Peut-on augmenter l'emploi en modifiant les règles de prélèvement des cotisations de sécurité sociale. Réflexions sur la proposition du "Groupe des 72"*

V. Ginsburgh
CEME, Université Libre de Bruxelles,
CORE, Université Catholique de Louvain

D. Van Regemorter
CES, Katholieke Universiteit Leuven

At the end of 1987, a few Belgian economists (mainly Faculty and researchers) set up a study group aimed at making suggestions which were widely published and discussed in Belgian newspapers. They came up in the middle of 1988 with the following three points proposal: (1) a reduction of 10% of social security contributions borne by firms; (2) a compensation of this loss of government income by a decrease of government subsidies to firms, and an increase of indirect taxes (excise and VAT); (3) in the long run, a revision of the direct taxation system.

We use a two-period dynamic general equilibrium model to assess such policies, which clearly have wide general equilibrium effects, not necessarily captured by the various macroeconometric models (with adaptive expectations), used by that group to evaluate their proposal.

1. Introduction

Vers la fin de l'année 1987, un groupe de 72 économistes francophones,

* L'article reprend l'essentiel des conclusions de l'étude de DEWATRIPONT et al. (1989), présentée lors d'une conférence sur les modèles d'équilibre général organisée par le Central Planning Bureau à La Haye; cette étude sera publiée dans un volume de comptes-rendus de la conférence; l'étude présentée ici met l'accent sur des nouveaux calculs relatifs au changement de l'assiette de prélèvement des cotisations de sécurité sociale. Le lecteur intéressé pourra retrouver les aspects plus théoriques dans DEWATRIPONT et al. (1989). Les auteurs tiennent à remercier Arne Drud de Arki Consultants, Copenhague qui a mis au point le programme de calcul. V. Ginsburgh remercie le Ministère des Affaires Économiques (Programme de l'Energie, contrat 86-07R) ainsi que Actions de Recherches Concertées n° 84-89/65 qui ont partiellement financé cette recherche.
composé principalement de professeurs d'université et de chercheurs 1, s'est constitué avec pour but de faire des propositions permettant d'augmenter l'emploi sans diminuer davantage le salaire réel.

Ce groupe a déposé quelques mois plus tard son rapport 2, proposant une réforme de la fiscalité et de la parafiscalité en trois points :

(a) une réduction de 10% des cotisations de sécurité sociale supportées par les firmes;

(b) une compensation de cette chute des revenus de l'État par une augmentation de la fiscalité indirecte (taxe à la valeur ajoutée et accises) et une réduction des subventions aux entreprises;

(c) une révision de la taxation directe, à moyen terme.

Des calculs réalisés en utilisant le modèle construit par le Bureau du Plan montraient que les deux premières mesures permettraient d'augmenter l'emploi de quelque 20.000 unités en l'espace de 4 ans.

Dans un article plus récent, DEWATRIPONT et THYS-CLEMENT (1988) ont utilisé le modèle Breughel construit au DULBEA 3 et obtiennent des résultats similaires.

Nous avons pensé que le modèle d'équilibre général dynamique utilisé par ERLICH, GINSBURGH et VAN DER HEYDEN (1987) pouvait éclairer le débat; en effet, cette approche permet d'évaluer les impacts à plus long terme des mesures de politique économique, après un retour de l'économie à l'équilibre, alors que les modèles macroéconomiques sont davantage axés sur la dynamique d'ajustement.

Dans notre cas, en outre, les agents sont dotés de comportements dynamiques basés sur des anticipations rationnelles, ce qui n'est pas le cas des deux modèles économétriques cités ci-avant. Notre approche suppose également que, sauf sur le marché du travail et ce à moyen terme seulement, les prix sont flexibles et s'ajustent de manière à équilibrer les mar-

1 Se sont joint à ce groupe quelques économistes du Bureau du Plan, qui ont signé le rapport à titre personnel.
2 Voir "Groupe des 72" (1988) pour ce rapport.
chés. Il faut cependant noter - et ceci est une constante dans les modèles où seul les prix relatifs ont une influence sur l'allocation finale, c'est-à-dire ceux dans lesquels la monnaie est absente - que le seul chômage possible est celui de type classique, alors que la plupart des études pour la Belgique, notamment celles de DEVILLE (1986), LAMBERT (1987), SNEESSENS et DREZE (1986) et BOGAERT, DE BIORLEY et VERLINDEN (1989) montrent que le chômage belge est en partie classique et en partie keynesien.

2. Un modèle dynamique d'équilibre général

L'idée de base est de construire un modèle à deux périodes dans lequel des imperfections de marché de première période sont "corrigées" en deuxième période. Dans le court (ou le moyen) terme peuvent apparaître des rigidités de prix, des contraintes budgétaires en déséquilibre, des agents économiques dotés de "pouvoir" (monopoles ou oligopoles), etc.; ces imperfections disparaissent ou, plus précisément, les agents "prévoient" que ces imperfections ne peuvent subsister dans le long terme où tous les marchés et les contraintes budgétaires des agents doivent se retrouver en équilibre : les prix sont parfaitement flexibles et le pouvoir éventuel des agents disparaît. Il y a donc, dans le modèle, une sorte de rappel que les "lois du marché" ne peuvent pas être ignorées indéfiniment. Cependant seul le court ou le moyen terme nous intéressera, mais nous savons, en tant qu'utilisateur du modèle, que ce court terme, éventuellement en déséquilibre, est "immerge" dans un long terme en équilibre.

Avant de décrire les détails de l'approche, quelques remarques générales doivent être faîtes. Tout d'abord, l'épargne des ménages résulte d'un choix intertemporel que ces derniers font et, l'épargne sera, en chaque période, égale à l'investissement (en valeur). En deuxième lieu, les agents du modèle (ménages et firmes) sont dotés du pouvoir d'anticiper parfaitement ce qui se passera en deuxième (et dernière) période : leurs plans de consommation et de production sont basés, non seulement sur le passé, mais également sur le futur où, rappelons-le, tous les marchés sont en équilibre. En troisième lieu, les budgets des agents sont en équilibre à long terme (c'est-à-dire sur l'ensemble des deux périodes) : même si en première période, un agent peut dépenser plus (ou moins) que son revenu, sur l'ensemble des deux périodes, son budget sera en équilibre. Enfin, tous les marchés de deuxième période "sont ouverts" dès la première période; c'est ce mécanisme qui permet de générer les prix à long terme.
Nous en venons maintenant à une description plus précise des comportements des agents et des contraintes imposant (ou non, en cas de rigidité de prix) l'équilibre sur les marchés.

Le modèle s'étend sur deux périodes; les valeurs des variables sont calculées pour deux moments dans le temps : un moyen terme s'étendant de $t = 0$ à $t = 1$ (disons sept années et demi) et un long terme de $t = 1$ à $t = 2$ (un autre intervalle de sept ans et demi). Les agents dont le comportement est représenté sont : un consommateur représentatif belge, un agent représentant le reste du monde, des firmes (secteurs) et l'état belge. Il y a deux types de biens : des marchandises échangeables entre la Belgique et le reste du monde et des facteurs (les capacités de production des firmes et le travail) qui ne font pas l'objet de commerce international. Ceci implique qu'à l'équilibre, les prix des marchandises seront les mêmes en Belgique et dans le reste du monde; par contre, il pourra y avoir des prix différents pour les facteurs de production.

Les consommateurs belges

Le consommateur représentatif de la Belgique est doté d'une fonction d'utilité intertemporelle

$$U(x_1) + \rho_2 U(x_2) + \rho_3 \Phi(k_2)$$

où x_1 représente la consommation en $t = 1$ et 2, ρ_2 le facteur d'escompte et $\rho_3 \Phi(k_2)$ la valeur actualisée des flux de consommation après $t = 2$, cohérente avec un stock terminal de période 2 égal à k_2.

Les choix des paniers de consommations x_t, les offres de travail n_t, et d'épargnes s_t, sont solution du problème suivant :

$$\max U(x_1) + \rho_2 U(x_2) + \rho_3 \Phi(k_2)$$

soumis aux contraintes

$$\Sigma k_p k_t (1 + \tau_{ct}) x_{kt} + \Sigma s_t \leq \Sigma (w_t n_t + q_t k_t) + \Sigma T_t$$

$$n_1 \leq \omega_1 - u_1$$

$$n_2 = \omega_2.$$
La première inégalité est la contrainte budgétaire intertemporelle dans laquelle $\sum \tau k p_k (1 + \tau c_k) x_{kt}$ représente la valeur de la consommation, y compris les impôts indirects ($p_k t$ est le prix du bien k en période t, τc_k est le taux de tv a prélevé sur le bien k); $\sum s_t$ représente l'épargne des deux périodes; $\sum w_t n_t$ est la rémunération du travail (w_t est le taux de salaire nominal en période t, n_t le nombre de travailleurs); $\sum q_t k_t$ est la rémunération du capital (k_t est le vecteur des capacités de production pour des divers secteurs, q_t le vecteur des rémunérations unitaires des capacités); enfin, T_t sont les transferts forfaitaires (positifs ou négatifs) des pouvoirs publics aux ménages, dont l'origine sera discutée plus tard. La seconde inégalité contraint les ménages belges sur le marché du travail : alors qu'ils sont prêts à offrir la quantité (exogène) ω_t, ils sont "rationnés" et peuvent offrir au maximum $\omega_t - u_t$ où $u_t \geq 0$ représente le chômage de première période; en deuxième période, par contre, la troisième égalité contraint le marché du travail à être en équilibre.

Le volume de l'épargne des deux périodes est engendré par les préférences des ménages pour le présent, c'est-à-dire par le choix des facteurs d'escompte ρ_2 et ρ_3; voir Boucher et al. (1987) sur le choix des facteurs d'escompte.

Les producteurs belges

La production est décrite par un modèle d'analyse d'activités. Les éléments de la matrice A décrivent les outputs nets des biens (a_{ij} est positif si le bien i est un output net pour le producteur j, négatif si i est un input net), tandis que $t_i \geq 0$ et $K_t \geq 0$ sont respectivement un vecteur et une matrice diagonale de coefficients de demande de travail et de capital. Le

4 Ces capacités seront définies plus loin.
5 Nous n'avons pas inclus les impôts directs (dans ce modèle, il n'y a qu'un seul consommateur représentatif, ce qui ne permet pas de considérer les problèmes de distribution des revenus) mais cela ne serait pas difficile; il suffirait en effet d'écrire le membre de droite comme $(1 - \tau) \sum (w t n_t + q t k_t)$ avec τ le taux d'imposition.
6 Ce qui signifie que l'offre de travail est indépendante des prix, et en particulier du taux de salaire.
7 On a souvent fait comme remarque ici qu'il était irréaliste de considérer que dans quinze ans (2 fois 7,5 années) il n'y aurait plus de chômage; rappelons que la deuxième période n'a pas pour objet de donner une "prévision" réaliste, mais sert uniquement d'"ancrage à long terme" à la première période. Notons également qu'il ne serait pas difficile de faire d'autres hypothèses relatives au marché de l'emploi de seconde période, en supposant, par exemple, que le salaire réel de deuxième période doit être égal à une fraction (plus grande ou plus petite que un) du salaire réel de première période.
producteur (ou secteur) j choisit ses niveaux d'activités \(y_{jt} \) (t=1,2) de telle manière que :

\[
[p_t A_j - w_t (1 + \tau_{fj}) \lambda_{jt} - q_{ji} K_{jt}] \leq 0,
\]

\[
[p_t A_j - w_t (1 + \tau_{fj}) \lambda_{jt} - q_{ji} K_{jt}] y_{jt} = 0,
\]

\(y_{jt} \geq 0. \)

Dans ces conditions, \(p_t A_j \) représente la valeur des ventes nettes (c'est-à-dire déduction faite des achats d'autres biens), \(w_t (1 + \tau_{fj}) \lambda_{jt} \) représente la masse salariale payée par le secteur j, y compris les cotisations de sécurité sociale \(w_t \tau_{fj} \lambda_{jt} \) (\(\tau_{fj} \) est le taux auquel est soumis le secteur j) et \(q_{ji} K_{jt} \) représente la rémunération du capital.

Ces trois conditions sont celles qui doivent être satisfaites lorsqu'un producteur soumis à des rendements constants maximise son profit; la première indique que son profit ne peut être positif; la deuxième que ce profit sera exactement nul lorsque son niveau d'activité \(y_{jt} \) est positif; la dernière indique simplement que ce niveau d'activité doit être non-négatif.

On notera que la matrice \(A \) (basée sur le tableau input-output 1980) est constante : elle ne dépend ni de la période (hypothèse de coefficients techniques constants), ni des prix relatifs (il n'y a pas substitution entre les achats de biens); par contre, les coefficients de travail \(\lambda_{jt} \) et de capital \(K_{jt} \) ne sont pas constants dans le temps ; il y a, en deuxième période, possibilité de substitution entre le travail et le capital ; ces coefficients dépendent des prix relatifs :

\[
\lambda_{j2} = \lambda_{j2}(w_2/q_{j2}) \text{ et } K_{j2} = K_{j2}(w_2/q_{j2});
\]

les formes fonctionnelles \(\lambda_{j2}(.) \) et \(K_{j2}(.) \) sont des fonctions de demande de facteurs dérivées d'une fonction de production à élasticité de substitution constante (CES).

Le gouvernement

Le gouvernement décide de manière exogène de sa consommation publique \(g_t \), perçoit les impôts (taxes à la valeur ajoutée \(\Sigma c c_{tk} r_{ck} x_{kt} \) et coti-
sations de sécurité sociale $\Sigma_{i}\Sigma_{j}w_{i}\lambda_{ij}y_{ij}$ et transfère la différence $\Sigma_{i}T_{i}$ aux consommateurs belges (voir la contrainte budgétaire des consommateurs). La contrainte budgétaire de l'état est :

$$\Sigma_{p}g_{i} + \Sigma_{i}T_{i} = \Sigma_{i}\Sigma_{k}p_{k}t_{ck}x_{kt} + \Sigma_{i}\Sigma_{j}w_{i}\tau_{ij}\lambda_{ij}y_{ij}.$$

Le gouvernement est donc en équilibre budgétaire à moyen et à long terme : les transferts T_{1} et T_{2} assurent que les dépenses, y compris les transferts (qui peuvent être positifs ou négatifs) seront toujours égales aux recettes.

Le reste du monde

Le détail dans le reste du monde nous intéresse ici dans la mesure où la Belgique exporte et importe des marchandises ; il sera par conséquent représenté par une fonction dans laquelle son utilité dépendra de ce qui se passe en Belgique, à travers nos exportations (e_{i}) et nos importations (m_{i}). Une telle fonction s'écrit :

$$W(e_{1},m_{1}) + \alpha W(e_{2},m_{2});$$

α est le facteur d'escompte dans le reste du monde ; ce dernier calcule ses exportations (m_{i}) vers et ses importations (e_{i}) de la Belgique en résolvant le problème suivant :

$$\max W(e_{1},m_{1}) + \alpha W(e_{2},m_{2})$$

sous la contrainte

$$\Sigma_{i}(p_{i}e_{i} - p_{i}m_{i}) = 0;$$

cette égalité est la contrainte budgétaire du reste du monde (et par symétrie, de la Belgique) ; elle impose que sur l'ensemble de l'horizon, la valeur des importations en provenance de la Belgique soit égale à la valeur de ses exportations vers la Belgique ; mais c'est aussi la contrainte d'équilibre commercial de la Belgique qui impose que la valeur de ses importations soit égale à la valeur de ses exportations. A nouveau, c'est à long terme qu'il y a équilibre ; à court terme, on peut avoir $p_{1}e_{1} \neq p_{1}m_{1}$.

L'importance du commerce extérieur pour la Belgique nécessite sans doute que nous donnions les elasticités prix utilisées ; celles-ci sont reprises
au Tableau 1 ci-après.

<table>
<thead>
<tr>
<th>TABLEAU 1 : Elasticités-prix du commerce extérieur belge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secteurs</td>
</tr>
<tr>
<td>Exportations</td>
</tr>
<tr>
<td>Services, transport par rail et par route</td>
</tr>
<tr>
<td>Agriculture, produits pétroliers, construction,</td>
</tr>
<tr>
<td>transports fluviaux et maritimes</td>
</tr>
<tr>
<td>Alimentation, textiles, industries n.d.a.</td>
</tr>
<tr>
<td>Sidérurgie, métaux non-ferreux, produits</td>
</tr>
<tr>
<td>non-métalliques, chimie, papier</td>
</tr>
<tr>
<td>Fabrications métalliques</td>
</tr>
<tr>
<td>Importations</td>
</tr>
<tr>
<td>Tous secteurs</td>
</tr>
</tbody>
</table>

Les conditions d'équilibre sur les marchés

Ces conditions imposent que sur chaque marché, la demande ne peut excéder l’offre :

\[
x_t + Vv_t + g_t + e_t \leq Ay_t + m_t, \; t=1,2;
\]

\[
\lambda_1y_1 + u_1 = \omega_1;
\]

\[
\lambda_2y_2 = \omega_2;
\]

\[
K_1y_1 \leq k_1 = Dk_0 + Qv_1;
\]

\[
K_2y_2 = k_2 = D_1k_1 + Q_1v_1 + Q_2v_2.
\]
La première contrainte impose l'équilibre sur le marché des biens; dans le membre de gauche, on retrouve la consommation des ménages \((x_t)\), la demande d'investissement \(Vv_t\) (où \(v_t\) est la demande exprimée par les secteurs, \(V\) une matrice de changement de classification qui traduit la demande des secteurs en demande aux secteurs qui fournissent les biens d'équipement), la consommations publique \((g_t)\) et l'exportation \((e_t)\); dans le membre de droite, on trouve l'offre nette des secteurs \((Ay_t)\) et l'importation de biens concurrentiels \((m_t)\).

Les deux contraintes suivantes ont trait au marché du travail; la première impose à la demande \(\lambda_1 y_1\) d'être inférieure ou égale à l'offre \(\omega_1\); l'apparition d'un chômage \(u_1\) positif est la conséquence d'une rigidité à la baisse du salaire réel de première période : \(w_1/P(p_1) \geq w_1; (P(p_1)\) est un indice des prix et \(w_1\) le niveau en dessous duquel le salaire réel ne peut tomber); la seconde contrainte impose à la demande de travail d'être égale à l'offre (le salaire est flexible en deuxième période).

Les deux dernières (in)égalités assurent l'équilibre sur le marché des capitaux; en première période, cependant, il peut y avoir des capacités excédentaires (si le membre de gauche est strictement inférieur au membre de droite); en deuxième période, comme pour le marché du travail, toutes les capacités sont pleinement utilisées. Dans ces équations, \(k_0\) est un vecteur de capacités initiales, \(k_t\) est le vecteur de capacités en début de période \(t\), \(D\) et \(D_1\) sont des matrices diagonales qui tiennent compte de la dépréciation des capacités tandis que \(Q, Q_1\) et \(Q_2\) sont des matrices diagonales, elles aussi, qui traduisent les flux d'investissements \(v_t\) en stocks de capital.

Enfin, deux équations bouclent le modèle en spécifiant qu'en chaque période, l'épargne \((s_t)\) doit être égale à l'investissement \((p_t V v_t)\):

\[
s_t = p_t V v_t, \ t=1,2.
\]

Le lecteur pourra se référer à DEWATRIPONT et al. (1989) pour comprendre comment une solution du modèle est calculée. Pour le choix des formes fonctionnelles et des coefficients, voir ERLICH, GINSBURGH et VAN DER HEYDEN (1987).
3. Les résultats

Les résultats sont calculés en maintenant trois hypothèses : (1) le taux de salaire réel, déduction faite des impôts et des cotisations de sécurité sociale reste inchangé; (2) la balance commerciale avec le reste du monde est en équilibre sur l'ensemble des deux périodes; (3) le budget de l'État est en équilibre. La première hypothèse est faite pour deux raisons : d'abord, il nous a semblé peu réaliste de supposer que le salaire réel pourrait encore diminuer, après les réductions qu'il a subies durant ces dernières années; ensuite, nous voulions isoler l'effet sur l'emploi, toutes autres choses étant égales. Les deux autres hypothèses sont naturelles dans un contexte d'équilibre général.

Nous avons examiné les effets de trois scénarios différents, dont seul le premier a été proposé par le Groupe de 72.

Premier scénario : la réduction de la charge de sécurité sociale est compensée par une augmentation de la fiscalité indirecte (ici de la taxe à la valeur ajoutée) (scénario TVA dans le Tableau 2).

Deuxième scénario : la réduction de la charge de sécurité sociale est compensée par la perception d'une taxe sur la rémunération du capital; en d'autres termes, l'assiette de perception s'étend à la totalité de la valeur ajoutée des entreprises, mais les taux de perception sur la rémunération du travail et du capital peuvent différer à moyen comme à long terme (scénario ASS1) ou être identiques à long terme, tout en étant différents en première période (scénario ASS2) 8.

Troisième scénario : la réduction de la charge de sécurité sociale est compensée par une réduction des transferts forfaitaires aux ménages (scénario TF).

La manière de calculer ces scénarios mérite quelques éclaircissements. Rappelons que la contrainte budgétaire de l'État dans le modèle de base s'écrit :

\[\Sigma_{p_{il}g_{lt}} + \Sigma_{t}T_{t} = \Sigma_{t}\Sigma_{k}p_{kt}\tau_{ck}x_{kt} + \Sigma_{t}\Sigma_{j}w_{jt}\tau_{fj}\lambda_{jt}y_{jt}. \]

8 Dans le scénario ASS2, la réduction de la charge de sécurité sociale est évidemment plus importante que dans les autres scénarios.
Dans le membre de gauche, apparaissent la consommation publique (Σπgi) et les transferts aux ménages (Σi T1), tandis que dans le membre de droite, on trouve le montant de la TVA (ΣiΣk pkτckxk) et celui des cotisations de sécurité sociale (ΣiΣj w1τfjλjyjt). Du fait que toutes ces grandeurs sont exprimées en termes nominaux, aucune d'ent'elles ne peut être maintenue fixe entre la solution de base et le scénario. Ceci implique que seules les valeurs relatives ont de l'importance 9; dès lors, lorsque nous calculons une solution dans laquelle la réduction des cotisations de sécurité sociale est compensée par une augmentation des taux de TVA, les valeurs des τck et des τfj sont (uniformément) modifiées de telle manière que le rapport Σi T1/Σiπig1 reste égal à ce qu'il était dans la solution de base : la part des transferts forfaitaires reste "constante"; par contre, lorsque la réduction des cotisations est financée par une réduction des transferts aux ménages, les valeurs des τfj sont (uniformément) réduites et le rapport Σi T1/Σiπig1 est "libre", de façon que les transferts puissent s'ajuster pour exactement compenser la perte des recettes due à la réductions des contributions sociales.

Enfin, lorsque l'assiette de prélèvement des cotisations de sécurité sociale est la valeur ajoutée (et non plus seulement la rémunération du facteur travail), la contrainte budgétaire de l'état s'écrit :

\[Σπig1 + Σi T1 = ΣiΣk pkτckxkt + ΣiΣj w1τfjλjyjt + ΣiΣqkjtτfjktjt. \]

où le dernier terme représente les prélèvements sur la rémunération du capital (y compris l'amortissement), aux taux τfj, avec la possibilité que τfj = τfj en deuxième période. Pour les raisons décrites plus haut (problème des valeurs relatives), il faut que le rapport Σπig1/(ΣΣkpkτckxkt + ΣΣj w1τfjλjyjt + ΣΣqkjtτfjktjt) soit le même dans la variante que dans la solution de référence.

Les résultats sont résumés dans le Tableau 2 qui donne les variations par rapport à la solution de base, lorsque les cotisations patronales sont réduites de 10% (à l'exception des chiffres de la colonne ASS2, sur lesquels nous reviendrons) qui est l'ordre de grandeur considéré par le Groupe des 72, BOSSIER et al. (1987) ainsi que par DEWATRIPONT et

Les résultats peuvent donner lieu aux commentaires suivants.

(1) Il apparaît que lorsque la perte de recettes de sécurité sociale est compensée par une réduction des transferts aux ménages, l'effet sur l'emploi est nettement plus important que lorsque cette même perte est compensée par une augmentation de la TVA; ceci semble normal dans un contexte d'équilibre général, du fait que les transferts forfaitaires n'ont pas d'effet distortionnaire. Une telle politique semble cependant peu réaliste dans l'environnement belge actuel : durant ces dernières années, en effet, les transferts aux ménages ont déjà été réduits, et les impôts directs sont parmi les plus élevés dans la Communauté Européenne. Il vaut également la peine de noter que, dans le meilleur des cas, la réduction de chômage qui résulte de cette politique (quelque 25 à 30%), n'engendre pas suffisamment de croissance pour s'autofinancer. Des résultats de même nature sont obtenus dans les simulations de modèles macro-économétriques.

(2) Comme on pouvait s'y attendre, les effets sur l'emploi sont plus importants lorsque l'élasticité de substitution entre travail et capital est plus élevée 12. La valeur de 0.5 semble cependant plus raisonnable 13. L'impact d'une elasticité de substitution plus élevée est plus important dans notre modèle que dans un modèle macroéconométrique comme Breughel 14. Les résultats ne sont cependant pas tout à fait comparables; en effet, dans notre modèle, l'élasticité à moyen terme est nulle (complémentarité) et c'est par conséquent à travers les anticipations de substitution à long terme que les firmes font leur choix d'investissement de première période; dans le modèle Breughel, par contre, il y a déjà possibilité de substitution à moyen terme.

10 Le Groupe des 72 semble également considérer les effets d'une baisse des cotisations de 10% par an, pour atteindre 40% après quatre ans.
11 L'élasticité est identique pour tous les secteurs, à l'exception des pouvoirs publics où il n'y a pas de capital; dans ce secteur, le coefficient de travail reste constant.
12 Rappelons ici qu'il y a complémentarité des facteurs en première période, et que la substituabilité ne joue qu'en deuxième période.
(3) Puisqu'il n'y a pas de substitution capital travail à moyen terme c'est uniquement grâce à des capacités de production accrues que peut partiellement se résorber le chômage. L'investissement joue donc un rôle crucial : dans tous les cas, il y a une demande d'investissement relativement forte. C'est bien ce qui a été observé durant les années récentes; mais la question de savoir si un rythme d'investissement aussi élevé peut être maintenu reste posée. L'augmentation du prix du capital dans le scénario ASS2 freine l'impact positif que peut avoir la forte réduction de la charge de sécurité sociale.

(4) Les gains en bien-être sont très peu élevés; ceci est un résultat que l'on rencontre fréquemment dans la littérature sur l'équilibre général appliqué.

TABLEAU 2 :

Impact d'une réduction de 10% des contributions des sécurité sociale (% par rapport à la solution de base)

<table>
<thead>
<tr>
<th>Type de compensation</th>
<th>TVA</th>
<th>ASS1</th>
<th>ASS2</th>
<th>TF</th>
<th>TVA</th>
<th>ASS1</th>
<th>ASS2</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elast. de substitution</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Chômage (en 1.000)</td>
<td>+10</td>
<td>-80</td>
<td>-30</td>
<td>-125</td>
<td>-70</td>
<td>-135</td>
<td>-95</td>
<td>-150</td>
</tr>
<tr>
<td>Bien-être</td>
<td>-0,1</td>
<td>+0,7</td>
<td>+0,5</td>
<td>+1,0</td>
<td>+1,7</td>
<td>+2,4</td>
<td>+2,8</td>
<td>+2,8</td>
</tr>
<tr>
<td>Consommation privée</td>
<td>-0,2</td>
<td>+1,7</td>
<td>+1,2</td>
<td>+2,4</td>
<td>+1,3</td>
<td>+2,8</td>
<td>+2,4</td>
<td>+2,8</td>
</tr>
<tr>
<td>Investissement</td>
<td>-0,8</td>
<td>+5,7</td>
<td>+2,2</td>
<td>+9,1</td>
<td>+5,3</td>
<td>+9,2</td>
<td>+5,6</td>
<td>+11,6</td>
</tr>
<tr>
<td>Exportations</td>
<td>+0,1</td>
<td>0,0</td>
<td>-0,4</td>
<td>+0,2</td>
<td>+0,2</td>
<td>+0,2</td>
<td>-0,4</td>
<td>+0,2</td>
</tr>
<tr>
<td>Importations</td>
<td>0,0</td>
<td>-0,1</td>
<td>-0,1</td>
<td>-0,3</td>
<td>-0,2</td>
<td>-0,3</td>
<td>-0,1</td>
<td>-0,3</td>
</tr>
</tbody>
</table>

Note : La consommation, l'investissement, l'exportation et l'importation sont exprimés en "prix constants" par rapport à la solution de référence. Le bien-être est mesuré par l'utilité U(x1) du consommateur belge.

(5) L'augmentation du sous-emploi dans la première colonne du Tableau 2 ne doit pas être prise au pied de la lettre; ce que ce résultat montre, c'est qu'il y a peu, voire rien à gagner en réduisant les cotisations de sécurité sociale et en compensant la perte par des taux plus élevés de TVA, si l'élasticité de substitution entre facteurs est faible.

(6) A l'exception du cas où la perte des cotisations est compensée par un accroissement des taux de tva (élasticité de substitution égale à 0.5), la diminution du chômage est plus marquée (et plus variée selon les hypothèses de financement) que dans les calculs de DEWATRIPONT et THYS-CLEMENT (1988), du Bureau du Plan (BOSSIER et al. (1987)).
Voir aussi VAN DER LINDEN (1990). Rappelons que nos résultats ne sont cependant pas tout à fait comparables à ceux dont il vient d'être question, du fait qu'ils ont été obtenus sous l'hypothèse d'une non-déterioration de la balance courante et du déficit public à long terme.

(7) Il faut noter que tous les modèles mettent en lumière le fait que la compensation de la réduction des cotisations par une augmentation des impôts indirects a peu d'effets favorables sur l'emploi.

Bibliographie

ITALIANER, A., STRUMELLE, P. and VAN REgemorter, D. (1990), Estimation of CRESH production functions with an application to the Belgian industry, manuscript.

VAN DER LINDEN, B. (1990), Diminution des cotisations patronales à la sécurité sociale et création d'emplois en Belgique, Center for Operations Research and Econometrics, Louvain-la-Neuve.

"GROUPE DES 72" (1988), Une réforme du système fiscal pour donner la priorité à l'emploi, Cahiers Economiques de Bruxelles 119, 285-291.