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Moment curvature relationship of reinforced 
concrete sectionsunder combined bending 
and normal force 

B E R N A R D  ESPION, PIERRE HALLEUX 

Department of'Civil Engineering, Free University of Brussels ( UL B), Brussels B-lOS0, Belgium 

The modelling of  tension stiffening effects is important for the verification of serviceability limit 
states of  reinforced or prestressed concrete structures or even for the computation of  the stability 
limit state of  particular classes of  slender concrete structures (bridge piles, towers, masts, etc.). 
The case of  pure bending has received extensive analytical and experimental consideration, but 
little attention has been paid, up to now, to the case of combined bending and normal force. A 
series of  tests on rectangular reinforced concrete beams submitted to bending and constant 
compressive normal force is reported in this paper. The moment-curvature relationships are 
evaluated and compared with the prediction of two theoretical models. The first model is the 
CEB model proposed by Favre and Koprna. It is a simplified model which refers to the 
tm cracked and fully cracked stiffnesses in pure bending only. The second model is a proposition 
made by the authors which takes into account the tension stiffening effects, the variation in 
position of  the neutral axis as a function of the eccentricity of the normal force, and the non-linear 
behaviour of  concrete in compression. 

1. INTRODUCTION 

The verification of the serviceability limit states of 
reinforced or prestressed concrete structures requires a 
good command of three kinds of variable: 

(i) precise knowledge of the nature and of magnitude 
of permanent actions (direct as well as indirect); 

(ii) modelling of the influence of the time-dependent 
behaviour of concrete; 

(iii) modelling of the influence of the tension stiffening 
effects of cracked concrete below the neutral axis. 

This article deals more specifically with the tension 
stiffening effects. We intend to study their influence on 
the instantaneous moment-curvature relationship of re- 
inforced concrete sections because this is the starting- 
point of any method for computing the displacements of 
reinforced concrete structures. The assessment of their 
influence on the long-term relationship would follow 
logically, but is beyond the scope of this work. 

The case of pure bending has been extensively studied 
analytically and experimentally. However, little work has 
been done on the case of combined bending and normal 
force. To the best knowledge of the authors, there are no 
tests specifically designed to reveal the influence of 
tension stiffening in combined bending and normal force 
other than for annular sections [1]. One of the aims of this 
article is to provide reference experimental moment-  
curvature relationships of reinforced concrete sections 
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under combined bending and normal force where the 
eccentricity M/N of the normal force is large enough to 
obtain cracked sections under service conditions. 

2. PREVIOUS THEORETICAL APPROACHES 

2.1 Classification of proposed models 

Critical examination of the propositions published in the 
literature for computing the moment-curvature relation- 
ship of reinforced or prestressed concrete sections leads 
us to the following classification of previous theoretical 
approaches in this field: 

1. Interpolation between the end of State I when 
cracking begins and the transition between the cracked 
Phase II and the plastic Phase III when yielding of the 
reinforcement begins. 

2. Computation of the curvature in the fully cracked 
State II and correction of this curvature, essentially by 
reducing the strain of the reinforcement through some 
sort of tension stiffening formula of the kind 

Esm = E ~ - - A E  s (1)  

3. General  numerical construction of the moment -  
curvature relationship according to the following steps: 

(i) given strain distribution accross the depth of the 
cross-section (Navier-Bernoulli hypothesis); 
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(ii) choice of stress-strain relationships for constitutive 
materials and for concrete under tension in particular; 

(iii) assumption of perfect mean strain compatibility 
(or given slip law) between steel and concrete; 

(iv) expression of equilibrium equations between 
stress resultants and external forces acting on the cross: 
section. 

Propositions of this kind have appeared recently but are 
necessarily numerical and iterative. They introduce 
tension stiffening effects by assuming special shapes of 
stress-strain relationships for concrete under tension with 
post-critical strain softening branches. 

4. Purely empirical or geometrico-empirical proposi- 
tions resting on the logical assumption that the stiffness 
(or curvature) in the cracked phase must fall between the 
stiffnesses (or curvatures) computed for the same load 
level in State I and the fully cracked State II. 

2.2 Principles of the CEB model 
proposed by Favre and Koprna 

One of the simplest and most comprehensive models has 
been proposed by Favre, Koprna and co-workers [2-6]. It 
is a purely analytical model which encompasses the cases 
of combined bending and normal force and time- 
dependent behaviour of concrete. It belongs to our fourth 
category and forms the basis of the current CEB Manual 
'Cracking and Deformations' [6]. This model has been 
extensively qualified in pure bending [7], but has never 
been verified, for lack of experimental reference data, in 
the case of combined bending and normal force. Since 
one of our goals in this research is to evaluate this model 
in the light of experimental results, we shall briefly recall 
its main characteristics in the case of combined bending 
and normal force. 

Let us choose the centroid of the uncracked gross 
section as the centre of reduction for the external forces. 
The application of an axial load at this point will already 
provoke an initial curvature of the section because this 
point does not exactly coincide in general with the 
centroid of the transformed uncracked cross-section. This 
initial curvature will normally be small and could 
generally be neglected. 

Neglecting any tension strength for concrete, the 
moment--curvature relationship in the fully cracked State 
II is a non-linear function of the excentricity M / N  where 
M = bending moment and N = normal force. But 
asymptotically, it seems logical to assume that when the 
eccentricity M / N  becomes very large, the position of the 
neutral axis in the fully cracked section under combined 
bending and normal force tends to its value in pure 
bending. This supposition is the key hypothesis of the 
simplified model proposed by Favre and Koprna for the 
construction of the moment-curvature relationship in the 
case of combined bending and constant normal force (Fig. 
1): 

i ~(1-g~ R~ ~ (2) 
Rm 

M 1 I , ,  

I 

d/2 M 
Mr<Mo s N~ M M~N 

! 

Fig. 1 Moment--curvature model proposed by Favre and 
Koprna in the combined bending and normal force case. 

The modification 1/R2N to the curvature 1/R2 in pure 
bending follows from the effect of the bending moment 
caused by the force N acting at the centroid of the total 
section, being displaced from the centroid of the cracked 
section: 

1 1 = N x 1 2  M0 ~--- X12  " (3) 
R2u E e l  2 1 - ( I2 / I i )  

where x12 is the distance between the positions of the 
centroids of the uncracked and fully cracked sections in 
pure bending; Ec is Young's modulus. 

The repartition coefficient ~0 depends upon the value of 
M0 with respect to the value of the cracking moment Mr 
(Fig. 1): 

(M,-Mo) 2 
f o r M r > M 0 a n d M > M ~ : ~ 0  = 1 -  M - M 0  

for Mr > Mo and M < M~ : ~o = 0 
(4) 

for Mr < Mo and M > Mo : ~o = l 

for Mr < Mo and M < Mo : ~o = 0 

3. EXPERIMENTAL PROGRAMME 

The field of application of combined bending and normal 
force is obviously very large but one particular loading 
path is often met in practical circumstances: it consists in 
applying first a compression normal force and secondly in 
subjecting the structure to bending (the normal force 
being kept constant). This scheme may logically be seen 
as the basic modelling of partial prestressing. It also 
represents the loading sequence of many vertical 
structures in which the dead weight produces mainly 
normal force on the sections and where bending comes 
from horizontal actions like wind or imposed deforma- 
tions: bridge piles, towers, masts, chimneys, water tank 
towers, etc. For structures of this kind, it is worth 
mentioning that consideration of tension stiffening effects 
will essentially have an influence on the stability limit- 
state computations because these effects will reduce the 
second-order bending moments in comparison with com- 
putations in the fully cracked State II. 

This loading sequence was chosen for our experimental 
programme, carried out on rectangular reinforced 



Mater ia l s  and  Structures  343 

Table I Section characteristics 

Section As (mm 2 ) fy (N mm -2) hu (ram) A '2 (mm 2) f 'y (N mm -2) h'u (ram) 

S-0.9 339 521 251.4 0 
D-0.9 339 521 251.4 339 521 34.2 
D- 1.2 462 5 I0 250.8 462 510 34.0 
D- 1.4 509 510 250.2 509 510 38.9 
S- 1.4 509 510 250.2 0 

Table 2 Test data and results 

Beam N (kN) Mr e (kN m) My e (kN m) Qye (kN) Ms (kN m) [I/R]cEB [ l/R]~,utho,-s 

[i/R].xp [l/R]oxp 

N0-D- I. 2 0 10.7 54.0 54.0 24.3 1.014 1.000 
N I-D- 1.2 100 14.0 65.8 64.0 31.2 1.073 1.046 
N2-D- !.2 200 17.5 76.4 72.5 37. l 0.988 1.019 
N3-D- 1.2 300 21.7 82.7 76.5 40.3 0.907 1.020 
N l-D-0.9 I00 14.4 54.1 52.5 25.1 1.104 1.059 
N3-D-0.9 300 19.3 70.2 64.2 34.2 0.798 1.000 
N 1-S-0.9 100 13.3 51.7 50.0 23.3 1.088 1.049 
N3-S-0.9 300 22.3 66.0 60.0 25.6 0.753 0.933 
N0-D- 1.4 0 9.7 57.0 57.0 26.3 1.020 0.993 
N2-D- 1.4 200 18.5 77.7 73.9 38.8 0.930 0.971 
N0-S- 1.4 0 9.8 59.0 59.0 25.7 1.033 l .(126 
N2-S- 1.4 200 16.0 70.6 66.4 31.0 0.846 0.958 

Mean 0.963 1.006 
Standard deviation 0.12 0.04 

concrete beams (section depth d = 280mm; section 
breadth b = 150 mm) of span 3 m. An axial load is first 
applied with horizontal jacks on both ends of the beam. 
Then,  keeping this axial load constant and horizontal, the 
beam is subjected to transverse bending by two vertical 
forces acting respectively at  one-third and two-thirds of 
the span. The curvature is evaluated in the central section 
by converting strain measurements made with Demec 
mechanical extensometers on a 12in. (305mm) gauge 
length. Strains are recorded along five equidistant fibres 
on both vertical sides in the central section. For some 
beams,  complementary strain measurements were also 
made with 20in. (508mm) Huggenberger deformeters 
and no significant difference was observed in the 
evaluation of the curvature. The bending moment  in the 
central section is computed by taking into account 
geometrical second-order effects which, as will be seen 
below, are not negligible and can amount for up to 10%of  
the ultimate bending moment.  In this paper, the bending 
momen t  is computed at mid-height of the gross cross- 
section. It is also at this level that the axial forces are 
applied o n  the ends of the beams. 

Twelve beams were tested. The varying parameters  are 
the intensity of the normal force and the amount of 
reinforcement.  Cross-sections were not reinforced in 
shear in the zone between the two vertical loads. Table 1 
shows the sections' characteristics: some are singly 

reinforced (S) and others are also reinforced in 
compression (D). Table 2 gives the value of the applied 
axial load: from 0 to 300 kN, a plastic phase (with yielding 
of  tensile reinforcement) could always exist at ultimate 
limit state. The concrete composition was kept constant 
during all tests: 

Round gravel 1210 kg 
Sand 0, 1/4 650 kg 
Portland cement P40 350 kg 
Water  176 kg 

Beams were cast two by two and for each pair, the first 
beam was tested at 21 days and the second on the day 
after. Concrete characteristics present little dispersion; 
this allows the adoption of mean values for the computa- 
tions: 

Average cylinder strength : fc = 41.6 N m m  -2 

Average prism strength :fcp = 37,9 N mm -2 

Average Young's  modulus : Er = 32.5 kN m m  -2 

Average tensile strength : f c t  = 4.0 N mm -~ 

Finally, Table 2 gives for each beam two particular 
experimental  values of  the bending moment:  the cracking 
momen t  M, ~ and the yielding moment  My e. This last one 
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Fig. 2 Experimental moment-curvature relationship of beams 
( A ) N I-S-0.9 and (O) N3-S-0.9, with curves computed from 
( ) the CEB 158 model and (---) the present model. 
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Fig. 3 Experimental moment-curvature relationship of beams 
(A) N1-D-0.9 and (O) N3-D-0.9, with curves computed from 
( ) the CEB 158 model and (---) the present model. 

may be compared with the experimental yielding load Qye 
(also reported in Table 2) to obtain a quick appraisal of 
the influence of the geometrical second-order effects. The 
experimental cracking moment was deduced from strain 
measurements (moment level corresponding to slope 
breaking in M--~ records) and not from visual inspection: 
in fact, when an operator notices the occurrence of a 
crack, it usually already presents a 0.05 mm opening and 
has been preceded by a phase of microcracking invisible 
to the eye. The experimental moment-curvature 
relationships are represented in Figs 2 to 7. 

4. INTERPRETATION OF TEST RESULTS 

4.1 Computation of the service bending moment 

The evaluation of tension stiffening effects is specially 
important for serviceability limit-state verifications. This 
is why the service load level of the bending moment Ms 
(value given in Table 2) is also reported in Figs 2 to 7. 

The ultimate bending moment Mu was computed by 
considering the normal force as a favourable permanent 
action (i.e. yg = 1) and by assuming the standard 
parabola-rectangle stress-block with fck = 0.8 • 41.6 = 
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Fig. 6 Experimental m0ment-curvature relationship of beams (ZX) N0-S-1.4 and (O) N2-S-1.4, with curves computed from 
( ) the CEB 158 model and ( - - - )  the present model. 
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Fig. 4 Experimental moment-curvature relationship of beams ( ~ ) N0-D-1.2 and (Q) N2-D-1.2, with curves computed from 
) the CEB 158 model and ( - - - )  the present model. 
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Fig. 5 Experimental moment-curvature relationship of beams ( & ) N I-D- 1.2 and ( �9 N3-D- 1.2, with curves computed from 
( ) the CEB 158 model and ( - - - )  the present model. 
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Fig. 7 Experimental moment-curvature relationship of beams (A) N0-D- 1.4 and (&) N2-D- 1.4, with curves computed from 
( ) the CEB 158 model and ( - - - )  the present model. 

33.3 N mm-2; f~a = fck/7,,, = 22.2 N mm -z and 0.85lea = 
18 .9Nmm -2. For the reinforcement, the following 
characteristic yield strength fsk = 400 N mm -z was used 
and fsd = fsk/Ym = 348 N mm -z. The service bending 
moment is obtained from Ms = Mu/'Yq with yq = 1.5. 

4.2 Evaluation of the CEB model proposed by Favre and 
Koprna 

The ratios (theoretical curvature/experimental 
curvature) computed at the service load level are reported 
in TaMe 2. The average is 0.96 and, overall, we could infer 
that the CEB model adequately predicts the mean 
instantaneous curvature at the service load level. But this 
good average value includes some scattering: the model 
overestimates systematically the curvature in the case of 
tests on pure bending (NO) or with small normal force 
(N1) and underestimates regularly the curvature when 
the normal force increases. The underestimation is at its 
maximum in the N3 tests (N = 300 kN). 

If we now attempt to evaluate this model for its overall 
prediction of the moment--curvature relationship, we 
could say 

(i) that the M-(1/R) relationship seems correctly 
modelled when M, > M0 (of. Fig. 1), i.e. in the cases of 
pure bending tests (NO) or when the normal force is 
relatively small (N1); 

(ii) that the computed M-(1/R) relationship is only a 
crude approximation of the experimental curve 
whenM0 > Mr (cf. Fig. 1), i.e. when the normal force is 
relatively large (N2, N3); 

(iii) that, generally, the simplification introduced by 
Favre and Koprna - which consists in referring to the 
stiffnesses in State I and the fully cracked State II of pure 
bending only - seems too rough to represent precisely the 

non-linear part of the moment--curvature relationship 
which follows from 

(a) the influence of the tension stiffening effects and 
(b) the rapid variation of the compression zone depth 

with the increase of the bending moment; 

(iv) that the model, which is linear regarding the 
behaviour of concrete in compression, also deviates from 
the experimental trend when the bending moment 
becomes relatively large (more than 40 kN m in the case of 
our  tests). It is at this point difficult to estimate whether 
this non-linearity follows from the fact that compressive 
stresses are high and consequently beyond the linear 
range of their intrinsic stress-strain law, or if it reveals the 
presence of short-term creep. In connection with this last 
remark,  it is important to point out that the tests were 
generally completed within one hour. 

4.3 Proposal of a refined model 

We can deduce from the comments made above about the 
CEB model that a more precise modelling of the 
moment-curvature  relationship in combined bending and 
normal force should take into account 

(i) the variation in position of the neutral axis as a 
function of the eccentricity M/N; 

(ii) the non-linearity of the stress-strain law for 
concrete in compression when the stresses become large; 

(iii) the tension stiffening effects. 

We propose here a model of the kind allowed by the 
CEB Model Code 78 and by its next edition [8]. It falls 
into the second category of our classification and is 
deduced from the fundamental formula 

1 E~ + Esm 

R~ - h~ (5) 
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with Esm , the average strain of the tensile reinforcement 
and E'r the average strain of the top fibre of the cross- 
section. The average strain of the reinforcement will be 
computed through some tension stiffening formula 
(Equation 1) taking into account the reduction in 
deformation (AE 0 provided by the cracked concrete in 
comparison with the strain E~2 computed in the fully 
cracked State II. 

# 
Ecm ~ # Ec2 -- AE c 

and the average curvature (Equation 5) becomes 

(6) 

1 EPc2+Es2 AE:+AE~ _ 1 A ( I ' ~  (7) 
R m h~ hu R2x \ K /  

with l/R2x being the curvature computed in the fully 
cracked State II in combined bending and normal force. 

For the computation of AEs, we suggest using the 
tension stiffening formula which was deduced from our 
tests on reinforced concrete prisms in pure tension [9]. It 
is represented in Fig. 8 and its expression in the cracked 
phase is as follows: 

1 
for Ors2 > 2Crsr 

(8) 
for o's~ < Ors2 < 2o',r 

This representation of the constitutive law of a reinforce- 
ment surrounded by cracked concrete will probably be 
found, at least for its stabilized cracking part AE~ b, in the 
next edition of the CEB Model Code 1990 [8]. 

The rigorous calculation of Aa~ is more complex and 
should normally require iterative computations. But the 

20"S r 

O-sr 

N 
~ =~s 

/ / /  
a tM 

Ecr Esr E 

Fig. 8 Constitutive law of a reinforcement surrounded by 
cracked concrete. 

researchers who have used this kind of approach in pure 
bending [e.g. 10-16] have all noticed that AEr is small in 
comparison with AEs. In this paper, as a first approxima- 
tion, we will also assume that 

-~-~.; (9) 

The first problem to solve is the computation of AEs b. In 
Equation 8, er is the concrete strain corresponding to the 
tensile strength and is therefore given by e ,  = fr162 
(assuming that the behaviour of concrete under tension 
remains linear up to its tensile strength); Esr is the strain of 
the reinforcement at the cracking bending moment level, 
computed in the fully cracked State II. What we call here 
the cracking moment is the moment M,2 obtained when 
the tensile strength fr is reached at the reinforcement 
level (hu) and assuming that the section behaves 
elastically and remains uncracked up to this moment 
level. The detailed computation of e~r is given in 
Appendix A. It is based on the solution of a third-degree 
equation to find the position of the neutral axis in the fully 
cracked State II under (N, Ma). 

Having determined the constant value of AEs u in 
stabilized cracking, the construction of the moment-  
curvature relationship for values of M > Me proceeds as 
represented in Fig. 9, which corresponds to 

1 1 AEs 

8m R2x hu 
(i0) 

It can be seen that the principle underlying this model is 
to compute the section in the fully cracked State II in 
combined bending and normal force, which provides es2, 
e'r AEs (through Equation 8) and 1/R2x. Details of our 

M 

Mr2 
Mr1- 

I12 

/ ,,.2"/"-':" 
._7,,0 

hu/,~ 

Fig. 9 Proposed model for the moment-curvature relationship 
of reinforced concrete sections under combined bending and 
normal force. 
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computations are reported in Appendix B. For these 
computations in State II, the stress-strain relationship 
adopted for concrete in compression is non-linear and 
given by 

' Eg2. < o ' c _  l _ ( l _ c ~ )  ~ foro~ = 1 
fc 

! 
O" c 
- - =  i 
L 

for a > l  

(11) 

with 

a <  I f, 
= r t - -  

Ec = aCal~=0 c0 

For n = 2, this stress-strain law becomes the classical 
parabola-rectangle. 

Given that, for the chosen loading path, the value of the 
largest concrete strain at the top fibre of the section r 
may only increase, the moment-curvature relationship is 
constructed point by point for increasing values of r 
For each value of E'c2, a second-order equation is solved to 
find ~:, the depth of the compression zone in the fully 
cracked state. For this strain distribution (r ~), the 
average curvature is computed according to Equation 10 
and the bending moment is obtained by expressing the 
equilibrium of the cross-section (Equation B16 in 
Appendix B). The construction could be refined by 
joining Points A and C in Fig. 9 with a straight line. 

The results of our computations according to this model 
are represented in Figs 2 to 7. The following char- 
acteristics were adopted for the stress-strain relationship 
of concrete in compression: 

f ,  = 37.9 N mm -z (mean prism strength) 

Er = 32.5 kN mm -2 

le t  : 4 . 0  N mm -2 

n = 2 (parabola) 

The average Young's modulus for steel was 200 kN mm -2. 
In Table 2 are also reported the ratios (theoretical 

curvature/experimental curvature) computed for the 
service bending moment. We can deduce that the 
proposed model gives an excellent prediction of the 
curvature at the service load level. Furthermore, this 
prediction is far more consistent over the whole range of 
the tests than the prediction made with the CEB model. 

Overall, the proposed model also gives a very good fit 
for the whole experimental M-(1/R) relationship. The 
adoption of a non-linear o---~ law for concrete in 
compression is certainly useful in order to follow closely 
the experimental curve but, when the bending moment 
becomes greater than the service moment level, this 
hypothesis seems insufficient to represent precisely the 
non-linear part of the experimental M-(1/R) relationship 

above the service load level in the case of singly reinforced 
sections (reinforced in tension only); we infer from this 
remark that in our tests, short-time creep effects 
superimpose themselves on the results in such a way that 
it would be meaningless to attempt a better prediction of 
the experimental results than within a -_+5% confidence 
interval without taking creep effects into account. On the 
other hand, the proposed method works very well for 
doubly reinforced sections where the presence of 
compressive steel counteracts the development of creep 
strains. 

5. CONCLUSIONS 

We summarize hereafter the principal conclusions of this 
research. 

I. The authors have carefully studied the suggestions 
found in the literature for the construction of the 
moment-curvature  relationship of reinforced or pre- 
stressed concrete sections in the cracked state (in 
connection with serviceability applications); they propose 
a classification in four categories. 

2. Pure bending has been often and extensively 
analysed but, until now, little experimental or analytical 
work has been devoted to the case of combined bending 
and normal force. This is why an original series of tests 
was undertaken. Their purpose was to provide reference 
experimental data to quantify the influence of tension 
stiffening effects on the moment-curvature relationship 
in combined bending and compressive normal force. 
These data, which were lacking in the current literature, 
were used to evaluate two theoretical prediction models 
for the M-(1/Rm) relationship. 

3. The first of these theoretical models is the simplified 
proposition by Favre and Koprna which forms the basis of 
the CEB-158 Deformation Manual [6]. This model, which 
has been verified earlier in pure bending [7], was 
compared for the first time with experimental results in 
combined bending and normal force. Considering its 
simplicity and ease of application, we may conclude that 
this model provides satisfactory results around the service 
load level. 

4. In order  to predict more precisely the whole 34-(1/ 
R) relation in combined bending and normal force, it 
becomes necessary, at the cost of simplicity, to take 
account of the variation in position of the neutral axis as a 
function of the excentricity and the non-linear behaviour 
of concrete in compression. The authors have established 
such a model which compares favourably with their 
experimental results. This model is purely analytical and 
uses only hypotheses recommended in the CEB Model 
Code. In particular, the tension stiffening effects are 
modelled using a formula previously derived by the 
authors from pure tension tests [9] and whose stabilized 
cracking part will be found in the next edition of the CEB 
Model Code 1990 [8]. 

5. With the aid of this model, the authors have 
succeeded in estimating the influence of tension stiffening 
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effects on the moment--curvature relationship. These 
effects are at their maximum (and important to be taken 
into account) in the presence of lightly reinforced sections 
or  small normal force. This conclusion seems logical 
because it is in these cases that the tensile area of concrete 
is also at its maximum. But even when large normal forces 
are acting, the consideration of tension stiffening effects is 
very useful to obtain a better prediction of experimental 
results. 
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APPENDIX A: Computation at the cracking bending 
moment  level M~2 (Fig. A1) 

A. 1 Uncracked section (State I) 

The equivalence coefficient is rn = EJEr and the area of 
the transformed section is 

f~ = bd+ (m - 1)A: + (m - 1)A~ (A1) 

The position Cg of the centroid of the section measured 
from the top fibre is 

(bd2/2) + (m - 1)A~h" + (m - 1)A~hu 
Cg = 121 (A2) 

The second moment  of area of the section is 

I 1 12 + bd - Cg 

+ (m - 1)A~(h" - Cg) 2 + (m - l)As(hu - Cg) 2 

and the cracking bending moment  M~2 is 

(A3) 

l~ [f~ ((hu-cg)[Cg-(d/2)] 
M r 2  - h~ - c~ t - N 1I 

1 

(A4) 

A.2 Cracked section (fully cracked State II) 

Let ~:~ be the position of the neutral axis under (M~2, N); 
the compressive stress resultant in the concrete is then 

b 
F" = ~rE'crEr (A5) 

The stress resultant in the compressive steel is 

F~ = A~Esr = A ' E s E ' c r - -  
(~ -h"  

(r 
(A6) 

and the stress resultant in the tensile steel is 

Fs = AsEse~r = AsEsE'crh"@rr ~ (A7) 

The equilibrium equations are 

N = F'r (A8) 

(~ ~ r ) + F ~ ( ~ - h t u ) + F s  ( h u - d )  (A9) Mr2 = F'c - -~- 

By eliminating (r between Equations A8 and A9, one 
obtains 

~3 +al~2r +a2~r+a3 = 0 (A10) 

with 

al = 3 2 

6m[( d 
a2 = - - f f  - A2 h ' - ~ +  

Mr2) (  r2)] 
+ As h u - -  + 

N 2 N 

a3 = --if- A'h' .  - h ' -  ~ +A~h. - h u -  - -~  

The solution of this cubic equation (which can be found 
with the usual analytical formulae) gives the depth s of 
the compressed zone of the cross-section under (N, Mr2). 

The combination of the Navier-Bernoulli  hypothesis 

hu -- ~r 
e~r = E ; r - -  ( A l l )  r 

V E:~ I  lh u 
t 

Crsr g" (/ I 
Fig. A 1 Present model; strain and stress distributions at 
cracking bending moment level. 

s 
Crsr 
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and equation A9 gives 

o'~ = 2mM~2(h~ - (~)  / (~b 

+ mEA~ (~:, - h'u)(d - 2h~) + A~((~ - hu)(d - 2h.)] } 

(A12) 

and finally 

~ = o-~/ Es 

APPENDIX B: Computation of the M-(I/Rm) 
relationship for M >  Mr2 (Fig. B1) 

B.1 Characteristics of  the stress-block 
Equation 11 

The filling coefficient K~ is given by 

1 - (1 - o0 "+1 
K~ = 1 0 < o z < l  

(n + 1)a 

1 
K I =  1 

(n + 1)a" 
a > l  

The compressive stress resultant in the concrete is 

F ~ = K ,  L b (  

The position coefficient K2 is given by 

KIK2 - 

derived from 

(B1) 

(B2) 

(B3) 

1 1 + [(n + 1) (1-  a ) -  (n + 2)](1 - a) "+~ 
2 (n + 1) (n + 2)a 2 

0 < a <  1 (B4) 

1 1 
K:K2 = ~ -  (n+ 1 ) (n+2)a  2 a >  1 (B5) 

The eccentricity of F'r computed from the neutral axis is 

seK2 (B6) 

B.2 Computation of  the bending moment 

The horizontal equilibrium equation is 

N = F" + F" - F~ (B7) 

F'r is given by Equation B3 as follows. In the Ist case 

O's2 <fy Fs = EsAse'c2 h u - (  r 

o';z<f; F; = EsA;e'r ( - h "  (B8) 
( 

and Equation B7 becomes 

r + [E~ .'2 (A~ + A ' )  - N]( - 

E~E'~2(A~hu +A'h',,) = 0 (B9) 

In the 2nd case 

o'~2 >fy F~ = fyAs 

a-h ;  
o'~z<f/ F; = E~A" e ' r  (B10) 

( 

and Equation B7 becomes 

seZ bf~K~ + [Ese'~2A~ - fyAs - IV]( - Ese'zA" h" = 0 
(Bl l )  

In the 3rd case 

crsa<fy F~ = EsAs,E'c2 h u - (  

o'~z>f; F; = A; f ;  (B12) 

and Equation B7 becomes 

~ZbfcK1 + [Esa'zA~ + f ;A;  - N ] ( -  E~E~2A~h. = 0 (BI3) 

In the 4th case 

o'sz >fy Fs = fyAs 

0";2 >f~ F" = fyA~ (B14) 

+l:z 
/ 

C'C2 &c' Fs r '  
- - -  

Fig. B 1 Present model; strain and stress distributions above the 
cracking bending moment level. 
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and Equation B7 becomes 

= N + f y A s - f y A ~  
K, bfc (B15) 

Finally, the moment of these resultant forces computed 
about the mid-height axis gives the bending moment M: 
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