETEROGENEOUS CASE 2 33   ; GREEN: WITHOUT COUPLING 0  . 
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Finally, we note that these results obtained for arbitrary unweighted graphs can be 

extended to weighted graphs, which correspond to cases where the influence of each 

neighbor is given a weight.  

 

CONCLUSION 

 

The simple model developed in this paper analyzes the way that perception of change 

in the level risk of a bank temporarily or permanently affects the level of risk of its 

partners. We focus on situations where the use of credit risk transfer devices explains 

that the stimulating effects of an increase in the risk level environment of a given 

bank dominates over the depressing effects. The banks we consider try, at each 

moment, to adjust their indexes of utility, which depends on their risk, their return 

and the level of activity, risk, and return of their environment. Without any 

possibility to transfer the risk or any counterparts in the issuance or holding of credit 

derivatives, the regulation constraints on the amount of their net positions naturally 

bounds their exposure, their risk, and their utility index. The relationship with other 

financial agents provides each bank with possibilities to improve its management of 

the regulatory constraints.   

 

We capture the mutual influence of the banks through a description of the network 

topology linking the banks. We find that the weight of the network interaction has 

consequences for the stationary equilibrium of each bank’s risk. As the importance of 

the network effects increases, the ‘autarky’ equilibrium becomes unstable and banks 

move dynamically toward new equilibriums, with lower or higher levels of risk 

according to the form of the network and the initial risk (and return) conditions.  

The role of the form of the network is interesting. We focus on the effects of local 

‘networks’: connections among banks are not uniformly distributed across the global 

banking industry. We find that the network structure of the partnerships among 

similar banks can induce heterogeneous stationary equilibrium levels of risk and 

utility if the coupling is sufficiently strong. In the absence of links, the same banks 

would achieve homogeneous equilibrium. If the network effects are sufficiently 

strong and all banks manage credit risk in the same way, the environment can 

encourage some banks to take on too much risk and induce others to decrease their 

level of risk or to maintain it at reasonable levels. Our small size sample generated 

heterogeneous equilibrium involving two clusters and four different levels of risk. A 

higher level of heterogeneity can be generated with smaller samples. We can 

conjecture that in case of heterogeneous equilibriums, network effects have different 

influences on different clusters in the banking industry.  
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